summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorzjpoh <poh.zijie@gmail.com>2019-09-26 22:04:11 -0700
committerzjpoh <poh.zijie@gmail.com>2019-09-26 22:04:11 -0700
commit27332a8b2b098a519e8ade0706e1ae4086f15b92 (patch)
tree4d28425c7df1fa9127a8f1cd9a3c04f449fb35e2 /numpy
parentf779af07a92cb419b964316960a1b503df9b712d (diff)
parent68bd6e359a6b0863acf39cad637e1444d78eabd0 (diff)
downloadnumpy-27332a8b2b098a519e8ade0706e1ae4086f15b92.tar.gz
Merge branch 'master' into from_string_complex
Diffstat (limited to 'numpy')
-rw-r--r--numpy/__init__.pxd978
-rw-r--r--numpy/__init__.py43
-rw-r--r--numpy/_pytesttester.py11
-rw-r--r--numpy/core/__init__.py9
-rw-r--r--numpy/core/_add_newdocs.py18
-rw-r--r--numpy/core/_dtype.py35
-rw-r--r--numpy/core/_exceptions.py53
-rw-r--r--numpy/core/_internal.py2
-rw-r--r--numpy/core/arrayprint.py51
-rw-r--r--numpy/core/code_generators/genapi.py3
-rw-r--r--numpy/core/code_generators/generate_umath.py18
-rw-r--r--numpy/core/fromnumeric.py85
-rw-r--r--numpy/core/include/numpy/ndarraytypes.h6
-rw-r--r--numpy/core/include/numpy/npy_common.h8
-rw-r--r--numpy/core/include/numpy/npy_math.h115
-rw-r--r--numpy/core/info.py87
-rw-r--r--numpy/core/numeric.py53
-rw-r--r--numpy/core/overrides.py20
-rw-r--r--numpy/core/records.py18
-rw-r--r--numpy/core/setup.py37
-rw-r--r--numpy/core/setup_common.py55
-rw-r--r--numpy/core/shape_base.py15
-rw-r--r--numpy/core/src/common/npy_partition.h.src3
-rw-r--r--numpy/core/src/multiarray/_multiarray_tests.c.src65
-rw-r--r--numpy/core/src/multiarray/alloc.c16
-rw-r--r--numpy/core/src/multiarray/arrayobject.c52
-rw-r--r--numpy/core/src/multiarray/compiled_base.c31
-rw-r--r--numpy/core/src/multiarray/convert.c29
-rw-r--r--numpy/core/src/multiarray/ctors.c234
-rw-r--r--numpy/core/src/multiarray/datetime.c23
-rw-r--r--numpy/core/src/multiarray/datetime_busday.c12
-rw-r--r--numpy/core/src/multiarray/descriptor.c9
-rw-r--r--numpy/core/src/multiarray/dtype_transfer.c2
-rw-r--r--numpy/core/src/multiarray/getset.c2
-rw-r--r--numpy/core/src/multiarray/item_selection.c39
-rw-r--r--numpy/core/src/multiarray/item_selection.h4
-rw-r--r--numpy/core/src/multiarray/iterators.c36
-rw-r--r--numpy/core/src/multiarray/iterators.h3
-rw-r--r--numpy/core/src/multiarray/mapping.c4
-rw-r--r--numpy/core/src/multiarray/methods.c10
-rw-r--r--numpy/core/src/multiarray/multiarraymodule.c21
-rw-r--r--numpy/core/src/multiarray/nditer_api.c5
-rw-r--r--numpy/core/src/multiarray/nditer_constr.c24
-rw-r--r--numpy/core/src/multiarray/nditer_pywrap.c7
-rw-r--r--numpy/core/src/multiarray/number.c3
-rw-r--r--numpy/core/src/multiarray/refcount.c32
-rw-r--r--numpy/core/src/multiarray/scalartypes.c.src30
-rw-r--r--numpy/core/src/multiarray/shape.c16
-rw-r--r--numpy/core/src/npymath/npy_math_complex.c.src36
-rw-r--r--numpy/core/src/npymath/npy_math_internal.h.src41
-rw-r--r--numpy/core/src/npysort/radixsort.c.src4
-rw-r--r--numpy/core/src/umath/_rational_tests.c.src4
-rw-r--r--numpy/core/src/umath/cpuid.c22
-rw-r--r--numpy/core/src/umath/loops.c.src82
-rw-r--r--numpy/core/src/umath/loops.h.src4
-rw-r--r--numpy/core/src/umath/matmul.c.src47
-rw-r--r--numpy/core/src/umath/reduction.c8
-rw-r--r--numpy/core/src/umath/scalarmath.c.src60
-rw-r--r--numpy/core/src/umath/simd.inc.src379
-rw-r--r--numpy/core/src/umath/ufunc_object.c18
-rw-r--r--numpy/core/src/umath/ufunc_type_resolution.c3
-rw-r--r--numpy/core/tests/data/umath-validation-set-README15
-rw-r--r--numpy/core/tests/data/umath-validation-set-cos707
-rw-r--r--numpy/core/tests/data/umath-validation-set-exp135
-rw-r--r--numpy/core/tests/data/umath-validation-set-log118
-rw-r--r--numpy/core/tests/data/umath-validation-set-sin707
-rw-r--r--numpy/core/tests/test__exceptions.py42
-rw-r--r--numpy/core/tests/test_arrayprint.py11
-rw-r--r--numpy/core/tests/test_deprecations.py90
-rw-r--r--numpy/core/tests/test_dtype.py32
-rw-r--r--numpy/core/tests/test_indexing.py13
-rw-r--r--numpy/core/tests/test_longdouble.py38
-rw-r--r--numpy/core/tests/test_multiarray.py69
-rw-r--r--numpy/core/tests/test_numeric.py29
-rw-r--r--numpy/core/tests/test_numerictypes.py29
-rw-r--r--numpy/core/tests/test_records.py42
-rw-r--r--numpy/core/tests/test_regression.py41
-rw-r--r--numpy/core/tests/test_scalarmath.py28
-rw-r--r--numpy/core/tests/test_ufunc.py15
-rw-r--r--numpy/core/tests/test_umath.py47
-rw-r--r--numpy/core/tests/test_umath_accuracy.py54
-rw-r--r--numpy/ctypeslib.py17
-rw-r--r--numpy/distutils/__init__.py27
-rw-r--r--numpy/distutils/__version__.py6
-rw-r--r--numpy/distutils/ccompiler.py13
-rw-r--r--numpy/distutils/command/build.py13
-rw-r--r--numpy/distutils/command/build_clib.py14
-rw-r--r--numpy/distutils/command/build_ext.py15
-rw-r--r--numpy/distutils/command/build_src.py17
-rw-r--r--numpy/distutils/fcompiler/environment.py12
-rw-r--r--numpy/distutils/info.py6
-rw-r--r--numpy/distutils/log.py2
-rw-r--r--numpy/distutils/misc_util.py52
-rw-r--r--numpy/distutils/system_info.py14
-rw-r--r--numpy/distutils/tests/test_fcompiler.py34
-rw-r--r--numpy/doc/broadcasting.py3
-rw-r--r--numpy/doc/dispatch.py6
-rw-r--r--numpy/doc/subclassing.py3
-rw-r--r--numpy/f2py/cfuncs.py2
-rw-r--r--numpy/f2py/info.py6
-rwxr-xr-x[-rw-r--r--]numpy/f2py/rules.py9
-rw-r--r--numpy/f2py/setup.py2
-rw-r--r--numpy/f2py/src/fortranobject.c7
-rw-r--r--numpy/fft/README.md5
-rw-r--r--numpy/fft/__init__.py190
-rw-r--r--numpy/fft/_pocketfft.c (renamed from numpy/fft/pocketfft.c)8
-rw-r--r--numpy/fft/_pocketfft.py (renamed from numpy/fft/pocketfft.py)35
-rw-r--r--numpy/fft/info.py187
-rw-r--r--numpy/fft/setup.py4
-rw-r--r--numpy/fft/tests/test_pocketfft.py130
-rw-r--r--numpy/lib/__init__.py26
-rw-r--r--numpy/lib/_iotools.py13
-rw-r--r--numpy/lib/arraypad.py93
-rw-r--r--numpy/lib/arraysetops.py6
-rw-r--r--numpy/lib/financial.py33
-rw-r--r--numpy/lib/format.py3
-rw-r--r--numpy/lib/function_base.py37
-rw-r--r--numpy/lib/info.py160
-rw-r--r--numpy/lib/mixins.py4
-rw-r--r--numpy/lib/nanfunctions.py2
-rw-r--r--numpy/lib/npyio.py28
-rw-r--r--numpy/lib/recfunctions.py78
-rw-r--r--numpy/lib/shape_base.py7
-rw-r--r--numpy/lib/tests/test_arraypad.py56
-rw-r--r--numpy/lib/tests/test_arraysetops.py7
-rw-r--r--numpy/lib/tests/test_financial.py6
-rw-r--r--numpy/lib/tests/test_function_base.py24
-rw-r--r--numpy/lib/tests/test_index_tricks.py18
-rw-r--r--numpy/lib/tests/test_io.py11
-rw-r--r--numpy/lib/tests/test_recfunctions.py70
-rw-r--r--numpy/lib/twodim_base.py2
-rw-r--r--numpy/lib/type_check.py10
-rw-r--r--numpy/lib/utils.py94
-rw-r--r--numpy/linalg/__init__.py110
-rw-r--r--numpy/linalg/info.py37
-rw-r--r--numpy/linalg/linalg.py20
-rw-r--r--numpy/linalg/umath_linalg.c.src2
-rw-r--r--numpy/ma/core.py113
-rw-r--r--numpy/ma/extras.py7
-rw-r--r--numpy/ma/mrecords.py2
-rw-r--r--numpy/ma/tests/test_core.py7
-rw-r--r--numpy/ma/version.py14
-rw-r--r--numpy/matlib.py2
-rw-r--r--numpy/polynomial/polyutils.py10
-rw-r--r--numpy/random/__init__.py6
-rw-r--r--numpy/random/_pickle.py6
-rw-r--r--numpy/random/bit_generator.pxd6
-rw-r--r--numpy/random/bit_generator.pyx4
-rw-r--r--numpy/random/common.pxd2
-rw-r--r--numpy/random/common.pyx2
-rw-r--r--numpy/random/entropy.pyx155
-rw-r--r--numpy/random/generator.pyx54
-rw-r--r--numpy/random/info.py5
-rw-r--r--numpy/random/legacy_distributions.pxd2
-rw-r--r--numpy/random/mt19937.pyx7
-rw-r--r--numpy/random/mtrand.pyx25
-rw-r--r--numpy/random/setup.py18
-rw-r--r--numpy/random/src/bitgen.h (renamed from numpy/core/include/numpy/random/bitgen.h)0
-rw-r--r--numpy/random/src/distributions/distributions.c8
-rw-r--r--numpy/random/src/distributions/distributions.h25
-rw-r--r--numpy/random/src/distributions/random_hypergeometric.c2
-rw-r--r--numpy/random/src/entropy/entropy.c114
-rw-r--r--numpy/random/src/entropy/entropy.h14
-rw-r--r--numpy/random/src/legacy/legacy-distributions.c31
-rw-r--r--numpy/random/src/legacy/legacy-distributions.h7
-rw-r--r--numpy/random/src/philox/philox.h2
-rw-r--r--numpy/random/src/sfc64/sfc64.h2
-rw-r--r--numpy/random/tests/test_generator_mt19937.py58
-rw-r--r--numpy/random/tests/test_randomstate.py15
-rw-r--r--numpy/random/tests/test_randomstate_regression.py27
-rw-r--r--numpy/random/tests/test_smoke.py22
-rw-r--r--numpy/testing/_private/parameterized.py19
-rw-r--r--numpy/testing/_private/utils.py42
-rw-r--r--numpy/testing/decorators.py15
-rw-r--r--numpy/testing/noseclasses.py14
-rw-r--r--numpy/testing/nosetester.py19
-rwxr-xr-xnumpy/testing/print_coercion_tables.py40
-rw-r--r--numpy/testing/tests/test_utils.py40
-rw-r--r--numpy/testing/utils.py7
-rw-r--r--numpy/tests/test_public_api.py412
180 files changed, 6216 insertions, 2364 deletions
diff --git a/numpy/__init__.pxd b/numpy/__init__.pxd
new file mode 100644
index 000000000..23bd22e36
--- /dev/null
+++ b/numpy/__init__.pxd
@@ -0,0 +1,978 @@
+# NumPy static imports for Cython
+#
+# If any of the PyArray_* functions are called, import_array must be
+# called first.
+#
+# This also defines backwards-compatibility buffer acquisition
+# code for use in Python 2.x (or Python <= 2.5 when NumPy starts
+# implementing PEP-3118 directly).
+#
+# Because of laziness, the format string of the buffer is statically
+# allocated. Increase the size if this is not enough, or submit a
+# patch to do this properly.
