summaryrefslogtreecommitdiff
path: root/numpy/tests/pass/array_like.py
diff options
context:
space:
mode:
authorJosh Wilson <person142@users.noreply.github.com>2020-06-06 15:31:33 -0700
committerJosh Wilson <person142@users.noreply.github.com>2020-06-06 15:31:33 -0700
commit11b95d15f10c2bc652ed19d5e27efa0384396cb8 (patch)
tree8d6f2020f6982fc9f2389796daca1429387f576e /numpy/tests/pass/array_like.py
parenta5d021a1b6f439a19812926bc4d796ef5f346c44 (diff)
downloadnumpy-11b95d15f10c2bc652ed19d5e27efa0384396cb8.tar.gz
ENH: add type stubs from numpy-stubs
Add the type stubs and tests from numpy-stubs. Things this entails: - Copy over the stubs (numpy/__init__.pyi and numpy/core/_internal.pyi) - The only modification made was removing `ndarray.tostring` since it is deprecated - Update some setup.py files to include pyi files - Move the tests from numpy-stubs/tests into numpy/tests - Skip them if mypy is not installed (planning on setting up CI in a future PR) - Add a mypy.ini; use it to configure mypy in the tests - It tells mypy where to find NumPy in the test env - It ignores internal NumPy type errors (since we only want to consider errors from the tests cases) - Some small edits were made to fix test cases that were emitting deprecation warnings - Add numpy/py.typed so that the types are picked up in an installed version of NumPy
Diffstat (limited to 'numpy/tests/pass/array_like.py')
-rw-r--r--numpy/tests/pass/array_like.py44
1 files changed, 44 insertions, 0 deletions
diff --git a/numpy/tests/pass/array_like.py b/numpy/tests/pass/array_like.py
new file mode 100644
index 000000000..098149c4b
--- /dev/null
+++ b/numpy/tests/pass/array_like.py
@@ -0,0 +1,44 @@
+from typing import Any, List, Optional, TYPE_CHECKING
+
+import numpy as np
+
+if TYPE_CHECKING:
+ from numpy.typing import ArrayLike, DtypeLike, _SupportsArray
+else:
+ ArrayLike = Any
+ DtypeLike = Any
+ _SupportsArray = Any
+
+x1: ArrayLike = True
+x2: ArrayLike = 5
+x3: ArrayLike = 1.0
+x4: ArrayLike = 1 + 1j
+x5: ArrayLike = np.int8(1)
+x6: ArrayLike = np.float64(1)
+x7: ArrayLike = np.complex128(1)
+x8: ArrayLike = np.array([1, 2, 3])
+x9: ArrayLike = [1, 2, 3]
+x10: ArrayLike = (1, 2, 3)
+x11: ArrayLike = "foo"
+
+
+class A:
+ def __array__(self, dtype: DtypeLike = None) -> np.ndarray:
+ return np.array([1, 2, 3])
+
+
+x12: ArrayLike = A()
+
+scalar: _SupportsArray = np.int64(1)
+scalar.__array__(np.float64)
+array: _SupportsArray = np.array(1)
+array.__array__(np.float64)
+
+a: _SupportsArray = A()
+a.__array__(np.int64)
+a.__array__(dtype=np.int64)
+
+# Escape hatch for when you mean to make something like an object
+# array.
+object_array_scalar: Any = (i for i in range(10))
+np.array(object_array_scalar)