summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric/random_array.py
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2006-08-29 10:28:11 +0000
committerTravis Oliphant <oliphant@enthought.com>2006-08-29 10:28:11 +0000
commit775a47de7e2f4b039592d614e7ac3fda464975a8 (patch)
tree6ec0d74f0505ba0e60f3ee01af70b4669ec38475 /numpy/oldnumeric/random_array.py
parentce7a968a7b5cdb328ca1ea222211ad9cd8e506ad (diff)
downloadnumpy-775a47de7e2f4b039592d614e7ac3fda464975a8.tar.gz
Add axis arguments to various functions so as not to rely on the defaults.
Diffstat (limited to 'numpy/oldnumeric/random_array.py')
-rw-r--r--numpy/oldnumeric/random_array.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py
index c5d163196..550af720c 100644
--- a/numpy/oldnumeric/random_array.py
+++ b/numpy/oldnumeric/random_array.py
@@ -166,7 +166,7 @@ def multinomial(trials, probs, shape=[]):
trials is the number of trials in each multinomial distribution.
probs is a one dimensional array. There are len(prob)+1 events.
prob[i] is the probability of the i-th event, 0<=i<len(prob).
- The probability of event len(prob) is 1.-Numeric.sum(prob).
+ The probability of event len(prob) is 1.-Numeric.sum(prob,axis=0).
The first form returns a single 1-D array containing one multinomially
distributed vector.
@@ -188,14 +188,14 @@ def poisson(mean, shape=[]):
def mean_var_test(x, type, mean, var, skew=[]):
n = len(x) * 1.0
- x_mean = Numeric.sum(x)/n
+ x_mean = Numeric.sum(x,axis=0)/n
x_minus_mean = x - x_mean
- x_var = Numeric.sum(x_minus_mean*x_minus_mean)/(n-1.0)
+ x_var = Numeric.sum(x_minus_mean*x_minus_mean,axis=0)/(n-1.0)
print "\nAverage of ", len(x), type
print "(should be about ", mean, "):", x_mean
print "Variance of those random numbers (should be about ", var, "):", x_var
if skew != []:
- x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean)/9998.)/x_var**(3./2.)
+ x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.)
print "Skewness of those random numbers (should be about ", skew, "):", x_skew
def test():
@@ -205,12 +205,12 @@ def test():
if (obj2[1] - obj[1]).any():
raise SystemExit, "Failed seed test."
print "First random number is", random()
- print "Average of 10000 random numbers is", Numeric.sum(random(10000))/10000.
+ print "Average of 10000 random numbers is", Numeric.sum(random(10000),axis=0)/10000.
x = random([10,1000])
if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
raise SystemExit, "random returned wrong shape"
x.shape = (10000,)
- print "Average of 100 by 100 random numbers is", Numeric.sum(x)/10000.
+ print "Average of 100 by 100 random numbers is", Numeric.sum(x,axis=0)/10000.
y = uniform(0.5,0.6, (1000,10))
if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10:
raise SystemExit, "uniform returned wrong shape"
@@ -239,7 +239,7 @@ def test():
print x
if x.shape != (4,3,2): raise SystemExit, "multivariate_normal returned wrong shape"
x = multivariate_normal(Numeric.array([-100,0,100]), Numeric.array([[3,2,1],[2,2,1],[1,1,1]]), 10000)
- x_mean = Numeric.sum(x)/10000.
+ x_mean = Numeric.sum(x,axis=0)/10000.
print "Average of 10000 multivariate normals with mean [-100,0,100]"
print x_mean
x_minus_mean = x - x_mean
@@ -262,7 +262,7 @@ def test():
print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:"
x = multinomial(16, [0.1, 0.5, 0.1], 8)
print x
- print "Mean = ", Numeric.sum(x)/8.
+ print "Mean = ", Numeric.sum(x,axis=0)/8.
if __name__ == '__main__':
test()