+#
+# Author: Dag Sverre Seljebotn
+#
+
+DEF _buffer_format_string_len = 255
+
+cimport cpython.buffer as pybuf
+from cpython.ref cimport Py_INCREF
+from cpython.mem cimport PyObject_Malloc, PyObject_Free
+from cpython.object cimport PyObject, PyTypeObject
+from cpython.buffer cimport PyObject_GetBuffer
+from cpython.type cimport type
+cimport libc.stdio as stdio
+
+cdef extern from "Python.h":
+ ctypedef int Py_intptr_t
+
+cdef extern from "numpy/arrayobject.h":
+ ctypedef Py_intptr_t npy_intp
+ ctypedef size_t npy_uintp
+
+ cdef enum NPY_TYPES:
+ NPY_BOOL
+ NPY_BYTE
+ NPY_UBYTE
+ NPY_SHORT
+ NPY_USHORT
+ NPY_INT
+ NPY_UINT
+ NPY_LONG
+ NPY_ULONG
+ NPY_LONGLONG
+ NPY_ULONGLONG
+ NPY_FLOAT
+ NPY_DOUBLE
+ NPY_LONGDOUBLE
+ NPY_CFLOAT
+ NPY_CDOUBLE
+ NPY_CLONGDOUBLE
+ NPY_OBJECT
+ NPY_STRING
+ NPY_UNICODE
+ NPY_VOID
+ NPY_DATETIME
+ NPY_TIMEDELTA
+ NPY_NTYPES
+ NPY_NOTYPE
+
+ NPY_INT8
+ NPY_INT16
+ NPY_INT32
+ NPY_INT64
+ NPY_INT128
+ NPY_INT256
+ NPY_UINT8
+ NPY_UINT16
+ NPY_UINT32
+ NPY_UINT64
+ NPY_UINT128
+ NPY_UINT256
+ NPY_FLOAT16
+ NPY_FLOAT32
+ NPY_FLOAT64
+ NPY_FLOAT80
+ NPY_FLOAT96
+ NPY_FLOAT128
+ NPY_FLOAT256
+ NPY_COMPLEX32
+ NPY_COMPLEX64
+ NPY_COMPLEX128
+ NPY_COMPLEX160
+ NPY_COMPLEX192
+ NPY_COMPLEX256
+ NPY_COMPLEX512
+
+ NPY_INTP
+
+ ctypedef enum NPY_ORDER:
+ NPY_ANYORDER
+ NPY_CORDER
+ NPY_FORTRANORDER
+ NPY_KEEPORDER
+
+ ctypedef enum NPY_CASTING:
+ NPY_NO_CASTING
+ NPY_EQUIV_CASTING
+ NPY_SAFE_CASTING
+ NPY_SAME_KIND_CASTING
+ NPY_UNSAFE_CASTING
+
+ ctypedef enum NPY_CLIPMODE:
+ NPY_CLIP
+ NPY_WRAP
+ NPY_RAISE
+
+ ctypedef enum NPY_SCALARKIND:
+ NPY_NOSCALAR,
+ NPY_BOOL_SCALAR,
+ NPY_INTPOS_SCALAR,
+ NPY_INTNEG_SCALAR,
+ NPY_FLOAT_SCALAR,
+ NPY_COMPLEX_SCALAR,
+ NPY_OBJECT_SCALAR
+
+ ctypedef enum NPY_SORTKIND:
+ NPY_QUICKSORT
+ NPY_HEAPSORT
+ NPY_MERGESORT
+
+ ctypedef enum NPY_SEARCHSIDE:
+ NPY_SEARCHLEFT
+ NPY_SEARCHRIGHT
+
+ enum:
+ # DEPRECATED since NumPy 1.7 ! Do not use in new code!
+ NPY_C_CONTIGUOUS
+ NPY_F_CONTIGUOUS
+ NPY_CONTIGUOUS
+ NPY_FORTRAN
+ NPY_OWNDATA
+ NPY_FORCECAST
+ NPY_ENSURECOPY
+ NPY_ENSUREARRAY
+ NPY_ELEMENTSTRIDES
+ NPY_ALIGNED
+ NPY_NOTSWAPPED
+ NPY_WRITEABLE
+ NPY_UPDATEIFCOPY
+ NPY_ARR_HAS_DESCR
+
+ NPY_BEHAVED
+ NPY_BEHAVED_NS
+ NPY_CARRAY
+ NPY_CARRAY_RO
+ NPY_FARRAY
+ NPY_FARRAY_RO
+ NPY_DEFAULT
+
+ NPY_IN_ARRAY
+ NPY_OUT_ARRAY
+ NPY_INOUT_ARRAY
+ NPY_IN_FARRAY
+ NPY_OUT_FARRAY
+ NPY_INOUT_FARRAY
+
+ NPY_UPDATE_ALL
+
+ enum:
+ # Added in NumPy 1.7 to replace the deprecated enums above.
+ NPY_ARRAY_C_CONTIGUOUS
+ NPY_ARRAY_F_CONTIGUOUS
+ NPY_ARRAY_OWNDATA
+ NPY_ARRAY_FORCECAST
+ NPY_ARRAY_ENSURECOPY
+ NPY_ARRAY_ENSUREARRAY
+ NPY_ARRAY_ELEMENTSTRIDES
+ NPY_ARRAY_ALIGNED
+ NPY_ARRAY_NOTSWAPPED
+ NPY_ARRAY_WRITEABLE
+ NPY_ARRAY_UPDATEIFCOPY
+
+ NPY_ARRAY_BEHAVED
+ NPY_ARRAY_BEHAVED_NS
+ NPY_ARRAY_CARRAY
+ NPY_ARRAY_CARRAY_RO
+ NPY_ARRAY_FARRAY
+ NPY_ARRAY_FARRAY_RO
+ NPY_ARRAY_DEFAULT
+
+ NPY_ARRAY_IN_ARRAY
+ NPY_ARRAY_OUT_ARRAY
+ NPY_ARRAY_INOUT_ARRAY
+ NPY_ARRAY_IN_FARRAY
+ NPY_ARRAY_OUT_FARRAY
+ NPY_ARRAY_INOUT_FARRAY
+
+ NPY_ARRAY_UPDATE_ALL
+
+ cdef enum:
+ NPY_MAXDIMS
+
+ npy_intp NPY_MAX_ELSIZE
+
+ ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, void *)
+
+ ctypedef struct PyArray_ArrayDescr:
+ # shape is a tuple, but Cython doesn't support "tuple shape"
+ # inside a non-PyObject declaration, so we have to declare it
+ # as just a PyObject*.
+ PyObject* shape
+
+ ctypedef struct PyArray_Descr:
+ pass
+
+ ctypedef class numpy.dtype [object PyArray_Descr, check_size ignore]:
+ # Use PyDataType_* macros when possible, however there are no macros
+ # for accessing some of the fields, so some are defined.
+ cdef PyTypeObject* typeobj
+ cdef char kind
+ cdef char type
+ # Numpy sometimes mutates this without warning (e.g. it'll
+ # sometimes change "|" to "<" in shared dtype objects on
+ # little-endian machines). If this matters to you, use
+ # PyArray_IsNativeByteOrder(dtype.byteorder) instead of
+ # directly accessing this field.
+ cdef char byteorder
+ cdef char flags
+ cdef int type_num
+ cdef int itemsize "elsize"
+ cdef int alignment
+ cdef dict fields
+ cdef tuple names
+ # Use PyDataType_HASSUBARRAY to test whether this field is
+ # valid (the pointer can be NULL). Most users should access
+ # this field via the inline helper method PyDataType_SHAPE.
+ cdef PyArray_ArrayDescr* subarray
+
+ ctypedef extern class numpy.flatiter [object PyArrayIterObject, check_size ignore]:
+ # Use through macros
+ pass
+
+ ctypedef extern class numpy.broadcast [object PyArrayMultiIterObject, check_size ignore]:
+ cdef int numiter
+ cdef npy_intp size, index
+ cdef int nd
+ cdef npy_intp *dimensions
+ cdef void **iters
+
+ ctypedef struct PyArrayObject:
+ # For use in situations where ndarray can't replace PyArrayObject*,
+ # like PyArrayObject**.
+ pass
+
+ ctypedef class numpy.ndarray [object PyArrayObject, check_size ignore]:
+ cdef __cythonbufferdefaults__ = {"mode": "strided"}
+
+ cdef:
+ # Only taking a few of the most commonly used and stable fields.
+ # One should use PyArray_* macros instead to access the C fields.
+ char *data
+ int ndim "nd"
+ npy_intp *shape "dimensions"
+ npy_intp *strides
+ dtype descr # deprecated since NumPy 1.7 !
+ PyObject* base
+
+ # Note: This syntax (function definition in pxd files) is an
+ # experimental exception made for __getbuffer__ and __releasebuffer__
+ # -- the details of this may change.
+ def __getbuffer__(ndarray self, Py_buffer* info, int flags):
+ PyObject_GetBuffer(<object>self, info, flags);
+
+ def __releasebuffer__(ndarray self, Py_buffer* info):
+ # We should call a possible tp_bufferrelease(self, info) but no
+ # interface to that is exposed by cython or python. And currently
+ # the function is NULL in numpy, we rely on refcounting to release
+ # info when self is collected
+ pass
+
+
+ ctypedef unsigned char npy_bool
+
+ ctypedef signed char npy_byte
+ ctypedef signed short npy_short
+ ctypedef signed int npy_int
+ ctypedef signed long npy_long
+ ctypedef signed long long npy_longlong
+
+ ctypedef unsigned char npy_ubyte
+ ctypedef unsigned short npy_ushort
+ ctypedef unsigned int npy_uint
+ ctypedef unsigned long npy_ulong
+ ctypedef unsigned long long npy_ulonglong
+
+ ctypedef float npy_float
+ ctypedef double npy_double
+ ctypedef long double npy_longdouble
+
+ ctypedef signed char npy_int8
+ ctypedef signed short npy_int16
+ ctypedef signed int npy_int32
+ ctypedef signed long long npy_int64
+ ctypedef signed long long npy_int96
+ ctypedef signed long long npy_int128
+
+ ctypedef unsigned char npy_uint8
+ ctypedef unsigned short npy_uint16
+ ctypedef unsigned int npy_uint32
+ ctypedef unsigned long long npy_uint64
+ ctypedef unsigned long long npy_uint96
+ ctypedef unsigned long long npy_uint128
+
+ ctypedef float npy_float32
+ ctypedef double npy_float64
+ ctypedef long double npy_float80
+ ctypedef long double npy_float96
+ ctypedef long double npy_float128
+
+ ctypedef struct npy_cfloat:
+ double real
+ double imag
+
+ ctypedef struct npy_cdouble:
+ double real
+ double imag
+
+ ctypedef struct npy_clongdouble:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex64:
+ float real
+ float imag
+
+ ctypedef struct npy_complex128:
+ double real
+ double imag
+
+ ctypedef struct npy_complex160:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex192:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex256:
+ long double real
+ long double imag
+
+ ctypedef struct PyArray_Dims:
+ npy_intp *ptr
+ int len
+
+ int _import_array() except -1
+
+ #
+ # Macros from ndarrayobject.h
+ #
+ bint PyArray_CHKFLAGS(ndarray m, int flags)
+ bint PyArray_IS_C_CONTIGUOUS(ndarray arr)
+ bint PyArray_IS_F_CONTIGUOUS(ndarray arr)
+ bint PyArray_ISCONTIGUOUS(ndarray m)
+ bint PyArray_ISWRITEABLE(ndarray m)
+ bint PyArray_ISALIGNED(ndarray m)
+
+ int PyArray_NDIM(ndarray)
+ bint PyArray_ISONESEGMENT(ndarray)
+ bint PyArray_ISFORTRAN(ndarray)
+ int PyArray_FORTRANIF(ndarray)
+
+ void* PyArray_DATA(ndarray)
+ char* PyArray_BYTES(ndarray)
+ npy_intp* PyArray_DIMS(ndarray)
+ npy_intp* PyArray_STRIDES(ndarray)
+ npy_intp PyArray_DIM(ndarray, size_t)
+ npy_intp PyArray_STRIDE(ndarray, size_t)
+
+ PyObject *PyArray_BASE(ndarray) # returns borrowed reference!
+ PyArray_Descr *PyArray_DESCR(ndarray) # returns borrowed reference to dtype!
