diff options
author | mattip <matti.picus@gmail.com> | 2018-04-10 21:42:31 +0300 |
---|---|---|
committer | mattip <matti.picus@gmail.com> | 2018-04-10 21:42:31 +0300 |
commit | c4996684e79ab8bbbd312ea4803286d226e95fd8 (patch) | |
tree | 39c6dee00ca1b9f785e16bc80ffdc041022eb4e1 /numpy/random | |
parent | a75e76dac26fcf56ab815926b89bb9a9bc358608 (diff) | |
download | numpy-c4996684e79ab8bbbd312ea4803286d226e95fd8.tar.gz |
silence warnings, matplotlib deprecated normed in favor of density
Diffstat (limited to 'numpy/random')
-rw-r--r-- | numpy/random/mtrand/mtrand.pyx | 54 |
1 files changed, 27 insertions, 27 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx index 16d649c4a..b8b940027 100644 --- a/numpy/random/mtrand/mtrand.pyx +++ b/numpy/random/mtrand/mtrand.pyx @@ -1284,7 +1284,7 @@ cdef class RandomState: probability density function: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(s, 15, normed=True) + >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() @@ -1495,7 +1495,7 @@ cdef class RandomState: Display results as a histogram: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(dsums, 11, normed=True) + >>> count, bins, ignored = plt.hist(dsums, 11, density=True) >>> plt.show() """ @@ -1631,7 +1631,7 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(s, 30, normed=True) + >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') @@ -1874,7 +1874,7 @@ cdef class RandomState: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps - >>> count, bins, ignored = plt.hist(s, 50, normed=True) + >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \\ ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') @@ -1964,7 +1964,7 @@ cdef class RandomState: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps - >>> count, bins, ignored = plt.hist(s, 50, normed=True) + >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') @@ -2164,9 +2164,9 @@ cdef class RandomState: >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) - >>> NF = np.histogram(nc_vals, bins=50, normed=True) + >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) - >>> F = np.histogram(c_vals, bins=50, normed=True) + >>> F = np.histogram(c_vals, bins=50, density=True) >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() @@ -2342,7 +2342,7 @@ cdef class RandomState: >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), - ... bins=200, normed=True) + ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, @@ -2350,9 +2350,9 @@ cdef class RandomState: >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), - ... bins=np.arange(0., 25, .1), normed=True) + ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), - ... bins=np.arange(0., 25, .1), normed=True) + ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() @@ -2361,7 +2361,7 @@ cdef class RandomState: >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), - ... bins=200, normed=True) + ... bins=200, density=True) >>> plt.show() """ @@ -2529,7 +2529,7 @@ cdef class RandomState: >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt - >>> h = plt.hist(s, bins=100, normed=True) + >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? @@ -2630,7 +2630,7 @@ cdef class RandomState: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 - >>> plt.hist(s, 50, normed=True) + >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) >>> plt.plot(x, y, linewidth=2, color='r') @@ -2744,7 +2744,7 @@ cdef class RandomState: density function: >>> import matplotlib.pyplot as plt - >>> count, bins, _ = plt.hist(s, 100, normed=True) + >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() @@ -2957,17 +2957,17 @@ cdef class RandomState: >>> powpdf = stats.powerlaw.pdf(xx,5) >>> plt.figure() - >>> plt.hist(rvs, bins=50, normed=True) + >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('np.random.power(5)') >>> plt.figure() - >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) + >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() - >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) + >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of stats.pareto(5)') @@ -3055,7 +3055,7 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(s, 30, normed=True) + >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) @@ -3171,7 +3171,7 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(s, 30, normed=True) + >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') @@ -3186,7 +3186,7 @@ cdef class RandomState: ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) - >>> count, bins, ignored = plt.hist(maxima, 30, normed=True) + >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) @@ -3381,7 +3381,7 @@ cdef class RandomState: the probability density function: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid') + >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) @@ -3403,7 +3403,7 @@ cdef class RandomState: ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive - >>> count, bins, ignored = plt.hist(b, 100, normed=True, align='mid') + >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) @@ -3480,7 +3480,7 @@ cdef class RandomState: -------- Draw values from the distribution and plot the histogram - >>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True) + >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 @@ -3572,7 +3572,7 @@ cdef class RandomState: Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt - >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True) + >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() """ @@ -3659,7 +3659,7 @@ cdef class RandomState: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, - ... normed=True) + ... density=True) >>> plt.show() """ @@ -3969,7 +3969,7 @@ cdef class RandomState: Display histogram of the sample: >>> import matplotlib.pyplot as plt - >>> count, bins, ignored = plt.hist(s, 14, normed=True) + >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: @@ -4066,7 +4066,7 @@ cdef class RandomState: Truncate s values at 50 so plot is interesting: - >>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True) + >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) >>> plt.plot(x, y/max(y), linewidth=2, color='r') |