summaryrefslogtreecommitdiff
path: root/numpy/testing/utils.py
diff options
context:
space:
mode:
authorDavid Cournapeau <cournape@gmail.com>2009-11-10 09:35:03 +0000
committerDavid Cournapeau <cournape@gmail.com>2009-11-10 09:35:03 +0000
commite2134a4062e55e623ca6c374c9506ea998c4cc69 (patch)
tree4e6d0c221831227788df49b0258fed286ba2f9ad /numpy/testing/utils.py
parent6e3e3d4afff28305d80ca0ad4e172fbf493f5a41 (diff)
downloadnumpy-e2134a4062e55e623ca6c374c9506ea998c4cc69.tar.gz
ENH: remove any mention of original python spacing, use ufunc everywhere.
Diffstat (limited to 'numpy/testing/utils.py')
-rw-r--r--numpy/testing/utils.py35
1 files changed, 2 insertions, 33 deletions
diff --git a/numpy/testing/utils.py b/numpy/testing/utils.py
index 0cd8ccada..7009d532c 100644
--- a/numpy/testing/utils.py
+++ b/numpy/testing/utils.py
@@ -14,7 +14,7 @@ __all__ = ['assert_equal', 'assert_almost_equal','assert_approx_equal',
'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure',
- 'assert_', 'spacing', 'assert_array_almost_equal_nulp',
+ 'assert_', 'assert_array_almost_equal_nulp',
'assert_array_max_ulp']
verbose = 0
@@ -1105,7 +1105,7 @@ def assert_array_almost_equal_nulp(x, y, nulp=1):
import numpy as np
ax = np.abs(x)
ay = np.abs(y)
- ref = nulp * spacing(np.where(ax > ay, ax, ay))
+ ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
if not np.all(np.abs(x-y) <= ref):
max_nulp = np.max(nulp_diff(x, y))
raise AssertionError("X and Y are not equal to %d ULP "\
@@ -1196,34 +1196,3 @@ def integer_repr(x):
return _integer_repr(x, np.int64, np.int64(-2**63))
else:
raise ValueError("Unsupported dtype %s" % x.dtype)
-
-def spacing(x, dtype=None):
- """Return the spacing for each item in x.
-
- spacing(x) is defined as the space between x and the next representable
- floating point number > x. For example, spacing(1) == EPS
-
- This aims at being equivalent to the Fortran 95 spacing intrinsic.
- """
- import numpy as np
- if dtype:
- x = np.atleast_1d(np.array(x, dtype=dtype))
- else:
- x = np.atleast_1d(np.array(x))
-
- if np.iscomplexobj(x):
- raise NotImplementerError("_compute_spacing not implemented for complex array")
-
- t = x.dtype
-
- res = integer_repr(x)
- return (res + 1).view(t) - res.view(t)
- # XXX: alternative implementation, the one used in gfortran: much simpler,
- # but I am not sure I understand it, and it does not work for Nan
- #p = np.finfo(t).nmant + 1
- #emin = np.finfo(t).minexp
- #
- #e = np.frexp(x)[1] - p
- #e[e<=emin] = emin
-
- #return np.ldexp(np.array(1., dtype=t), e)