+ int PyArray_FLAGS(ndarray)
+ npy_intp PyArray_ITEMSIZE(ndarray)
+ int PyArray_TYPE(ndarray arr)
+
+ object PyArray_GETITEM(ndarray arr, void *itemptr)
+ int PyArray_SETITEM(ndarray arr, void *itemptr, object obj)
+
+ bint PyTypeNum_ISBOOL(int)
+ bint PyTypeNum_ISUNSIGNED(int)
+ bint PyTypeNum_ISSIGNED(int)
+ bint PyTypeNum_ISINTEGER(int)
+ bint PyTypeNum_ISFLOAT(int)
+ bint PyTypeNum_ISNUMBER(int)
+ bint PyTypeNum_ISSTRING(int)
+ bint PyTypeNum_ISCOMPLEX(int)
+ bint PyTypeNum_ISPYTHON(int)
+ bint PyTypeNum_ISFLEXIBLE(int)
+ bint PyTypeNum_ISUSERDEF(int)
+ bint PyTypeNum_ISEXTENDED(int)
+ bint PyTypeNum_ISOBJECT(int)
+
+ bint PyDataType_ISBOOL(dtype)
+ bint PyDataType_ISUNSIGNED(dtype)
+ bint PyDataType_ISSIGNED(dtype)
+ bint PyDataType_ISINTEGER(dtype)
+ bint PyDataType_ISFLOAT(dtype)
+ bint PyDataType_ISNUMBER(dtype)
+ bint PyDataType_ISSTRING(dtype)
+ bint PyDataType_ISCOMPLEX(dtype)
+ bint PyDataType_ISPYTHON(dtype)
+ bint PyDataType_ISFLEXIBLE(dtype)
+ bint PyDataType_ISUSERDEF(dtype)
+ bint PyDataType_ISEXTENDED(dtype)
+ bint PyDataType_ISOBJECT(dtype)
+ bint PyDataType_HASFIELDS(dtype)
+ bint PyDataType_HASSUBARRAY(dtype)
+
+ bint PyArray_ISBOOL(ndarray)
+ bint PyArray_ISUNSIGNED(ndarray)
+ bint PyArray_ISSIGNED(ndarray)
+ bint PyArray_ISINTEGER(ndarray)
+ bint PyArray_ISFLOAT(ndarray)
+ bint PyArray_ISNUMBER(ndarray)
+ bint PyArray_ISSTRING(ndarray)
+ bint PyArray_ISCOMPLEX(ndarray)
+ bint PyArray_ISPYTHON(ndarray)
+ bint PyArray_ISFLEXIBLE(ndarray)
+ bint PyArray_ISUSERDEF(ndarray)
+ bint PyArray_ISEXTENDED(ndarray)
+ bint PyArray_ISOBJECT(ndarray)
+ bint PyArray_HASFIELDS(ndarray)
+
+ bint PyArray_ISVARIABLE(ndarray)
+
+ bint PyArray_SAFEALIGNEDCOPY(ndarray)
+ bint PyArray_ISNBO(char) # works on ndarray.byteorder
+ bint PyArray_IsNativeByteOrder(char) # works on ndarray.byteorder
+ bint PyArray_ISNOTSWAPPED(ndarray)
+ bint PyArray_ISBYTESWAPPED(ndarray)
+
+ bint PyArray_FLAGSWAP(ndarray, int)
+
+ bint PyArray_ISCARRAY(ndarray)
+ bint PyArray_ISCARRAY_RO(ndarray)
+ bint PyArray_ISFARRAY(ndarray)
+ bint PyArray_ISFARRAY_RO(ndarray)
+ bint PyArray_ISBEHAVED(ndarray)
+ bint PyArray_ISBEHAVED_RO(ndarray)
+
+
+ bint PyDataType_ISNOTSWAPPED(dtype)
+ bint PyDataType_ISBYTESWAPPED(dtype)
+
+ bint PyArray_DescrCheck(object)
+
+ bint PyArray_Check(object)
+ bint PyArray_CheckExact(object)
+
+ # Cannot be supported due to out arg:
+ # bint PyArray_HasArrayInterfaceType(object, dtype, object, object&)
+ # bint PyArray_HasArrayInterface(op, out)
+
+
+ bint PyArray_IsZeroDim(object)
+ # Cannot be supported due to ## ## in macro:
+ # bint PyArray_IsScalar(object, verbatim work)
+ bint PyArray_CheckScalar(object)
+ bint PyArray_IsPythonNumber(object)
+ bint PyArray_IsPythonScalar(object)
+ bint PyArray_IsAnyScalar(object)
+ bint PyArray_CheckAnyScalar(object)
+ ndarray PyArray_GETCONTIGUOUS(ndarray)
+ bint PyArray_SAMESHAPE(ndarray, ndarray)
+ npy_intp PyArray_SIZE(ndarray)
+ npy_intp PyArray_NBYTES(ndarray)
+
+ object PyArray_FROM_O(object)
+ object PyArray_FROM_OF(object m, int flags)
+ object PyArray_FROM_OT(object m, int type)
+ object PyArray_FROM_OTF(object m, int type, int flags)
+ object PyArray_FROMANY(object m, int type, int min, int max, int flags)
+ object PyArray_ZEROS(int nd, npy_intp* dims, int type, int fortran)
+ object PyArray_EMPTY(int nd, npy_intp* dims, int type, int fortran)
+ void PyArray_FILLWBYTE(object, int val)
+ npy_intp PyArray_REFCOUNT(object)
+ object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth)
+ unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2)
+ bint PyArray_EquivByteorders(int b1, int b2)
+ object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
+ object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
+ #object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr)
+ object PyArray_ToScalar(void* data, ndarray arr)
+
+ void* PyArray_GETPTR1(ndarray m, npy_intp i)
+ void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j)
+ void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k)
+ void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
+
+ void PyArray_XDECREF_ERR(ndarray)
+ # Cannot be supported due to out arg
+ # void PyArray_DESCR_REPLACE(descr)
+
+
+ object PyArray_Copy(ndarray)
+ object PyArray_FromObject(object op, int type, int min_depth, int max_depth)
+ object PyArray_ContiguousFromObject(object op, int type, int min_depth, int max_depth)
+ object PyArray_CopyFromObject(object op, int type, int min_depth, int max_depth)
+
+ object PyArray_Cast(ndarray mp, int type_num)
+ object PyArray_Take(ndarray ap, object items, int axis)
+ object PyArray_Put(ndarray ap, object items, object values)
+
+ void PyArray_ITER_RESET(flatiter it) nogil
+ void PyArray_ITER_NEXT(flatiter it) nogil
+ void PyArray_ITER_GOTO(flatiter it, npy_intp* destination) nogil
+ void PyArray_ITER_GOTO1D(flatiter it, npy_intp ind) nogil
+ void* PyArray_ITER_DATA(flatiter it) nogil
+ bint PyArray_ITER_NOTDONE(flatiter it) nogil
+
+ void PyArray_MultiIter_RESET(broadcast multi) nogil
+ void PyArray_MultiIter_NEXT(broadcast multi) nogil
+ void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil
+ void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil
+ void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil
+ void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil
+ bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil
+
+ # Functions from __multiarray_api.h
+
+ # Functions taking dtype and returning object/ndarray are disabled
+ # for now as they steal dtype references. I'm conservative and disable
+ # more than is probably needed until it can be checked further.
+ int PyArray_SetNumericOps (object)
+ object PyArray_GetNumericOps ()
+ int PyArray_INCREF (ndarray)
+ int PyArray_XDECREF (ndarray)
+ void PyArray_SetStringFunction (object, int)
+ dtype PyArray_DescrFromType (int)
+ object PyArray_TypeObjectFromType (int)
+ char * PyArray_Zero (ndarray)
+ char * PyArray_One (ndarray)
+ #object PyArray_CastToType (ndarray, dtype, int)
+ int PyArray_CastTo (ndarray, ndarray)
+ int PyArray_CastAnyTo (ndarray, ndarray)
+ int PyArray_CanCastSafely (int, int)
+ npy_bool PyArray_CanCastTo (dtype, dtype)
+ int PyArray_ObjectType (object, int)
+ dtype PyArray_DescrFromObject (object, dtype)
+ #ndarray* PyArray_ConvertToCommonType (object, int *)
+ dtype PyArray_DescrFromScalar (object)
+ dtype PyArray_DescrFromTypeObject (object)
+ npy_intp PyArray_Size (object)
+ #object PyArray_Scalar (void *, dtype, object)
+ #object PyArray_FromScalar (object, dtype)
+ void PyArray_ScalarAsCtype (object, void *)
+ #int PyArray_CastScalarToCtype (object, void *, dtype)
+ #int PyArray_CastScalarDirect (object, dtype, void *, int)
+ object PyArray_ScalarFromObject (object)
+ #PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int)
+ object PyArray_FromDims (int, int *, int)
+ #object PyArray_FromDimsAndDataAndDescr (int, int *, dtype, char *)
+ #object PyArray_FromAny (object, dtype, int, int, int, object)
+ object PyArray_EnsureArray (object)
+ object PyArray_EnsureAnyArray (object)
+ #object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *)
+ #object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *)
+ #object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp)
+ #object PyArray_FromIter (object, dtype, npy_intp)
+ object PyArray_Return (ndarray)
+ #object PyArray_GetField (ndarray, dtype, int)
+ #int PyArray_SetField (ndarray, dtype, int, object)
+ object PyArray_Byteswap (ndarray, npy_bool)
+ object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER)
+ int PyArray_MoveInto (ndarray, ndarray)
+ int PyArray_CopyInto (ndarray, ndarray)
+ int PyArray_CopyAnyInto (ndarray, ndarray)
+ int PyArray_CopyObject (ndarray, object)
+ object PyArray_NewCopy (ndarray, NPY_ORDER)
+ object PyArray_ToList (ndarray)
+ object PyArray_ToString (ndarray, NPY_ORDER)
+ int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *)
+ int PyArray_Dump (object, object, int)
+ object PyArray_Dumps (object, int)
+ int PyArray_ValidType (int)
+ void PyArray_UpdateFlags (ndarray, int)
+ object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, int, object)
+ #object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, void *, int, object)
+ #dtype PyArray_DescrNew (dtype)
+ dtype PyArray_DescrNewFromType (int)
+ double PyArray_GetPriority (object, double)
+ object PyArray_IterNew (object)
+ object PyArray_MultiIterNew (int, ...)
+
+ int PyArray_PyIntAsInt (object)
+ npy_intp PyArray_PyIntAsIntp (object)
+ int PyArray_Broadcast (broadcast)
+ void PyArray_FillObjectArray (ndarray, object)
+ int PyArray_FillWithScalar (ndarray, object)
+ npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, npy_intp *)
+ dtype PyArray_DescrNewByteorder (dtype, char)
+ object PyArray_IterAllButAxis (object, int *)
+ #object PyArray_CheckFromAny (object, dtype, int, int, int, object)
+ #object PyArray_FromArray (ndarray, dtype, int)
+ object PyArray_FromInterface (object)
+ object PyArray_FromStructInterface (object)
+ #object PyArray_FromArrayAttr (object, dtype, object)
+ #NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*)
+ int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND)
+ object PyArray_NewFlagsObject (object)
+ npy_bool PyArray_CanCastScalar (type, type)
+ #int PyArray_CompareUCS4 (npy_ucs4 *, npy_ucs4 *, register size_t)
+ int PyArray_RemoveSmallest (broadcast)
+ int PyArray_ElementStrides (object)
+ void PyArray_Item_INCREF (char *, dtype)
+ void PyArray_Item_XDECREF (char *, dtype)
+ object PyArray_FieldNames (object)
+ object PyArray_Transpose (ndarray, PyArray_Dims *)
+ object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE)
+ object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE)
+ object PyArray_PutMask (ndarray, object, object)
+ object PyArray_Repeat (ndarray, object, int)
+ object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE)
+ int PyArray_Sort (ndarray, int, NPY_SORTKIND)
+ object PyArray_ArgSort (ndarray, int, NPY_SORTKIND)
+ object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE)
+ object PyArray_ArgMax (ndarray, int, ndarray)
+ object PyArray_ArgMin (ndarray, int, ndarray)
+ object PyArray_Reshape (ndarray, object)
+ object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER)
+ object PyArray_Squeeze (ndarray)
+ #object PyArray_View (ndarray, dtype, type)
+ object PyArray_SwapAxes (ndarray, int, int)
+ object PyArray_Max (ndarray, int, ndarray)
+ object PyArray_Min (ndarray, int, ndarray)
+ object PyArray_Ptp (ndarray, int, ndarray)
+ object PyArray_Mean (ndarray, int, int, ndarray)
+ object PyArray_Trace (ndarray, int, int, int, int, ndarray)
+ object PyArray_Diagonal (ndarray, int, int, int)
+ object PyArray_Clip (ndarray, object, object, ndarray)
+ object PyArray_Conjugate (ndarray, ndarray)
+ object PyArray_Nonzero (ndarray)
+ object PyArray_Std (ndarray, int, int, ndarray, int)
+ object PyArray_Sum (ndarray, int, int, ndarray)
+ object PyArray_CumSum (ndarray, int, int, ndarray)
+ object PyArray_Prod (ndarray, int, int, ndarray)
+ object PyArray_CumProd (ndarray, int, int, ndarray)
+ object PyArray_All (ndarray, int, ndarray)
+ object PyArray_Any (ndarray, int, ndarray)
+ object PyArray_Compress (ndarray, object, int, ndarray)
+ object PyArray_Flatten (ndarray, NPY_ORDER)
+ object PyArray_Ravel (ndarray, NPY_ORDER)
+ npy_intp PyArray_MultiplyList (npy_intp *, int)
+ int PyArray_MultiplyIntList (int *, int)
+ void * PyArray_GetPtr (ndarray, npy_intp*)
+ int PyArray_CompareLists (npy_intp *, npy_intp *, int)
+ #int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype)
+ #int PyArray_As1D (object*, char **, int *, int)
+ #int PyArray_As2D (object*, char ***, int *, int *, int)
+ int PyArray_Free (object, void *)
+ #int PyArray_Converter (object, object*)
+ int PyArray_IntpFromSequence (object, npy_intp *, int)
+ object PyArray_Concatenate (object, int)
+ object PyArray_InnerProduct (object, object)
+ object PyArray_MatrixProduct (object, object)
+ object PyArray_CopyAndTranspose (object)
+ object PyArray_Correlate (object, object, int)
+ int PyArray_TypestrConvert (int, int)
+ #int PyArray_DescrConverter (object, dtype*)
+ #int PyArray_DescrConverter2 (object, dtype*)
+ int PyArray_IntpConverter (object, PyArray_Dims *)
+ #int PyArray_BufferConverter (object, chunk)
+ int PyArray_AxisConverter (object, int *)
+ int PyArray_BoolConverter (object, npy_bool *)
+ int PyArray_ByteorderConverter (object, char *)
+ int PyArray_OrderConverter (object, NPY_ORDER *)
+ unsigned char PyArray_EquivTypes (dtype, dtype)
+ #object PyArray_Zeros (int, npy_intp *, dtype, int)
+ #object PyArray_Empty (int, npy_intp *, dtype, int)
+ object PyArray_Where (object, object, object)
+ object PyArray_Arange (double, double, double, int)
+ #object PyArray_ArangeObj (object, object, object, dtype)
+ int PyArray_SortkindConverter (object, NPY_SORTKIND *)
+ object PyArray_LexSort (object, int)
+ object PyArray_Round (ndarray, int, ndarray)
+ unsigned char PyArray_EquivTypenums (int, int)
+ int PyArray_RegisterDataType (dtype)
+ int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *)
+ int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND)
+ #void PyArray_InitArrFuncs (PyArray_ArrFuncs *)
+ object PyArray_IntTupleFromIntp (int, npy_intp *)
+ int PyArray_TypeNumFromName (char *)
+ int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *)
+ #int PyArray_OutputConverter (object, ndarray*)
+ object PyArray_BroadcastToShape (object, npy_intp *, int)
+ void _PyArray_SigintHandler (int)
+ void* _PyArray_GetSigintBuf ()
+ #int PyArray_DescrAlignConverter (object, dtype*)
+ #int PyArray_DescrAlignConverter2 (object, dtype*)
+ int PyArray_SearchsideConverter (object, void *)
+ object PyArray_CheckAxis (ndarray, int *, int)
+ npy_intp PyArray_OverflowMultiplyList (npy_intp *, int)
+ int PyArray_CompareString (char *, char *, size_t)
+ int PyArray_SetBaseObject(ndarray, base) # NOTE: steals a reference to base! Use "set_array_base()" instead.
