diff options
author | David Cournapeau <cournape@gmail.com> | 2009-09-18 09:59:24 +0000 |
---|---|---|
committer | David Cournapeau <cournape@gmail.com> | 2009-09-18 09:59:24 +0000 |
commit | 599b0f1e83494c56d01ac24d7605bc3e8da0cd6e (patch) | |
tree | 02c396f2047e71761d9ef11413cdcde376cbe5c8 /numpy/matrixlib/tests/test_defmatrix.py | |
parent | 957cd7931740bce0ed9ffb12b47afde6c089dadf (diff) | |
download | numpy-599b0f1e83494c56d01ac24d7605bc3e8da0cd6e.tar.gz |
Rename matrx to matrixlib.
I forgot to commit the name change suggested by Stefan. You need to
clean build/install directory when updating to this version.
Diffstat (limited to 'numpy/matrixlib/tests/test_defmatrix.py')
-rw-r--r-- | numpy/matrixlib/tests/test_defmatrix.py | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/numpy/matrixlib/tests/test_defmatrix.py b/numpy/matrixlib/tests/test_defmatrix.py new file mode 100644 index 000000000..cb6bd801d --- /dev/null +++ b/numpy/matrixlib/tests/test_defmatrix.py @@ -0,0 +1,375 @@ +from numpy.testing import * +from numpy.core import * +from numpy import matrix, asmatrix, bmat +from numpy.matrixlib.defmatrix import matrix_power +from numpy.matrixlib import mat +import numpy as np + +class TestCtor(TestCase): + def test_basic(self): + A = array([[1,2],[3,4]]) + mA = matrix(A) + assert all(mA.A == A) + + B = bmat("A,A;A,A") + C = bmat([[A,A], [A,A]]) + D = array([[1,2,1,2], + [3,4,3,4], + [1,2,1,2], + [3,4,3,4]]) + assert all(B.A == D) + assert all(C.A == D) + + E = array([[5,6],[7,8]]) + AEresult = matrix([[1,2,5,6],[3,4,7,8]]) + assert all(bmat([A,E]) == AEresult) + + vec = arange(5) + mvec = matrix(vec) + assert mvec.shape == (1,5) + + def test_bmat_nondefault_str(self): + A = array([[1,2],[3,4]]) + B = array([[5,6],[7,8]]) + Aresult = array([[1,2,1,2], + [3,4,3,4], + [1,2,1,2], + [3,4,3,4]]) + Bresult = array([[5,6,5,6], + [7,8,7,8], + [5,6,5,6], + [7,8,7,8]]) + mixresult = array([[1,2,5,6], + [3,4,7,8], + [5,6,1,2], + [7,8,3,4]]) + assert all(bmat("A,A;A,A") == Aresult) + assert all(bmat("A,A;A,A",ldict={'A':B}) == Aresult) + assert_raises(TypeError, bmat, "A,A;A,A",gdict={'A':B}) + assert all(bmat("A,A;A,A",ldict={'A':A},gdict={'A':B}) == Aresult) + b2 = bmat("A,B;C,D",ldict={'A':A,'B':B},gdict={'C':B,'D':A}) + assert all(b2 == mixresult) + + +class TestProperties(TestCase): + def test_sum(self): + """Test whether matrix.sum(axis=1) preserves orientation. + Fails in NumPy <= 0.9.6.2127. + """ + M = matrix([[1,2,0,0], + [3,4,0,0], + [1,2,1,2], + [3,4,3,4]]) + sum0 = matrix([8,12,4,6]) + sum1 = matrix([3,7,6,14]).T + sumall = 30 + assert_array_equal(sum0, M.sum(axis=0)) + assert_array_equal(sum1, M.sum(axis=1)) + assert sumall == M.sum() + + + def test_prod(self): + x = matrix([[1,2,3],[4,5,6]]) + assert x.prod() == 720 + assert all(x.prod(0) == matrix([[4,10,18]])) + assert all(x.prod(1) == matrix([[6],[120]])) + + y = matrix([0,1,3]) + assert y.prod() == 0 + + def test_max(self): + x = matrix([[1,2,3],[4,5,6]]) + assert x.max() == 6 + assert all(x.max(0) == matrix([[4,5,6]])) + assert all(x.max(1) == matrix([[3],[6]])) + + def test_min(self): + x = matrix([[1,2,3],[4,5,6]]) + assert x.min() == 1 + assert all(x.min(0) == matrix([[1,2,3]])) + assert all(x.min(1) == matrix([[1],[4]])) + + def test_ptp(self): + x = np.arange(4).reshape((2,2)) + assert x.ptp() == 3 + assert all(x.ptp(0) == array([2, 2])) + assert