summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric/rng.py
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2006-08-04 23:32:12 +0000
committerTravis Oliphant <oliphant@enthought.com>2006-08-04 23:32:12 +0000
commitf1cca04886d4f63f7b1ed5b382986af3a9ee6a61 (patch)
tree053f566b31cb6edc24a41b800ec7f2972c4bca40 /numpy/oldnumeric/rng.py
parent8f26568de7cc97ac0dcedfd5061e08bb54770b61 (diff)
downloadnumpy-f1cca04886d4f63f7b1ed5b382986af3a9ee6a61.tar.gz
Many name-changes in oldnumeric. This may break some numpy code that was using the oldnumeric interface.
Diffstat (limited to 'numpy/oldnumeric/rng.py')
-rw-r--r--numpy/oldnumeric/rng.py137
1 files changed, 137 insertions, 0 deletions
diff --git a/numpy/oldnumeric/rng.py b/numpy/oldnumeric/rng.py
new file mode 100644
index 000000000..77a90c694
--- /dev/null
+++ b/numpy/oldnumeric/rng.py
@@ -0,0 +1,137 @@
+# This module re-creates the RNG interface from Numeric
+# Replace import RNG with import numpy.oldnumeric.rng as RNG
+#
+# It is for backwards compatibility only.
+
+
+__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution','NormalDistribution',
+ 'UniformDistribution', 'error', 'default_distribution', 'random_sample', 'ranf',
+ 'standard_generator']
+
+import numpy.random.mtrand as mt
+import math
+
+class error(Exception):
+ pass
+
+class Distribution(object):
+ def __init__(self, meth, *args):
+ self._meth = meth
+ self._args = args
+
+ def density(self,x):
+ raise NotImplementedError
+
+ def __call__(self, x):
+ return self.density(x)
+
+ def _onesample(self, rng):
+ return getattr(rng, self._meth)(*self._args)
+
+ def _sample(self, rng, n):
+ kwds = {'size' : n}
+ return getattr(rng, self._meth)(*self._args, **kwds)
+
+
+class ExponentialDistribution(Distribution):
+ def __init__(self, lambda_):
+ if (lambda_ <= 0):
+ raise error, "parameter must be positive"
+ Distribution.__init__(self, 'exponential', lambda_)
+
+ def density(x):
+ if x < 0:
+ return 0.0
+ else:
+ lambda_ = self._args[0]
+ return lambda_*exp(-lambda_*x)
+
+class LogNormalDistribution(Distribution):
+ def __init__(self, m, s):
+ m = float(m)
+ s = float(s)
+ if (s <= 0):
+ raise error, "standard deviation must be positive"
+ Distribution.__init__(self, 'lognormal', m, s)
+ sn = math.log(1.0+s*s/(m*m));
+ self._mn = math.log(m)-0.5*sn
+ self._sn = math.sqrt(sn)
+ self._fac = 1.0/math.sqrt(2*math.pi)/self._sn
+
+ def density(x):
+ m,s = self._args
+ y = (math.log(x)-self._mn)/self._sn
+ return self._fac*exp(-0.5*y*y)/x
+
+
+class NormalDistribution(Distribution):
+ def __init__(self, m, s):
+ m = float(m)
+ s = float(s)
+ if (s <= 0):
+ raise error, "standard deviation must be positive"
+ Distribution.__init__(self, 'normal', m, s)
+ self._fac = 1.0/math.sqrt(2*math.pi)/s
+
+ def density(x):
+ m,s = self._args
+ y = (x-m)/s
+ return self._fac*exp(-0.5*y*y)
+
+class UniformDistribution(Distribution):
+ def __init__(self, a, b):
+ a = float(a)
+ b = float(b)
+ width = b-a
+ if (width <=0):
+ raise error, "width of uniform distribution must be > 0"
+ Distribution.__init__(self, 'uniform', a, b)
+ self._fac = 1.0/width
+
+ def density(x):
+ a, b = self._args
+ if (x < a) or (x >= b):
+ return 0.0
+ else:
+ return self._fac
+
+default_distribution = UniformDistribution(0.0,1.0)
+
+class CreateGenerator(object):
+ def __init__(self, seed, dist=None):
+ if seed <= 0:
+ self._rng = mt.RandomState()
+ elif seed > 0:
+ self._rng = mt.RandomState(seed)
+ if dist is None:
+ dist = default_distribution
+ if not isinstance(dist, Distribution):
+ raise error, "Not a distribution object"
+ self._dist = dist
+
+ def ranf(self):
+ return self._dist._onesample(self._rng)
+
+ def sample(self, n):
+ return self._dist._sample(self._rng, n)
+
+
+standard_generator = CreateGenerator(-1)
+
+def ranf():
+ "ranf() = a random number from the standard generator."
+ return standard_generator.ranf()
+
+def random_sample(*n):
+ """random_sample(n) = array of n random numbers;
+
+ random_sample(n1, n2, ...)= random array of shape (n1, n2, ..)"""
+
+ if not n:
+ return standard_generator.ranf()
+ m = 1
+ for i in n:
+ m = m * i
+ return standard_generator.sample(m).reshape(*n)
+
+