+
+
+# Typedefs that matches the runtime dtype objects in
+# the numpy module.
+
+# The ones that are commented out needs an IFDEF function
+# in Cython to enable them only on the right systems.
+
+ctypedef npy_int8 int8_t
+ctypedef npy_int16 int16_t
+ctypedef npy_int32 int32_t
+ctypedef npy_int64 int64_t
+#ctypedef npy_int96 int96_t
+#ctypedef npy_int128 int128_t
+
+ctypedef npy_uint8 uint8_t
+ctypedef npy_uint16 uint16_t
+ctypedef npy_uint32 uint32_t
+ctypedef npy_uint64 uint64_t
+#ctypedef npy_uint96 uint96_t
+#ctypedef npy_uint128 uint128_t
+
+ctypedef npy_float32 float32_t
+ctypedef npy_float64 float64_t
+#ctypedef npy_float80 float80_t
+#ctypedef npy_float128 float128_t
+
+ctypedef float complex complex64_t
+ctypedef double complex complex128_t
+
+# The int types are mapped a bit surprising --
+# numpy.int corresponds to 'l' and numpy.long to 'q'
+ctypedef npy_long int_t
+ctypedef npy_longlong long_t
+ctypedef npy_longlong longlong_t
+
+ctypedef npy_ulong uint_t
+ctypedef npy_ulonglong ulong_t
+ctypedef npy_ulonglong ulonglong_t
+
+ctypedef npy_intp intp_t
+ctypedef npy_uintp uintp_t
+
+ctypedef npy_double float_t
+ctypedef npy_double double_t
+ctypedef npy_longdouble longdouble_t
+
+ctypedef npy_cfloat cfloat_t
+ctypedef npy_cdouble cdouble_t
+ctypedef npy_clongdouble clongdouble_t
+
+ctypedef npy_cdouble complex_t
+
+cdef inline object PyArray_MultiIterNew1(a):
+ return PyArray_MultiIterNew(1, <void*>a)
+
+cdef inline object PyArray_MultiIterNew2(a, b):
+ return PyArray_MultiIterNew(2, <void*>a, <void*>b)
+
+cdef inline object PyArray_MultiIterNew3(a, b, c):
+ return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
+
+cdef inline object PyArray_MultiIterNew4(a, b, c, d):
+ return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
+
+cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
+ return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
+
+cdef inline tuple PyDataType_SHAPE(dtype d):
+ if PyDataType_HASSUBARRAY(d):
+ return <tuple>d.subarray.shape
+ else:
+ return ()
+
+cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL:
+ # Recursive utility function used in __getbuffer__ to get format
+ # string. The new location in the format string is returned.
+
+ cdef dtype child
+ cdef int endian_detector = 1
+ cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
+ cdef tuple fields
+
+ for childname in descr.names:
+ fields = descr.fields[childname]
+ child, new_offset = fields
+
+ if (end - f) - <int>(new_offset - offset[0]) < 15:
+ raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd")
+
+ if ((child.byteorder == c'>' and little_endian) or
+ (child.byteorder == c'<' and not little_endian)):
+ raise ValueError(u"Non-native byte order not supported")
+ # One could encode it in the format string and have Cython
+ # complain instead, BUT: < and > in format strings also imply
+ # standardized sizes for datatypes, and we rely on native in
+ # order to avoid reencoding data types based on their size.
+ #
+ # A proper PEP 3118 exporter for other clients than Cython
+ # must deal properly with this!
+
+ # Output padding bytes
+ while offset[0] < new_offset:
+ f[0] = 120 # "x"; pad byte
+ f += 1
+ offset[0] += 1
+
+ offset[0] += child.itemsize
+
+ if not PyDataType_HASFIELDS(child):
+ t = child.type_num
+ if end - f < 5:
+ raise RuntimeError(u"Format string allocated too short.")
+
+ # Until ticket #99 is fixed, use integers to avoid warnings
+ if t == NPY_BYTE: f[0] = 98 #"b"
+ elif t == NPY_UBYTE: f[0] = 66 #"B"
+ elif t == NPY_SHORT: f[0] = 104 #"h"
+ elif t == NPY_USHORT: f[0] = 72 #"H"
+ elif t == NPY_INT: f[0] = 105 #"i"
+ elif t == NPY_UINT: f[0] = 73 #"I"
+ elif t == NPY_LONG: f[0] = 108 #"l"
+ elif t == NPY_ULONG: f[0] = 76 #"L"
+ elif t == NPY_LONGLONG: f[0] = 113 #"q"
+ elif t == NPY_ULONGLONG: f[0] = 81 #"Q"
+ elif t == NPY_FLOAT: f[0] = 102 #"f"
+ elif t == NPY_DOUBLE: f[0] = 100 #"d"
+ elif t == NPY_LONGDOUBLE: f[0] = 103 #"g"
+ elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf
+ elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd
+ elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg
+ elif t == NPY_OBJECT: f[0] = 79 #"O"
+ else:
+ raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
+ f += 1
+ else:
+ # Cython ignores struct boundary information ("T{...}"),
+ # so don't output it
+ f = _util_dtypestring(child, f, end, offset)
+ return f
+
+
+#
+# ufunc API
+#
+
+cdef extern from "numpy/ufuncobject.h":
+
+ ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, void *)
+
+ ctypedef extern class numpy.ufunc [object PyUFuncObject, check_size ignore]:
+ cdef:
+ int nin, nout, nargs
+ int identity
+ PyUFuncGenericFunction *functions
+ void **data
+ int ntypes
+ int check_return
+ char *name
+ char *types
+ char *doc
+ void *ptr
+ PyObject *obj
+ PyObject *userloops
+
+ cdef enum:
+ PyUFunc_Zero
+ PyUFunc_One
+ PyUFunc_None
+ UFUNC_ERR_IGNORE
+ UFUNC_ERR_WARN
+ UFUNC_ERR_RAISE
+ UFUNC_ERR_CALL
+ UFUNC_ERR_PRINT
+ UFUNC_ERR_LOG
+ UFUNC_MASK_DIVIDEBYZERO
+ UFUNC_MASK_OVERFLOW
+ UFUNC_MASK_UNDERFLOW
+ UFUNC_MASK_INVALID
+ UFUNC_SHIFT_DIVIDEBYZERO
+ UFUNC_SHIFT_OVERFLOW
+ UFUNC_SHIFT_UNDERFLOW
+ UFUNC_SHIFT_INVALID
+ UFUNC_FPE_DIVIDEBYZERO
+ UFUNC_FPE_OVERFLOW
+ UFUNC_FPE_UNDERFLOW
+ UFUNC_FPE_INVALID
+ UFUNC_ERR_DEFAULT
+ UFUNC_ERR_DEFAULT2
+
+ object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *,
+ void **, char *, int, int, int, int, char *, char *, int)
+ int PyUFunc_RegisterLoopForType(ufunc, int,
+ PyUFuncGenericFunction, int *, void *)
+ int PyUFunc_GenericFunction \
+ (ufunc, PyObject *, PyObject *, PyArrayObject **)
+ void PyUFunc_f_f_As_d_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_d_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_f_f \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_g_g \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_F_F_As_D_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_F_F \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_D_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_G_G \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_O_O \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_ff_f_As_dd_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_ff_f \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_dd_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_gg_g \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_FF_F_As_DD_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_DD_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_FF_F \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_GG_G \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_OO_O \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_O_O_method \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_OO_O_method \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_On_Om \
+ (char **, npy_intp *, npy_intp *, void *)
+ int PyUFunc_GetPyValues \
+ (char *, int *, int *, PyObject **)
+ int PyUFunc_checkfperr \
+ (int, PyObject *, int *)
+ void PyUFunc_clearfperr()
+ int PyUFunc_getfperr()
+ int PyUFunc_handlefperr \
+ (int, PyObject *, int, int *)
+ int PyUFunc_ReplaceLoopBySignature \
+ (ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)
+ object PyUFunc_FromFuncAndDataAndSignature \
+ (PyUFuncGenericFunction *, void **, char *, int, int, int,
+ int, char *, char *, int, char *)
+
+ int _import_umath() except -1
+
+cdef inline void set_array_base(ndarray arr, object base):
+ Py_INCREF(base) # important to do this before stealing the reference below!
+ PyArray_SetBaseObject(arr, base)
+
+cdef inline object get_array_base(ndarray arr):
+ base = PyArray_BASE(arr)
+ if base is NULL:
+ return None
+ return <object>base
+
+# Versions of the import_* functions which are more suitable for
+# Cython code.
+cdef inline int import_array() except -1:
+ try:
+ _import_array()
+ except Exception:
+ raise ImportError("numpy.core.multiarray failed to import")
+
+cdef inline int import_umath() except -1:
+ try:
+ _import_umath()
+ except Exception:
+ raise ImportError("numpy.core.umath failed to import")
+
+cdef inline int import_ufunc() except -1:
+ try:
+ _import_umath()
+ except Exception:
+ raise ImportError("numpy.core.umath failed to import")
diff --git a/numpy/__init__.py b/numpy/__init__.py
index ba88c733f..fef8245de 100644
--- a/numpy/__init__.py
+++ b/numpy/__init__.py
@@ -143,7 +143,9 @@ else:
from .core import *
from . import compat
from . import lib
+ # FIXME: why have numpy.lib if everything is imported here??
from .lib import *
+
from . import linalg
from . import fft
from . import polynomial
@@ -166,12 +168,22 @@ else:
# now that numpy modules are imported, can initialize limits
core.getlimits._register_known_types()
+ __all__.extend(['bool', 'int', 'float', 'complex', 'object', 'unicode',
+ 'str'])
__all__.extend(['__version__', 'show_config'])
__all__.extend(core.__all__)
__all__.extend(_mat.__all__)
__all__.extend(lib.__all__)
__all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
+ # Remove things that are in the numpy.lib but not in the numpy namespace
+ # Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
+ # that prevents adding more things to the main namespace by accident.
+ # The list below will grow until the `from .lib import *` fixme above is
+ # taken care of
+ __all__.remove('Arrayterator')
+ del Arrayterator
+
# Filter out Cython harmless warnings
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
@@ -182,9 +194,34 @@ else:
oldnumeric = 'removed'
numarray = 'removed'
- # We don't actually use this ourselves anymore, but I'm not 100% sure that
- # no-one else in the world is using it (though I hope not)
- from .testing import Tester
+ if sys.version_info[:2] >= (3, 7):
+ # Importing Tester requires importing all of UnitTest which is not a
+ # cheap import Since it is mainly used in test suits, we lazy import it
+ # here to save on the order of 10 ms of import time for most users
+ #
+ # The previous way Tester was imported also had a side effect of adding
+ # the full `numpy.testing` namespace
+ #
+ # module level getattr is only supported in 3.7 onwards
+ # https://www.python.org/dev/peps/pep-0562/
+ def __getattr__(attr):
+ if attr == 'testing':
+ import numpy.testing as testing
+ return testing
+ elif attr == 'Tester':
+ from .testing import Tester
+ return Tester
+ else:
+ raise AttributeError("module {!r} has no attribute "
+ "{!r}".format(__name__, attr))
+
+ def __dir__():
+ return __all__ + ['Tester', 'testing']
+
+ else:
+ # We don't actually use this ourselves anymore, but I'm not 100% sure that
+ # no-one else in the world is using it (though I hope not)
+ from .testing import Tester
# Pytest testing
from numpy._pytesttester import PytestTester
diff --git a/numpy/_pytesttester.py b/numpy/_pytesttester.py
index 8d1a3811c..b25224c20 100644
--- a/numpy/_pytesttester.py
+++ b/numpy/_pytesttester.py
@@ -48,10 +48,9 @@ class PytestTester(object):
"""
Pytest test runner.