all(x.ptp(1) == array([1, 1])) + + def test_var(self): + x = np.arange(9).reshape((3,3)) + mx = x.view(np.matrix) + assert_equal(x.var(ddof=0), mx.var(ddof=0)) + assert_equal(x.var(ddof=1), mx.var(ddof=1)) + + def test_basic(self): + import numpy.linalg as linalg + + A = array([[1., 2.], + [3., 4.]]) + mA = matrix(A) + assert allclose(linalg.inv(A), mA.I) + assert all(array(transpose(A) == mA.T)) + assert all(array(transpose(A) == mA.H)) + assert all(A == mA.A) + + B = A + 2j*A + mB = matrix(B) + assert allclose(linalg.inv(B), mB.I) + assert all(array(transpose(B) == mB.T)) + assert all(array(conjugate(transpose(B)) == mB.H)) + + def test_pinv(self): + x = matrix(arange(6).reshape(2,3)) + xpinv = matrix([[-0.77777778, 0.27777778], + [-0.11111111, 0.11111111], + [ 0.55555556, -0.05555556]]) + assert_almost_equal(x.I, xpinv) + + def test_comparisons(self): + A = arange(100).reshape(10,10) + mA = matrix(A) + mB = matrix(A) + 0.1 + assert all(mB == A+0.1) + assert all(mB == matrix(A+0.1)) + assert not any(mB == matrix(A-0.1)) + assert all(mA < mB) + assert all(mA <= mB) + assert all(mA <= mA) + assert not any(mA < mA) + + assert not any(mB < mA) + assert all(mB >= mA) + assert all(mB >= mB) + assert not any(mB > mB) + + assert all(mA == mA) + assert not any(mA == mB) + assert all(mB != mA) + + assert not all(abs(mA) > 0) + assert all(abs(mB > 0)) + + def test_asmatrix(self): + A = arange(100).reshape(10,10) + mA = asmatrix(A) + A[0,0] = -10 + assert A[0,0] == mA[0,0] + + def test_noaxis(self): + A = matrix([[1,0],[0,1]]) + assert A.sum() == matrix(2) + assert A.mean() == matrix(0.5) + + def test_repr(self): + A = matrix([[1,0],[0,1]]) + assert repr(A) == "matrix([[1, 0],\n [0, 1]])" + +class TestCasting(TestCase): + def test_basic(self): + A = arange(100).reshape(10,10) + mA = matrix(A) + + mB = mA.copy() + O = ones((10,10), float64) * 0.1 + mB = mB + O + assert mB.dtype.type == float64 + assert all(mA != mB) + assert all(mB == mA+0.1) + + mC = mA.copy() + O = ones((10,10), complex128) + mC = mC * O + assert mC.dtype.type == complex128 + assert all(mA != mB) + + +class TestAlgebra(TestCase): + def test_basic(self): + import numpy.linalg as linalg + + A = array([[1., 2.], + [3., 4.]]) + mA = matrix(A) + + B = identity(2) + for i in xrange(6): + assert allclose((mA ** i).A, B) + B = dot(B, A) + + Ainv = linalg.inv(A) + B = identity(2) + for i in xrange(6): + assert allclose((mA ** -i).A, B) + B = dot(B, Ainv) + + assert allclose((mA * mA).A, dot(A, A)) + assert allclose((mA + mA).A, (A + A)) + assert allclose((3*mA).A, (3*A)) + + mA2 = matrix(A) + mA2 *= 3 + assert allclose(mA2.A, 3*A) + + def test_pow(self): + """Test raising a matrix to an integer power works as expected.""" + m = matrix("1. 2.; 3. 4.") + m2 = m.copy() + m2 **= 2 + mi = m.copy() + mi **= -1 + m4 = m2.copy() + m4 **= 2 + assert_array_almost_equal(m2, m**2) + assert_array_almost_equal(m4, np.dot(m2, m2)) + assert_array_almost_equal(np.dot(mi, m), np.eye(2)) + + def test_notimplemented(self): + '''Check that 'not implemented' operations produce a failure.''' + A = matrix([[1., 2.], + [3., 4.]]) + + # __rpow__ + try: + 1.0**A + except TypeError: + pass + else: + self.fail("matrix.__rpow__ doesn't raise a TypeError") + + # __mul__ with something not a list, ndarray, tuple, or scalar + try: + A*object() + except TypeError: + pass + else: + self.fail("matrix.