summaryrefslogtreecommitdiff
path: root/numpy/numarray/functions.py
diff options
context:
space:
mode:
authorAlan McIntyre <alan.mcintyre@local>2008-09-13 03:40:57 +0000
committerAlan McIntyre <alan.mcintyre@local>2008-09-13 03:40:57 +0000
commite091c840e101eb620307747e0e4cd1b939d8abe6 (patch)
tree378e691843fe1d56e224266b0c8e5478e1327433 /numpy/numarray/functions.py
parentb1e2466272fa0c2ee08701c3d86a03088218b69e (diff)
downloadnumpy-e091c840e101eb620307747e0e4cd1b939d8abe6.tar.gz
Removed unused/duplicate imports.
Removed repeated members of __all__. Fixed reference to undefined "out" in functions.py:take function. Fixed references to undefined "N" in functions.py. Rewrapped lines to conform to PEP8. Fixed references to undefined FPE_* constants (from numpy) in util.py.
Diffstat (limited to 'numpy/numarray/functions.py')
-rw-r--r--numpy/numarray/functions.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/numpy/numarray/functions.py b/numpy/numarray/functions.py
index bd920219b..6a0fd2958 100644
--- a/numpy/numarray/functions.py
+++ b/numpy/numarray/functions.py
@@ -20,13 +20,13 @@ __all__ += ['vdot', 'dot', 'matrixmultiply', 'ravel', 'indices',
'any', 'argmax', 'argmin', 'argsort', 'around', 'array_equal',
'array_equiv', 'arrayrange', 'array_str', 'array_repr',
'array2list', 'average', 'choose', 'CLIP', 'RAISE', 'WRAP',
- 'clip', 'compress', 'concatenate', 'copy', 'copy_reg',
+ 'clip', 'compress', 'copy', 'copy_reg',
'diagonal', 'divide_remainder', 'e', 'explicit_type', 'pi',
'flush_caches', 'fromfile', 'os', 'sys', 'STRICT',
'SLOPPY', 'WARN', 'EarlyEOFError', 'SizeMismatchError',
'SizeMismatchWarning', 'FileSeekWarning', 'fromstring',
'fromfunction', 'fromlist', 'getShape', 'getTypeObject',
- 'identity', 'indices', 'info', 'innerproduct', 'inputarray',
+ 'identity', 'info', 'innerproduct', 'inputarray',
'isBigEndian', 'kroneckerproduct', 'lexsort', 'math',
'operator', 'outerproduct', 'put', 'putmask', 'rank',
'repeat', 'reshape', 'resize', 'round', 'searchsorted',
@@ -45,9 +45,9 @@ import math
import operator
from numpy import dot as matrixmultiply, dot, vdot, ravel, concatenate, all,\
- allclose, any, around, argsort, array_equal, array_equiv,\
+ allclose, any, argsort, array_equal, array_equiv,\
array_str, array_repr, CLIP, RAISE, WRAP, clip, concatenate, \
- diagonal, e, pi, indices, inner as innerproduct, nonzero, \
+ diagonal, e, pi, inner as innerproduct, nonzero, \
outer as outerproduct, kron as kroneckerproduct, lexsort, putmask, rank, \
resize, searchsorted, shape, size, sort, swapaxes, trace, transpose
import numpy as np
@@ -321,7 +321,7 @@ def getTypeObject(sequence, type):
if type is not None:
return type
try:
- return typefrom(N.array(sequence))
+ return typefrom(np.array(sequence))
except:
raise TypeError("Can't determine a reasonable type from sequence")
@@ -458,7 +458,7 @@ def take(array, indices, axis=0, outarr=None, clipmode=RAISE):
res = work[indices]
if outarr is None:
return res
- out[...] = res
+ outarr[...] = res
return
def tensormultiply(a1, a2):
@@ -466,9 +466,9 @@ def tensormultiply(a1, a2):
if (a1.shape[-1] != a2.shape[0]):
raise ValueError("Unmatched dimensions")
shape = a1.shape[:-1] + a2.shape[1:]
- return np.reshape(dot(N.reshape(a1, (-1, a1.shape[-1])),
- np.reshape(a2, (a2.shape[0],-1))),
- shape)
+ return np.reshape(dot(np.reshape(a1, (-1, a1.shape[-1])),
+ np.reshape(a2, (a2.shape[0],-1))),
+ shape)
def cumsum(a1, axis=0, out=None, type=None, dim=0):
return np.asarray(a1).cumsum(axis,dtype=type,out=out)