- This class is made available in ``numpy.testing``, and a test function
- is typically added to a package's __init__.py like so::
+ A test function is typically added to a package's __init__.py like so::
- from numpy.testing import PytestTester
+ from numpy._pytesttester import PytestTester
test = PytestTester(__name__).test
del PytestTester
@@ -68,6 +67,12 @@ class PytestTester(object):
module_name : module name
The name of the module to test.
+ Notes
+ -----
+ Unlike the previous ``nose``-based implementation, this class is not
+ publicly exposed as it performs some ``numpy``-specific warning
+ suppression.
+
"""
def __init__(self, module_name):
self.module_name = module_name
diff --git a/numpy/core/__init__.py b/numpy/core/__init__.py
index ce443bb22..c3b3f0392 100644
--- a/numpy/core/__init__.py
+++ b/numpy/core/__init__.py
@@ -1,6 +1,13 @@
+"""
+Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
+
+Please note that this module is private. All functions and objects
+are available in the main ``numpy`` namespace - use that instead.
+
+"""
+
from __future__ import division, absolute_import, print_function
-from .info import __doc__
from numpy.version import version as __version__
import os
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py
index 033e3809c..30379dfbe 100644
--- a/numpy/core/_add_newdocs.py
+++ b/numpy/core/_add_newdocs.py
@@ -386,12 +386,12 @@ add_newdoc('numpy.core', 'nditer',
>>> luf(lambda i,j:i*i + j/2, a, b)
array([ 0.5, 1.5, 4.5, 9.5, 16.5])
- If operand flags `"writeonly"` or `"readwrite"` are used the operands may
- be views into the original data with the `WRITEBACKIFCOPY` flag. In this case
- nditer must be used as a context manager or the nditer.close
- method must be called before using the result. The temporary
- data will be written back to the original data when the `__exit__`
- function is called but not before:
+ If operand flags `"writeonly"` or `"readwrite"` are used the
+ operands may be views into the original data with the
+ `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
+ context manager or the `nditer.close` method must be called before
+ using the result. The temporary data will be written back to the
+ original data when the `__exit__` function is called but not before:
>>> a = np.arange(6, dtype='i4')[::-2]
>>> with np.nditer(a, [],
@@ -413,6 +413,8 @@ add_newdoc('numpy.core', 'nditer',
`x.data` will still point at some part of `a.data`, and writing to
one will affect the other.
+ Context management and the `close` method appeared in version 1.15.0.
+
""")
# nditer methods
@@ -568,6 +570,8 @@ add_newdoc('numpy.core', 'nditer', ('close',
Resolve all writeback semantics in writeable operands.
+ .. versionadded:: 1.15.0
+
See Also
--------
@@ -1347,7 +1351,7 @@ add_newdoc('numpy.core.multiarray', 'arange',
add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version',
"""_get_ndarray_c_version()
- Return the compile time NDARRAY_VERSION number.
+ Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number.
""")
diff --git a/numpy/core/_dtype.py b/numpy/core/_dtype.py
index 3a12c8fad..df1ff180e 100644
--- a/numpy/core/_dtype.py
+++ b/numpy/core/_dtype.py
@@ -252,7 +252,7 @@ def _is_packed(dtype):
from a list of the field names and dtypes with no additional
dtype parameters.
- Duplicates the C `is_dtype_struct_simple_unaligned_layout` functio.
+ Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
"""
total_offset = 0
for name in dtype.names:
@@ -316,26 +316,39 @@ def _subarray_str(dtype):
)
+def _name_includes_bit_suffix(dtype):
+ if dtype.type == np.object_:
+ # pointer size varies by system, best to omit it
+ return False
+ elif dtype.type == np.bool_:
+ # implied
+ return False
+ elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
+ # unspecified
+ return False
+ else:
+ return True
+
+
def _name_get(dtype):
- # provides dtype.name.__get__
+ # provides dtype.name.__get__, documented as returning a "bit name"
if dtype.isbuiltin == 2:
# user dtypes don't promise to do anything special
return dtype.type.__name__
- # Builtin classes are documented as returning a "bit name"
- name = dtype.type.__name__
-
- # handle bool_, str_, etc
- if name[-1] == '_':
- name = name[:-1]
+ if issubclass(dtype.type, np.void):
+ # historically, void subclasses preserve their name, eg `record64`
+ name = dtype.type.__name__
+ else:
+ name = _kind_name(dtype)
- # append bit counts to str, unicode, and void
- if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype):
+ # append bit counts
+ if _name_includes_bit_suffix(dtype):
name += "{}".format(dtype.itemsize * 8)
# append metadata to datetimes
- elif dtype.type in (np.datetime64, np.timedelta64):
+ if dtype.type in (np.datetime64, np.timedelta64):
name += _datetime_metadata_str(dtype)
return name
diff --git a/numpy/core/_exceptions.py b/numpy/core/_exceptions.py
index a1af7a78d..88a45561f 100644
--- a/numpy/core/_exceptions.py
+++ b/numpy/core/_exceptions.py
@@ -27,6 +27,7 @@ def _display_as_base(cls):
assert issubclass(cls, Exception)
cls.__name__ = cls.__base__.__name__
cls.__qualname__ = cls.__base__.__qualname__
+ set_module(cls.__base__.__module__)(cls)
return cls
@@ -146,6 +147,54 @@ class _ArrayMemoryError(MemoryError):
self.shape = shape
self.dtype = dtype
- def __str__(self):
- return "Unable to allocate array with shape {} and data type {}".format(self.shape, self.dtype)
+ @property
+ def _total_size(self):
+ num_bytes = self.dtype.itemsize
+ for dim in self.shape:
+ num_bytes *= dim
+ return num_bytes
+
+ @staticmethod
+ def _size_to_string(num_bytes):
+ """ Convert a number of bytes into a binary size string """
+ import math
+
+ # https://en.wikipedia.org/wiki/Binary_prefix
+ LOG2_STEP = 10
+ STEP = 1024
+ units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
+
+ unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
+ unit_val = 1 << (unit_i * LOG2_STEP)
+ n_units = num_bytes / unit_val
+ del unit_val
+
+ # ensure we pick a unit that is correct after rounding
+ if round(n_units) == STEP:
+ unit_i += 1
+ n_units /= STEP
+
+ # deal with sizes so large that we don't have units for them
+ if unit_i >= len(units):
+ new_unit_i = len(units) - 1
+ n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
+ unit_i = new_unit_i
+
+ unit_name = units[unit_i]
+ # format with a sensible number of digits
+ if unit_i == 0:
+ # no decimal point on bytes
+ return '{:.0f} {}'.format(n_units, unit_name)
+ elif round(n_units) < 1000:
+ # 3 significant figures, if none are dropped to the left of the .
+ return '{:#.3g} {}'.format(n_units, unit_name)
+ else:
+ # just give all the digits otherwise
+ return '{:#.0f} {}'.format(n_units, unit_name)
+ def __str__(self):
+ size_str = self._size_to_string(self._total_size)
+ return (
+ "Unable to allocate {} for an array with shape {} and data type {}"
+ .format(size_str, self.shape, self.dtype)
+ )
diff --git a/numpy/core/_internal.py b/numpy/core/_internal.py
index c70718cb6..b0ea603e1 100644
--- a/numpy/core/_internal.py
+++ b/numpy/core/_internal.py
@@ -459,7 +459,7 @@ def _getfield_is_safe(oldtype, newtype, offset):
if newtype.hasobject or oldtype.hasobject:
if offset == 0 and newtype == oldtype:
return
- if oldtype.names:
+ if oldtype.names is not None:
for name in oldtype.names:
if (oldtype.fields[name][1] == offset and
oldtype.fields[name][0] == newtype):
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index 108364824..b1310a737 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -89,8 +89,10 @@ def _make_options_dict(precision=None, threshold=None, edgeitems=None,
"`False`", stacklevel=3)
if threshold is not None:
# forbid the bad threshold arg suggested by stack overflow, gh-12351
- if not isinstance(threshold, numbers.Number) or np.isnan(threshold):
- raise ValueError("threshold must be numeric and non-NAN, try "
+ if not isinstance(threshold, numbers.Number):
+ raise TypeError("threshold must be numeric")
+ if np.isnan(threshold):
+ raise ValueError("threshold must be non-NAN, try "
"sys.maxsize for untruncated representation")
return options
@@ -192,7 +194,7 @@ def set_printoptions(precision=None, threshold=None, edgeitems=None,
See Also
--------
- get_printoptions, set_string_function, array2string
+ get_printoptions, printoptions, set_string_function, array2string
Notes
-----
@@ -283,7 +285,7 @@ def get_printoptions():
See Also
--------
- set_printoptions, set_string_function
+ set_printoptions, printoptions, set_string_function
"""
return _format_options.copy()
@@ -683,7 +685,7 @@ def array2string(a, max_line_width=None, precision=None,
if style is np._NoValue:
style = repr
- if a.shape == () and not a.dtype.names:
+ if a.shape == () and a.dtype.names is None:
return style(a.item())
elif style is not np._NoValue:
# Deprecation 11-9-2017 v1.14
@@ -982,20 +984,6 @@ class FloatingFormat(object):
pad_left=self.pad_left,
pad_right=self.pad_right)
-# for back-compatibility, we keep the classes for each float type too
-class FloatFormat(FloatingFormat):
- def __init__(self, *args, **kwargs):
- warnings.warn("FloatFormat has been replaced by FloatingFormat",
- DeprecationWarning, stacklevel=2)
- super(FloatFormat, self).__init__(*args, **kwargs)
-
-
-class LongFloatFormat(FloatingFormat):
- def __init__(self, *args, **kwargs):
- warnings.warn("LongFloatFormat has been replaced by FloatingFormat",
- DeprecationWarning, stacklevel=2)
- super(LongFloatFormat, self).__init__(*args, **kwargs)
-
@set_module('numpy')
def format_float_scientific(x, precision=None, unique=True, trim='k',
@@ -1194,21 +1182,6 @@ class ComplexFloatingFormat(object):
return r + i
-# for back-compatibility, we keep the classes for each complex type too
-class ComplexFormat(ComplexFloatingFormat):
- def __init__(self, *args, **kwargs):
- warnings.warn(
- "ComplexFormat has been replaced by ComplexFloatingFormat",
- DeprecationWarning, stacklevel=2)
- super(ComplexFormat, self).__init__(*args, **kwargs)
-
-class LongComplexFormat(ComplexFloatingFormat):
- def __init__(self, *args, **kwargs):
- warnings.warn(
- "LongComplexFormat has been replaced by ComplexFloatingFormat",
- DeprecationWarning, stacklevel=2)
- super(LongComplexFormat, self).__init__(*args, **kwargs)
-
class _TimelikeFormat(object):
def __init__(self, data):
@@ -1319,16 +1292,6 @@ class StructuredVoidFormat(object):
return "({})".format(", ".join(str_fields))
-# for backwards compatibility
-class StructureFormat(StructuredVoidFormat):
- def __init__(self, *args, **kwargs):
- # NumPy 1.14, 2018-02-14
- warnings.warn(
- "StructureFormat has been replaced by StructuredVoidFormat",
- DeprecationWarning, stacklevel=2)
- super(StructureFormat, self).__init__(*args, **kwargs)
-
-
def _void_scalar_repr(x):
"""
Implements the repr for structured-void scalars. It is called from the
diff --git a/numpy/core/code_generators/genapi.py b/numpy/core/code_generators/genapi.py
index 923c34425..7336e5e13 100644
--- a/numpy/core/code_generators/genapi.py
+++ b/numpy/core/code_generators/genapi.py
@@ -259,7 +259,8 @@ def find_functions(filename, tag='API'):
elif state == STATE_ARGS:
if line.startswith('{'):
# finished
- fargs_str = ' '.join(function_args).rstrip(' )')
+ # remove any white space and the closing bracket:
+ fargs_str = ' '.join(function_args).rstrip()[:-1].rstrip()
fargs = split_arguments(fargs_str)
f = Function(function_name, return_type, fargs,
'\n'.join(doclist))
diff --git a/numpy/core/code_generators/generate_umath.py b/numpy/core/code_generators/generate_umath.py
index bf1747272..6729fe197 100644
--- a/numpy/core/code_generators/generate_umath.py
+++ b/numpy/core/code_generators/generate_umath.py
@@ -662,14 +662,18 @@ defdict = {
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.cos'),
None,
- TD(inexact, f='cos', astype={'e':'f'}),
+ TD('e', f='cos', astype={'e':'f'}),
+ TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]),
+ TD('fdg' + cmplx, f='cos'),
TD(P, f='cos'),
),
'sin':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.sin'),
None,
- TD(inexact, f='sin', astype={'e':'f'}),
+ TD('e', f='sin', astype={'e':'f'}),
+ TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]),
+ TD('fdg' + cmplx, f='sin'),
TD(P, f='sin'),
),
'tan':
@@ -705,8 +709,8 @@ defdict = {
docstrings.get('numpy.core.umath.exp'),
None,
TD('e', f='exp', astype={'e':'f'}),
- TD('f', simd=[('avx2', 'f'), ('avx512f', 'f')]),
- TD(inexact, f='exp', astype={'e':'f'}),
+ TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]),
+ TD('fdg' + cmplx, f='exp'),
TD(P, f='exp'),
),
'exp2':
@@ -728,8 +732,8 @@ defdict = {
docstrings.get('numpy.core.umath.log'),
None,
TD('e', f='log', astype={'e':'f'}),
- TD('f', simd=[('avx2', 'f'), ('avx512f', 'f')]),
- TD(inexact, f='log', astype={'e':'f'}),
+ TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]),
+ TD('fdg' + cmplx, f='log'),
TD(P, f='log'),
),
'log2':
@@ -759,7 +763,7 @@ defdict = {
None,
TD('e', f='sqrt', astype={'e':'f'}),
TD(inexactvec),
- TD(inexact, f='sqrt', astype={'e':'f'}),
+ TD('fdg' + cmplx, f='sqrt'),
TD(P, f='sqrt'),
),
'cbrt':
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 3389e7d66..140056432 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -25,7 +25,7 @@ __all__ = [
'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip',
'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean',
'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put',
- 'rank', 'ravel', 'repeat', 'reshape', 'resize', 'round_',
+ 'ravel', 'repeat', 'reshape', 'resize', 'round_',
'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze',
'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var',
]
@@ -380,6 +380,7 @@ def choose(a, choices, out=None, mode='raise'):
See Also
--------
ndarray.choose : equivalent method
+ numpy.take_along_axis : Preferable if `choices` is an array
Notes
-----
@@ -908,17 +909,17 @@ def sort(a, axis=-1, kind=None, order=None):
.. versionadded:: 1.12.0
- quicksort has been changed to `introsort <https://en.wikipedia.org/wiki/Introsort>`_.