__mul__ with non-numeric object doesn't raise" + "a TypeError") + +class TestMatrixReturn(TestCase): + def test_instance_methods(self): + a = matrix([1.0], dtype='f8') + methodargs = { + 'astype' : ('intc',), + 'clip' : (0.0, 1.0), + 'compress' : ([1],), + 'repeat' : (1,), + 'reshape' : (1,), + 'swapaxes' : (0,0) + } + excluded_methods = [ + 'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield', + 'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize', + 'searchsorted', 'setflags', 'setfield', 'sort', 'take', + 'tofile', 'tolist', 'tostring', 'all', 'any', 'sum', + 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp', + 'prod', 'std', 'ctypes', 'itemset' + ] + for attrib in dir(a): + if attrib.startswith('_') or attrib in excluded_methods: + continue + f = eval('a.%s' % attrib) + if callable(f): + # reset contents of a + a.astype('f8') + a.fill(1.0) + if attrib in methodargs: + args = methodargs[attrib] + else: + args = () + b = f(*args) + assert type(b) is matrix, "%s" % attrib + assert type(a.real) is matrix + assert type(a.imag) is matrix + c,d = matrix([0.0]).nonzero() + assert type(c) is matrix + assert type(d) is matrix + + +class TestIndexing(TestCase): + def test_basic(self): + x = asmatrix(zeros((3,2),float)) + y = zeros((3,1),float) + y[:,0] = [0.8,0.2,0.3] + x[:,1] = y>0.5 + assert_equal(x, [[0,1],[0,0],[0,0]]) + + +class TestNewScalarIndexing(TestCase): + def setUp(self): + self.a = matrix([[1, 2],[3,4]]) + + def test_dimesions(self): + a = self.a + x = a[0] + assert_equal(x.ndim, 2) + + def test_array_from_matrix_list(self): + a = self.a + x = array([a, a]) + assert_equal(x.shape, [2,2,2]) + + def test_array_to_list(self): + a = self.a + assert_equal(a.tolist(),[[1, 2], [3, 4]]) + + def test_fancy_indexing(self): + a = self.a + x = a[1, [0,1,0]] + assert isinstance(x, matrix) + assert_equal(x, matrix([[3, 4, 3]])) + x = a[[1,0]] + assert isinstance(x, matrix) + assert_equal(x, matrix([[3, 4], [1, 2]])) + x = a[[[1],[0]],[[1,0],[0,1]]] + assert isinstance(x, matrix) + assert_equal(x, matrix([[4, 3], [1, 2]])) + + def test_matrix_element(self): + x = matrix([[1,2,3],[4,5,6]]) + assert_equal(x[0][0],matrix([[1,2,3]])) + assert_equal(x[0][0].shape,(1,3)) + assert_equal(x[0].shape,(1,3)) + assert_equal(x[:,0].shape,(2,1)) + + x = matrix(0) + assert_equal(x[0,0],0) + assert_equal(x[0],0) + assert_equal(x[:,0].shape,x.shape) + + def test_scalar_indexing(self): + x = asmatrix(zeros((3,2),float)) + assert_equal(x[0,0],x[0][0]) + + def test_row_column_indexing(self): + x = asmatrix(np.eye(2)) + assert_array_equal(x[0,:],[[1,0]]) + assert_array_equal(x[1,:],[[0,1]]) + assert_array_equal(x[:,0],[[1],[0]]) + assert_array_equal(x[:,1],[[0],[1]]) + + def test_boolean_indexing(self): + A = arange(6) + A.shape = (3,2) + x = asmatrix(A) + assert_array_equal(x[:,array([True,False])],x[:,0]) + assert_array_equal(x[array([True,False,False]),:],x[0,:]) + + def test_list_indexing(self): + A = arange(6) + A.shape = (3,2) + x = asmatrix(A) + assert_array_equal(x[:,[1,0]],x[:,::-1]) + assert_array_equal(x[[2,1,0],:],x[::-1,:]) + +class TestPower(TestCase): + def test_returntype(self): + a = array([[0,1],[0,0]]) + assert type(matrix_power(a, 2)) is ndarray + a = mat(a) + assert type(matrix_power(a, 2)) is matrix + + def test_list(self): + assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]]) + +if __name__ == "__main__": + run_module_suite() |