diff options
author | Alan McIntyre <alan.mcintyre@local> | 2008-07-25 16:09:26 +0000 |
---|---|---|
committer | Alan McIntyre <alan.mcintyre@local> | 2008-07-25 16:09:26 +0000 |
commit | 8936ecc8c46b92f4dbc749e294eb5ab88ab0d857 (patch) | |
tree | 66559df05e9f720884a7b7287003e93d52eb3ad7 /numpy/oldnumeric/random_array.py | |
parent | e6f61c9445303c4ffa30e32b8efe68047ca2ef61 (diff) | |
download | numpy-8936ecc8c46b92f4dbc749e294eb5ab88ab0d857.tar.gz |
Standardize NumPy import as "import numpy as np".
Diffstat (limited to 'numpy/oldnumeric/random_array.py')
-rw-r--r-- | numpy/oldnumeric/random_array.py | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py index 73564811d..e84aedf1e 100644 --- a/numpy/oldnumeric/random_array.py +++ b/numpy/oldnumeric/random_array.py @@ -10,7 +10,7 @@ __all__ = ['ArgumentError','F','beta','binomial','chi_square', 'exponential', ArgumentError = ValueError import numpy.random.mtrand as mt -import numpy as Numeric +import numpy as np def seed(x=0, y=0): if (x == 0 or y == 0): @@ -48,8 +48,8 @@ def randint(minimum, maximum=None, shape=[]): if not isinstance(maximum, int): raise ArgumentError, "randint requires second argument integer" a = ((maximum-minimum)* random(shape)) - if isinstance(a, Numeric.ndarray): - return minimum + a.astype(Numeric.int) + if isinstance(a, np.ndarray): + return minimum + a.astype(np.int) else: return minimum + int(a) @@ -164,7 +164,7 @@ def multinomial(trials, probs, shape=[]): trials is the number of trials in each multinomial distribution. probs is a one dimensional array. There are len(prob)+1 events. prob[i] is the probability of the i-th event, 0<=i<len(prob). - The probability of event len(prob) is 1.-Numeric.sum(prob). + The probability of event len(prob) is 1.-np.sum(prob). The first form returns a single 1-D array containing one multinomially distributed vector. @@ -186,14 +186,14 @@ def poisson(mean, shape=[]): def mean_var_test(x, type, mean, var, skew=[]): n = len(x) * 1.0 - x_mean = Numeric.sum(x,axis=0)/n + x_mean = np.sum(x,axis=0)/n x_minus_mean = x - x_mean - x_var = Numeric.sum(x_minus_mean*x_minus_mean,axis=0)/(n-1.0) + x_var = np.sum(x_minus_mean*x_minus_mean,axis=0)/(n-1.0) print "\nAverage of ", len(x), type print "(should be about ", mean, "):", x_mean print "Variance of those random numbers (should be about ", var, "):", x_var if skew != []: - x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.) + x_skew = (np.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.) print "Skewness of those random numbers (should be about ", skew, "):", x_skew def test(): @@ -203,17 +203,17 @@ def test(): if (obj2[1] - obj[1]).any(): raise SystemExit, "Failed seed test." print "First random number is", random() - print "Average of 10000 random numbers is", Numeric.sum(random(10000),axis=0)/10000. + print "Average of 10000 random numbers is", np.sum(random(10000),axis=0)/10000. x = random([10,1000]) if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: raise SystemExit, "random returned wrong shape" x.shape = (10000,) - print "Average of 100 by 100 random numbers is", Numeric.sum(x,axis=0)/10000. + print "Average of 100 by 100 random numbers is", np.sum(x,axis=0)/10000. y = uniform(0.5,0.6, (1000,10)) if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10: raise SystemExit, "uniform returned wrong shape" y.shape = (10000,) - if Numeric.minimum.reduce(y) <= 0.5 or Numeric.maximum.reduce(y) >= 0.6: + if np.minimum.reduce(y) <= 0.5 or np.maximum.reduce(y) >= 0.6: raise SystemExit, "uniform returned out of desired range" print "randint(1, 10, shape=[50])" print randint(1, 10, shape=[50]) @@ -229,26 +229,26 @@ def test(): mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0) x = exponential(3, 10000) mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2) - x = multivariate_normal(Numeric.array([10,20]), Numeric.array(([1,2],[2,4]))) + x = multivariate_normal(np.array([10,20]), np.array(([1,2],[2,4]))) print "\nA multivariate normal", x if x.shape != (2,): raise SystemExit, "multivariate_normal returned wrong shape" - x = multivariate_normal(Numeric.array([10,20]), Numeric.array([[1,2],[2,4]]), [4,3]) + x = multivariate_normal(np.array([10,20]), np.array([[1,2],[2,4]]), [4,3]) print "A 4x3x2 array containing multivariate normals" print x if x.shape != (4,3,2): raise SystemExit, "multivariate_normal returned wrong shape" - x = multivariate_normal(Numeric.array([-100,0,100]), Numeric.array([[3,2,1],[2,2,1],[1,1,1]]), 10000) - x_mean = Numeric.sum(x,axis=0)/10000. + x = multivariate_normal(np.array([-100,0,100]), np.array([[3,2,1],[2,2,1],[1,1,1]]), 10000) + x_mean = np.sum(x,axis=0)/10000. print "Average of 10000 multivariate normals with mean [-100,0,100]" print x_mean x_minus_mean = x - x_mean print "Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]" - print Numeric.dot(Numeric.transpose(x_minus_mean),x_minus_mean)/9999. + print np.dot(np.transpose(x_minus_mean),x_minus_mean)/9999. x = beta(5.0, 10.0, 10000) mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014) x = gamma(.01, 2., 10000) mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100) x = chi_square(11., 10000) - mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*Numeric.sqrt(2./11.)) + mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*np.sqrt(2./11.)) x = F(5., 10., 10000) mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35) x = poisson(50., 10000) @@ -260,7 +260,7 @@ def test(): print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:" x = multinomial(16, [0.1, 0.5, 0.1], 8) print x - print "Mean = ", Numeric.sum(x,axis=0)/8. + print "Mean = ", np.sum(x,axis=0)/8. if __name__ == '__main__': test() |