+ quicksort has been changed to `introsort <https://en.wikipedia.org/wiki/Introsort>`_.
When sorting does not make enough progress it switches to
- `heapsort <https://en.wikipedia.org/wiki/Heapsort>`_.
+ `heapsort <https://en.wikipedia.org/wiki/Heapsort>`_.
This implementation makes quicksort O(n*log(n)) in the worst case.
'stable' automatically chooses the best stable sorting algorithm
- for the data type being sorted.
- It, along with 'mergesort' is currently mapped to
- `timsort <https://en.wikipedia.org/wiki/Timsort>`_
- or `radix sort <https://en.wikipedia.org/wiki/Radix_sort>`_
- depending on the data type.
+ for the data type being sorted.
+ It, along with 'mergesort' is currently mapped to
+ `timsort <https://en.wikipedia.org/wiki/Timsort>`_
+ or `radix sort <https://en.wikipedia.org/wiki/Radix_sort>`_
+ depending on the data type.
API forward compatibility currently limits the
ability to select the implementation and it is hardwired for the different
data types.
@@ -2782,6 +2783,10 @@ def alen(a):
7
"""
+ # NumPy 1.18.0, 2019-08-02
+ warnings.warn(
+ "`np.alen` is deprecated, use `len` instead",
+ DeprecationWarning, stacklevel=2)
try:
return len(a)
except TypeError:
@@ -3120,10 +3125,37 @@ def around(a, decimals=0, out=None):
-----
For values exactly halfway between rounded decimal values, NumPy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
- -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
- to the inexact representation of decimal fractions in the IEEE
- floating point standard [1]_ and errors introduced when scaling
- by powers of ten.
+ -0.5 and 0.5 round to 0.0, etc.
+
+ ``np.around`` uses a fast but sometimes inexact algorithm to round
+ floating-point datatypes. For positive `decimals` it is equivalent to
+ ``np.true_divide(np.rint(a * 10**decimals), 10**decimals)``, which has
+ error due to the inexact representation of decimal fractions in the IEEE
+ floating point standard [1]_ and errors introduced when scaling by powers
+ of ten. For instance, note the extra "1" in the following:
+
+ >>> np.round(56294995342131.5, 3)
+ 56294995342131.51
+
+ If your goal is to print such values with a fixed number of decimals, it is
+ preferable to use numpy's float printing routines to limit the number of
+ printed decimals:
+
+ >>> np.format_float_positional(56294995342131.5, precision=3)
+ '56294995342131.5'
+
+ The float printing routines use an accurate but much more computationally
+ demanding algorithm to compute the number of digits after the decimal
+ point.
+
+ Alternatively, Python's builtin `round` function uses a more accurate
+ but slower algorithm for 64-bit floating point values:
+
+ >>> round(56294995342131.5, 3)
+ 56294995342131.5
+ >>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997
+ (16.06, 16.05)
+
References
----------
@@ -3414,7 +3446,7 @@ def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
instead of a single axis or all the axes as before.
dtype : data-type, optional
Type to use in computing the variance. For arrays of integer type
- the default is `float32`; for arrays of float types it is the same as
+ the default is `float64`; for arrays of float types it is the same as
the array type.
out : ndarray, optional
Alternate output array in which to place the result. It must have
@@ -3573,30 +3605,3 @@ def alltrue(*args, **kwargs):
numpy.all : Equivalent function; see for details.
"""
return all(*args, **kwargs)
-
-
-@array_function_dispatch(_ndim_dispatcher)
-def rank(a):
- """
- Return the number of dimensions of an array.
-
- .. note::
- This function is deprecated in NumPy 1.9 to avoid confusion with
- `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
- should be used instead.
-
- See Also
- --------
- ndim : equivalent non-deprecated function
-
- Notes
- -----
- In the old Numeric package, `rank` was the term used for the number of
- dimensions, but in NumPy `ndim` is used instead.
- """
- # 2014-04-12, 1.9
- warnings.warn(
- "`rank` is deprecated; use the `ndim` attribute or function instead. "
- "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
- VisibleDeprecationWarning, stacklevel=3)
- return ndim(a)
diff --git a/numpy/core/include/numpy/ndarraytypes.h b/numpy/core/include/numpy/ndarraytypes.h
index 1221aeece..ad98d562b 100644
--- a/numpy/core/include/numpy/ndarraytypes.h
+++ b/numpy/core/include/numpy/ndarraytypes.h
@@ -1095,7 +1095,8 @@ typedef struct PyArrayIterObject_tag PyArrayIterObject;
* type of the function which translates a set of coordinates to a
* pointer to the data
*/
-typedef char* (*npy_iter_get_dataptr_t)(PyArrayIterObject* iter, npy_intp*);
+typedef char* (*npy_iter_get_dataptr_t)(
+ PyArrayIterObject* iter, const npy_intp*);
struct PyArrayIterObject_tag {
PyObject_HEAD
@@ -1695,7 +1696,8 @@ PyArray_CLEARFLAGS(PyArrayObject *arr, int flags)
#define PyDataType_ISOBJECT(obj) PyTypeNum_ISOBJECT(((PyArray_Descr*)(obj))->type_num)
#define PyDataType_HASFIELDS(obj) (((PyArray_Descr *)(obj))->names != NULL)
#define PyDataType_HASSUBARRAY(dtype) ((dtype)->subarray != NULL)
-#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0)
+#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \
+ !PyDataType_HASFIELDS(dtype))
#define PyDataType_MAKEUNSIZED(dtype) ((dtype)->elsize = 0)
#define PyArray_ISBOOL(obj) PyTypeNum_ISBOOL(PyArray_TYPE(obj))
diff --git a/numpy/core/include/numpy/npy_common.h b/numpy/core/include/numpy/npy_common.h
index 108c0a202..27b83f7b5 100644
--- a/numpy/core/include/numpy/npy_common.h
+++ b/numpy/core/include/numpy/npy_common.h
@@ -44,10 +44,14 @@
#else
#define NPY_GCC_TARGET_AVX
#endif
+
+#if defined HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS
+#define HAVE_ATTRIBUTE_TARGET_FMA
+#define NPY_GCC_TARGET_FMA __attribute__((target("avx2,fma")))
+#endif
+
#if defined HAVE_ATTRIBUTE_TARGET_AVX2 && defined HAVE_LINK_AVX2
#define NPY_GCC_TARGET_AVX2 __attribute__((target("avx2")))
-#elif defined HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS
-#define NPY_GCC_TARGET_AVX2 __attribute__((target("avx2")))
#else
#define NPY_GCC_TARGET_AVX2
#endif
diff --git a/numpy/core/include/numpy/npy_math.h b/numpy/core/include/numpy/npy_math.h
index dfb8ff526..69e690f28 100644
--- a/numpy/core/include/numpy/npy_math.h
+++ b/numpy/core/include/numpy/npy_math.h
@@ -113,37 +113,100 @@ NPY_INLINE static float __npy_nzerof(void)
#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
-/*
- * Constants used in vector implementation of exp(x)
+/*
+ * Constants used in vector implementation of exp(x)
*/
#define NPY_RINT_CVT_MAGICf 0x1.800000p+23f
#define NPY_CODY_WAITE_LOGE_2_HIGHf -6.93145752e-1f
#define NPY_CODY_WAITE_LOGE_2_LOWf -1.42860677e-6f
-#define NPY_COEFF_P0_EXPf 9.999999999980870924916e-01f
-#define NPY_COEFF_P1_EXPf 7.257664613233124478488e-01f
-#define NPY_COEFF_P2_EXPf 2.473615434895520810817e-01f
-#define NPY_COEFF_P3_EXPf 5.114512081637298353406e-02f
-#define NPY_COEFF_P4_EXPf 6.757896990527504603057e-03f
-#define NPY_COEFF_P5_EXPf 5.082762527590693718096e-04f
-#define NPY_COEFF_Q0_EXPf 1.000000000000000000000e+00f
-#define NPY_COEFF_Q1_EXPf -2.742335390411667452936e-01f
-#define NPY_COEFF_Q2_EXPf 2.159509375685829852307e-02f
-
-/*
- * Constants used in vector implementation of log(x)
+#define NPY_COEFF_P0_EXPf 9.999999999980870924916e-01f
+#define NPY_COEFF_P1_EXPf 7.257664613233124478488e-01f
+#define NPY_COEFF_P2_EXPf 2.473615434895520810817e-01f
+#define NPY_COEFF_P3_EXPf 5.114512081637298353406e-02f
+#define NPY_COEFF_P4_EXPf 6.757896990527504603057e-03f
+#define NPY_COEFF_P5_EXPf 5.082762527590693718096e-04f
+#define NPY_COEFF_Q0_EXPf 1.000000000000000000000e+00f
+#define NPY_COEFF_Q1_EXPf -2.742335390411667452936e-01f
+#define NPY_COEFF_Q2_EXPf 2.159509375685829852307e-02f
+
+/*
+ * Constants used in vector implementation of log(x)
+ */
+#define NPY_COEFF_P0_LOGf 0.000000000000000000000e+00f
+#define NPY_COEFF_P1_LOGf 9.999999999999998702752e-01f
+#define NPY_COEFF_P2_LOGf 2.112677543073053063722e+00f
+#define NPY_COEFF_P3_LOGf 1.480000633576506585156e+00f
+#define NPY_COEFF_P4_LOGf 3.808837741388407920751e-01f
+#define NPY_COEFF_P5_LOGf 2.589979117907922693523e-02f
+#define NPY_COEFF_Q0_LOGf 1.000000000000000000000e+00f
+#define NPY_COEFF_Q1_LOGf 2.612677543073109236779e+00f
+#define NPY_COEFF_Q2_LOGf 2.453006071784736363091e+00f
+#define NPY_COEFF_Q3_LOGf 9.864942958519418960339e-01f
+#define NPY_COEFF_Q4_LOGf 1.546476374983906719538e-01f
+#define NPY_COEFF_Q5_LOGf 5.875095403124574342950e-03f
+/*
+ * Constants used in vector implementation of sinf/cosf(x)
+ */
+#define NPY_TWO_O_PIf 0x1.45f306p-1f
+#define NPY_CODY_WAITE_PI_O_2_HIGHf -0x1.921fb0p+00f
+#define NPY_CODY_WAITE_PI_O_2_MEDf -0x1.5110b4p-22f
+#define NPY_CODY_WAITE_PI_O_2_LOWf -0x1.846988p-48f
+#define NPY_COEFF_INVF0_COSINEf 0x1.000000p+00f
+#define NPY_COEFF_INVF2_COSINEf -0x1.000000p-01f
+#define NPY_COEFF_INVF4_COSINEf 0x1.55553cp-05f
+#define NPY_COEFF_INVF6_COSINEf -0x1.6c06dcp-10f
+#define NPY_COEFF_INVF8_COSINEf 0x1.98e616p-16f
+#define NPY_COEFF_INVF3_SINEf -0x1.555556p-03f
+#define NPY_COEFF_INVF5_SINEf 0x1.11119ap-07f
+#define NPY_COEFF_INVF7_SINEf -0x1.a06bbap-13f
+#define NPY_COEFF_INVF9_SINEf 0x1.7d3bbcp-19f
+/*
+ * Integer functions.
+ */
+NPY_INPLACE npy_uint npy_gcdu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_uint npy_lcmu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_ulong npy_gcdul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulong npy_lcmul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulonglong npy_gcdull(npy_ulonglong a, npy_ulonglong b);
+NPY_INPLACE npy_ulonglong npy_lcmull(npy_ulonglong a, npy_ulonglong b);
+
+NPY_INPLACE npy_int npy_gcd(npy_int a, npy_int b);
+NPY_INPLACE npy_int npy_lcm(npy_int a, npy_int b);
+NPY_INPLACE npy_long npy_gcdl(npy_long a, npy_long b);
+NPY_INPLACE npy_long npy_lcml(npy_long a, npy_long b);
+NPY_INPLACE npy_longlong npy_gcdll(npy_longlong a, npy_longlong b);
+NPY_INPLACE npy_longlong npy_lcmll(npy_longlong a, npy_longlong b);
+
+NPY_INPLACE npy_ubyte npy_rshiftuhh(npy_ubyte a, npy_ubyte b);
+NPY_INPLACE npy_ubyte npy_lshiftuhh(npy_ubyte a, npy_ubyte b);
+NPY_INPLACE npy_ushort npy_rshiftuh(npy_ushort a, npy_ushort b);
+NPY_INPLACE npy_ushort npy_lshiftuh(npy_ushort a, npy_ushort b);
+NPY_INPLACE npy_uint npy_rshiftu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_uint npy_lshiftu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_ulong npy_rshiftul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulong npy_lshiftul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulonglong npy_rshiftull(npy_ulonglong a, npy_ulonglong b);
+NPY_INPLACE npy_ulonglong npy_lshiftull(npy_ulonglong a, npy_ulonglong b);
+
+NPY_INPLACE npy_byte npy_rshifthh(npy_byte a, npy_byte b);
+NPY_INPLACE npy_byte npy_lshifthh(npy_byte a, npy_byte b);
+NPY_INPLACE npy_short npy_rshifth(npy_short a, npy_short b);
+NPY_INPLACE npy_short npy_lshifth(npy_short a, npy_short b);
+NPY_INPLACE npy_int npy_rshift(npy_int a, npy_int b);
+NPY_INPLACE npy_int npy_lshift(npy_int a, npy_int b);
+NPY_INPLACE npy_long npy_rshiftl(npy_long a, npy_long b);
+NPY_INPLACE npy_long npy_lshiftl(npy_long a, npy_long b);
+NPY_INPLACE npy_longlong npy_rshiftll(npy_longlong a, npy_longlong b);
+NPY_INPLACE npy_longlong npy_lshiftll(npy_longlong a, npy_longlong b);
+
+/*
+ * avx function has a common API for both sin & cos. This enum is used to
+ * distinguish between the two
*/
-#define NPY_COEFF_P0_LOGf 0.000000000000000000000e+00f
-#define NPY_COEFF_P1_LOGf 9.999999999999998702752e-01f
-#define NPY_COEFF_P2_LOGf 2.112677543073053063722e+00f
-#define NPY_COEFF_P3_LOGf 1.480000633576506585156e+00f
-#define NPY_COEFF_P4_LOGf 3.808837741388407920751e-01f
-#define NPY_COEFF_P5_LOGf 2.589979117907922693523e-02f
-#define NPY_COEFF_Q0_LOGf 1.000000000000000000000e+00f
-#define NPY_COEFF_Q1_LOGf 2.612677543073109236779e+00f
-#define NPY_COEFF_Q2_LOGf 2.453006071784736363091e+00f
-#define NPY_COEFF_Q3_LOGf 9.864942958519418960339e-01f
-#define NPY_COEFF_Q4_LOGf 1.546476374983906719538e-01f
-#define NPY_COEFF_Q5_LOGf 5.875095403124574342950e-03f
+typedef enum {
+ npy_compute_sin,
+ npy_compute_cos
+} NPY_TRIG_OP;
/*
* C99 double math funcs
diff --git a/numpy/core/info.py b/numpy/core/info.py
deleted file mode 100644
index c6f7bbcf2..000000000
--- a/numpy/core/info.py
+++ /dev/null
@@ -1,87 +0,0 @@
-"""Defines a multi-dimensional array and useful procedures for Numerical computation.
-
-Functions
-
-- array - NumPy Array construction
-- zeros - Return an array of all zeros
-- empty - Return an uninitialized array
-- shape - Return shape of sequence or array
-- rank - Return number of dimensions
-- size - Return number of elements in entire array or a
- certain dimension
-- fromstring - Construct array from (byte) string
-- take - Select sub-arrays using sequence of indices
-- put - Set sub-arrays using sequence of 1-D indices
-- putmask - Set portion of arrays using a mask
-- reshape - Return array with new shape
-- repeat - Repeat elements of array
-- choose - Construct new array from indexed array tuple
-- correlate - Correlate two 1-d arrays
-- searchsorted - Search for element in 1-d array
-- sum - Total sum over a specified dimension
-- average - Average, possibly weighted, over axis or array.
-- cumsum - Cumulative sum over a specified dimension
-- product - Total product over a specified dimension
-- cumproduct - Cumulative product over a specified dimension
-- alltrue - Logical and over an entire axis
-- sometrue - Logical or over an entire axis
-- allclose - Tests if sequences are essentially equal
-
-More Functions:
-
-- arange - Return regularly spaced array
-- asarray - Guarantee NumPy array
-- convolve - Convolve two 1-d arrays
-- swapaxes - Exchange axes
-- concatenate - Join arrays together
-- transpose - Permute axes
-- sort - Sort elements of array
-- argsort - Indices of sorted array
-- argmax - Index of largest value
-- argmin - Index of smallest value
-- inner - Innerproduct of two arrays
-- dot - Dot product (matrix multiplication)
-- outer - Outerproduct of two arrays
-- resize - Return array with arbitrary new shape
-- indices - Tuple of indices
-- fromfunction - Construct array from universal function
-- diagonal - Return diagonal array
-- trace - Trace of array
-- dump - Dump array to file object (pickle)
-- dumps - Return pickled string representing data
-- load - Return array stored in file object
-- loads - Return array from pickled string
-- ravel - Return array as 1-D
-- nonzero - Indices of nonzero elements for 1-D array
-- shape - Shape of array
-- where - Construct array from binary result
-- compress - Elements of array where condition is true
-- clip - Clip array between two values
-- ones - Array of all ones
-- identity - 2-D identity array (matrix)
-
-(Universal) Math Functions
-
- add logical_or exp
- subtract logical_xor log
- multiply logical_not log10
- divide maximum sin
- divide_safe minimum sinh
- conjugate bitwise_and sqrt
- power bitwise_or tan
- absolute bitwise_xor tanh
- negative invert ceil
- greater left_shift fabs
- greater_equal right_shift floor
- less arccos arctan2
- less_equal arcsin fmod
- equal arctan hypot
- not_equal cos around
- logical_and cosh sign
- arccosh arcsinh arctanh
-
-"""
-from __future__ import division, absolute_import, print_function
-
-depends = ['testing']
-global_symbols = ['*']
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index ea2ef900e..c395b1348 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -26,6 +26,7 @@ if sys.version_info[0] < 3:
from . import overrides
from . import umath
+from . import shape_base
from .overrides import set_module
from .umath import (multiply, invert, sin, PINF, NAN)
from . import numerictypes
@@ -48,14 +49,6 @@ array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
-def loads(*args, **kwargs):
- # NumPy 1.15.0, 2017-12-10
- warnings.warn(
- "np.core.numeric.loads is deprecated, use pickle.loads instead",
- DeprecationWarning, stacklevel=2)
- return pickle.loads(*args, **kwargs)
-
-
__all__ = [
'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc',
'arange', 'array', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype',
@@ -66,7 +59,7 @@ __all__ = [
'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll',
'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian',
'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction',
- 'isclose', 'load', 'loads', 'isscalar', 'binary_repr', 'base_repr', 'ones',
+ 'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones',
'identity', 'allclose', 'compare_chararrays', 'putmask',
'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN',
'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS',
@@ -553,8 +546,10 @@ def argwhere(a):
Returns
-------
- index_array : ndarray
+ index_array : (N, a.ndim) ndarray
Indices of elements that are non-zero. Indices are grouped by element.
+ This array will have shape ``(N, a.ndim)`` where ``N`` is the number of
+ non-zero items.
See Also
--------
@@ -562,7 +557,8 @@ def argwhere(a):
Notes
-----
- ``np.argwhere(a)`` is the same as ``np.transpose(np.nonzero(a))``.
+ ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``,
+ but produces a result of the correct shape for a 0D array.
The output of ``argwhere`` is not suitable for indexing arrays.
For this purpose use ``nonzero(a)`` instead.
@@ -580,6 +576,11 @@ def argwhere(a):
[1, 2]])
"""
+ # nonzero does not behave well on 0d, so promote to 1d
+ if np.ndim(a) == 0:
+ a = shape_base.atleast_1d(a)
+ # then remove the added dimension
+ return argwhere(a)[:,:0]
return transpose(nonzero(a))
@@ -1935,6 +1936,10 @@ def binary_repr(num, width=None):
"will raise an error in the future.", DeprecationWarning,
stacklevel=3)
+ # Ensure that num is a Python integer to avoid overflow or unwanted
+ # casts to floating point.
+ num = operator.index(num)
+
if num == 0:
return '0' * (width or 1)
@@ -2024,30 +2029,6 @@ def base_repr(number, base=2, padding=0):
return ''.join(reversed(res or '0'))
-def load(file):
- """
- Wrapper around cPickle.load which accepts either a file-like object or
- a filename.
-
- Note that the NumPy binary format is not based on pickle/cPickle anymore.
- For details on the preferred way of loading and saving files, see `load`
- and `save`.
-
- See Also
- --------
- load, save
-
- """
- # NumPy 1.15.0, 2017-12-10
- warnings.warn(
- "np.core.numeric.load is deprecated, use pickle.load instead",
- DeprecationWarning, stacklevel=2)
- if isinstance(file, type("")):
- with open(file, "rb") as file_pointer:
- return pickle.load(file_pointer)
- return pickle.load(file)
-
-
# These are all essentially abbreviations
# These might wind up in a special abbreviations module
@@ -2124,7 +2105,7 @@ def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
The absolute tolerance parameter (see Notes).
equal_nan : bool
Whether to compare NaN's as equal. If True, NaN's in `a` will be
- considered equal to NaN's in `b` in the output array.
+ considered equal to NaN's in `b`.
.. versionadded:: 1.10.0
diff --git a/numpy/core/overrides.py b/numpy/core/overrides.py
index 04a5a995f..55c7bd1ea 100644
--- a/numpy/core/overrides.py
+++ b/numpy/core/overrides.py
@@ -109,6 +109,18 @@ def set_module(module):
return decorator
+
+# Call textwrap.dedent here instead of in the function so as to avoid
+# calling dedent multiple times on the same text
+_wrapped_func_source = textwrap.dedent("""
+ @functools.wraps(implementation)
+ def {name}(*args, **kwargs):
+ relevant_args = dispatcher(*args, **kwargs)
+ return implement_array_function(
+ implementation, {name}, relevant_args, args, kwargs)
+ """)
+
+
def array_function_dispatch(dispatcher, module=None, verify=True,
docs_from_dispatcher=False):
"""Decorator for adding dispatch with the __array_function__ protocol.
@@ -163,13 +175,7 @@ def array_function_dispatch(dispatcher, module=None, verify=True,
# more interpettable name. Otherwise, the original function does not
# show up at all in many cases, e.g., if it's written in C or if the
# dispatcher gets an invalid keyword argument.
- source = textwrap.dedent("""
- @functools.wraps(implementation)
- def {name}(*args, **kwargs):
- relevant_args = dispatcher(*args, **kwargs)
- return implement_array_function(
- implementation, {name}, relevant_args, args, kwargs)
- """).format(name=implementation.__name__)
+ source = _wrapped_func_source.format(name=implementation.__name__)
source_object = compile(
source, filename='<__array_function__ internals>', mode='exec')
diff --git a/numpy/core/records.py b/numpy/core/records.py
index 0576005e7..a1439f9df 100644
--- a/numpy/core/records.py
+++ b/numpy/core/records.py
@@ -268,8 +268,8 @@ class record(nt.void):
except AttributeError:
#happens if field is Object type
return obj
- if dt.fields:
- return obj.view((self.__class__, obj.dtype.fields))
+ if dt.names is not None:
+ return obj.view((self.__class__, obj.dtype))
return obj
else:
raise AttributeError("'record' object has no "
@@ -293,8 +293,8 @@ class record(nt.void):
obj = nt.void.__getitem__(self, indx)
# copy behavior of record.__getattribute__,
- if isinstance(obj, nt.void) and obj.dtype.fields:
- return obj.view((self.__class__, obj.dtype.fields))
+ if isinstance(obj, nt.void) and obj.dtype.names is not None:
+ return obj.view((self.__class__, obj.dtype))
else:
# return a single element
return obj
@@ -444,7 +444,7 @@ class recarray(ndarray):
return self
def __array_finalize__(self, obj):
- if self.dtype.type is not record and self.dtype.fields:
+ if self.dtype.type is not record and self.dtype.names is not None:
# if self.dtype is not np.record, invoke __setattr__ which will
# convert it to a record if it is a void dtype.
self.dtype = self.dtype
@@ -472,7 +472,7 @@ class recarray(ndarray):
# with void type convert it to the same dtype.type (eg to preserve
# numpy.record type if present), since nested structured fields do not
# inherit type. Don't do this for non-void structures though.
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
if issubclass(obj.dtype.type, nt.void):
return obj.view(dtype=(self.dtype.type, obj.dtype))
return obj
@@ -487,7 +487,7 @@ class recarray(ndarray):
# Automatically convert (void) structured types to records
# (but not non-void structures, subarrays, or non-structured voids)
- if attr == 'dtype' and issubclass(val.type, nt.void) and val.fields:
+ if attr == 'dtype' and issubclass(val.type, nt.void) and val.names is not None:
val = sb.dtype((record, val))
newattr = attr not in self.__dict__
@@ -521,7 +521,7 @@ class recarray(ndarray):
# copy behavior of getattr, except that here
# we might also be returning a single element
if isinstance(obj, ndarray):
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
obj = obj.view(type(self))
if issubclass(obj.dtype.type, nt.void):
return obj.view(dtype=(self.dtype.type, obj.dtype))
@@ -577,7 +577,7 @@ class recarray(ndarray):
if val is None:
obj = self.getfield(*res)
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
return obj
return obj.view(ndarray)
else:
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index 338502791..5f2f4a7b2 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -463,8 +463,14 @@ def configuration(parent_package='',top_path=None):
rep = check_long_double_representation(config_cmd)
moredefs.append(('HAVE_LDOUBLE_%s' % rep, 1))
+ if check_for_right_shift_internal_compiler_error(config_cmd):
+ moredefs.append('NPY_DO_NOT_OPTIMIZE_LONG_right_shift')
+ moredefs.append('NPY_DO_NOT_OPTIMIZE_ULONG_right_shift')
+ moredefs.append('NPY_DO_NOT_OPTIMIZE_LONGLONG_right_shift')
+ moredefs.append('NPY_DO_NOT_OPTIMIZE_ULONGLONG_right_shift')
+
# Py3K check
- if sys.version_info[0] == 3:
+ if sys.version_info[0] >= 3:
moredefs.append(('NPY_PY3K', 1))
# Generate the config.h file from moredefs
@@ -491,10 +497,10 @@ def configuration(parent_package='',top_path=None):
#endif
"""))
- print('File:', target)
+ log.info('File: %s' % target)
with open(target) as target_f:
- print(target_f.read())
- print('EOF')
+ log.info(target_f.read())
+ log.info('EOF')
else:
mathlibs = []
with open(target) as target_f:
@@ -581,10 +587,10 @@ def configuration(parent_package='',top_path=None):
"""))
# Dump the numpyconfig.h header to stdout
- print('File: %s' % target)
+ log.info('File: %s' % target)
with open(target) as target_f:
- print(target_f.read())
- print('EOF')
+ log.info(target_f.read())
+ log.info('EOF')
config.add_data_files((header_dir, target))
return target
@@ -633,23 +639,6 @@ def configuration(parent_package='',top_path=None):
]
#######################################################################
- # dummy module #
- #######################################################################
-
- # npymath needs the config.h and numpyconfig.h files to be generated, but
- # build_clib cannot handle generate_config_h and generate_numpyconfig_h
- # (don't ask). Because clib are generated before extensions, we have to
- # explicitly add an extension which has generate_config_h and
- # generate_numpyconfig_h as sources *before* adding npymath.
-
- config.add_extension('_dummy',
- sources=[join('src', 'dummymodule.c'),
- generate_config_h,
- generate_numpyconfig_h,
- generate_numpy_api]
- )
-
- #######################################################################
# npymath library #
#######################################################################
diff --git a/numpy/core/setup_common.py b/numpy/core/setup_common.py
index 307fab334..84b78b585 100644
--- a/numpy/core/setup_common.py
+++ b/numpy/core/setup_common.py
@@ -5,6 +5,7 @@ import sys
import warnings
import copy
import binascii
+import textwrap
from numpy.distutils.misc_util import mingw32
@@ -14,7 +15,7 @@ from numpy.distutils.misc_util import mingw32
#-------------------
# How to change C_API_VERSION ?
# - increase C_API_VERSION value
-# - record the hash for the new C API with the script cversions.py
+# - record the hash for the new C API with the cversions.py script
# and add the hash to cversions.txt
# The hash values are used to remind developers when the C API number was not
# updated - generates a MismatchCAPIWarning warning which is turned into an
@@ -88,14 +89,13 @@ def check_api_version(apiversion, codegen_dir):
# codegen_dir have been updated without the API version being
# updated. Any modification in those .txt files should be reflected
# in the api and eventually abi versions.
- # To compute the checksum of the current API, use
- # code_generators/cversions.py script
+ # To compute the checksum of the current API, use numpy/core/cversions.py
if not curapi_hash == api_hash:
msg = ("API mismatch detected, the C API version "
"numbers have to be updated. Current C api version is %d, "
- "with checksum %s, but recorded checksum for C API version %d in "
- "codegen_dir/cversions.txt is %s. If functions were added in the "
- "C API, you have to update C_API_VERSION in %s."
+ "with checksum %s, but recorded checksum for C API version %d "
+ "in core/codegen_dir/cversions.txt is %s. If functions were "
+ "added in the C API, you have to update C_API_VERSION in %s."
)
warnings.warn(msg % (apiversion, curapi_hash, apiversion, api_hash,
__file__),
@@ -179,9 +179,10 @@ OPTIONAL_FUNCTION_ATTRIBUTES = [('__attribute__((optimize("unroll-loops")))',
# gcc 4.8.4 support attributes but not with intrisics
# tested via "#include<%s> int %s %s(void *){code; return 0;};" % (header, attribute, name, code)
# function name will be converted to HAVE_<upper-case-name> preprocessor macro
-OPTIONAL_FUNCTION_ATTRIBUTES_WITH_INTRINSICS = [('__attribute__((target("avx2")))',
+OPTIONAL_FUNCTION_ATTRIBUTES_WITH_INTRINSICS = [('__attribute__((target("avx2,fma")))',
'attribute_target_avx2_with_intrinsics',
- '__m256 temp = _mm256_set1_ps(1.0)',
+ '__m256 temp = _mm256_set1_ps(1.0); temp = \
+ _mm256_fmadd_ps(temp, temp, temp)',
'immintrin.h'),
('__attribute__((target("avx512f")))',
'attribute_target_avx512f_with_intrinsics',
@@ -415,3 +416,41 @@ def long_double_representation(lines):
else:
# We never detected the after_sequence
raise ValueError("Could not lock sequences (%s)" % saw)
+
+
+def check_for_right_shift_internal_compiler_error(cmd):
+ """
+ On our arm CI, this fails with an internal compilation error
+
+ The failure looks like the following, and can be reproduced on ARM64 GCC 5.4:
+
+ <source>: In function 'right_shift':
+ <source>:4:20: internal compiler error: in expand_shift_1, at expmed.c:2349
+ ip1[i] = ip1[i] >> in2;
+ ^
+ Please submit a full bug report,
+ with preprocessed source if appropriate.
+ See <http://gcc.gnu.org/bugs.html> for instructions.
+ Compiler returned: 1
+
+ This function returns True if this compiler bug is present, and we need to
+ turn off optimization for the function
+ """
+ cmd._check_compiler()
+ has_optimize = cmd.try_compile(textwrap.dedent("""\
+ __attribute__((optimize("O3"))) void right_shift() {}
+ """), None, None)
+ if not has_optimize:
+ return False
+
+ no_err = cmd.try_compile(textwrap.dedent("""\
+ typedef long the_type; /* fails also for unsigned and long long */
+ __attribute__((optimize("O3"))) void right_shift(the_type in2, the_type *ip1, int n) {
+ for (int i = 0; i < n; i++) {
+ if (in2 < (the_type)sizeof(the_type) * 8) {
+ ip1[i] = ip1[i] >> in2;
+ }
+ }
+ }
+ """), None, None)
+ return not no_err
diff --git a/numpy/core/shape_base.py b/numpy/core/shape_base.py
index 710f64827..d7e769e62 100644
--- a/numpy/core/shape_base.py
+++ b/numpy/core/shape_base.py
@@ -9,8 +9,9 @@ import warnings
from . import numeric as _nx
from . import overrides
-from .numeric import array, asanyarray, newaxis
+from ._asarray import array, asanyarray
from .multiarray import normalize_axis_index
+from . import fromnumeric as _from_nx
array_function_dispatch = functools.partial(
@@ -123,7 +124,7 @@ def atleast_2d(*arys):
if ary.ndim == 0:
result = ary.reshape(1, 1)
elif ary.ndim == 1:
- result = ary[newaxis, :]
+ result = ary[_nx.newaxis, :]
else:
result = ary
res.append(result)
@@ -193,9 +194,9 @@ def atleast_3d(*arys):
if ary.ndim == 0:
result = ary.reshape(1, 1, 1)
elif ary.ndim == 1:
- result = ary[newaxis, :, newaxis]
+ result = ary[_nx.newaxis, :, _nx.newaxis]
elif ary.ndim == 2:
- result = ary[:, :, newaxis]
+ result = ary[:, :, _nx.newaxis]
else:
result = ary
res.append(result)
@@ -435,9 +436,9 @@ def stack(arrays, axis=0, out=None):
# Internal functions to eliminate the overhead of repeated dispatch in one of
# the two possible paths inside np.block.
# Use getattr to protect against __array_function__ being disabled.
-_size = getattr(_nx.size, '__wrapped__', _nx.size)
-_ndim = getattr(_nx.ndim, '__wrapped__', _nx.ndim)
-_concatenate = getattr(_nx.concatenate, '__wrapped__', _nx.concatenate)
+_size = getattr(_from_nx.size, '__wrapped__', _from_nx.size)
+_ndim = getattr(_from_nx.ndim, '__wrapped__', _from_nx.ndim)
+_concatenate = getattr(_from_nx.concatenate, '__wrapped__', _from_nx.concatenate)
def _block_format_index(index):
diff --git a/numpy/core/src/common/npy_partition.h.src b/numpy/core/src/common/npy_partition.h.src
index a22cf911c..97dc2536b 100644
--- a/numpy/core/src/common/npy_partition.h.src
+++ b/numpy/core/src/common/npy_partition.h.src
@@ -113,9 +113,6 @@ get_argpartition_func(int type, NPY_SELECTKIND which)
npy_intp i;
npy_intp ntypes = ARRAY_SIZE(_part_map);
- if (which >= NPY_NSELECTS) {
- return NULL;
- }
for (i = 0; i < ntypes; i++) {
if (type == _part_map[i].typenum) {
return _part_map[i].argpart[which];
diff --git a/numpy/core/src/multiarray/_multiarray_tests.c.src b/numpy/core/src/multiarray/_multiarray_tests.c.src
index 1365e87bb..9e6083e2a 100644
--- a/numpy/core/src/multiarray/_multiarray_tests.c.src
+++ b/numpy/core/src/multiarray/_multiarray_tests.c.src
@@ -593,6 +593,25 @@ fail:
return NULL;
}
+/*
+ * Helper to test fromstring of 0 terminated strings, as the C-API supports
+ * the -1 length identifier.
+ */
+static PyObject *
+fromstring_null_term_c_api(PyObject *dummy, PyObject *byte_obj)
+{
+ char *string;
+
+ string = PyBytes_AsString(byte_obj);
+ if (string == NULL) {
+ return NULL;
+ }
+
+ return PyArray_FromString(
+ string, -1, PyArray_DescrFromType(NPY_FLOAT64), -1, " ");
+}
+
+
/* check no elison for avoided increfs */
static PyObject *
incref_elide(PyObject *dummy, PyObject *args)
@@ -656,6 +675,43 @@ npy_updateifcopy_deprecation(PyObject* NPY_UNUSED(self), PyObject* args)
Py_RETURN_NONE;
}
+/* used to test PyArray_As1D usage emits not implemented error */
+static PyObject*
+npy_pyarrayas1d_deprecation(PyObject* NPY_UNUSED(self), PyObject* NPY_UNUSED(args))
+{
+ PyObject *op = Py_BuildValue("i", 42);
+ PyObject *result = op;
+ int dim = 4;
+ double arg[2] = {1, 2};
+ int temp = PyArray_As1D(&result, (char **)&arg, &dim, NPY_DOUBLE);
+ if (temp < 0) {
+ Py_DECREF(op);
+ return NULL;
+ }
+ /* op != result */
+ Py_DECREF(op);
+ return result;
+}
+
+/* used to test PyArray_As2D usage emits not implemented error */
+static PyObject*
+npy_pyarrayas2d_deprecation(PyObject* NPY_UNUSED(self), PyObject* NPY_UNUSED(args))
+{
+ PyObject *op = Py_BuildValue("i", 42);
+ PyObject *result = op;
+ int dim1 = 4;
+ int dim2 = 6;
+ double arg[2][2] = {{1, 2}, {3, 4}};
+ int temp = PyArray_As2D(&result, (char ***)&arg, &dim1, &dim2, NPY_DOUBLE);
+ if (temp < 0) {
+ Py_DECREF(op);
+ return NULL;
+ }
+ /* op != result */
+ Py_DECREF(op);
+ return result;
+}
+
/* used to create array with WRITEBACKIFCOPY flag */
static PyObject*
npy_create_writebackifcopy(PyObject* NPY_UNUSED(self), PyObject* args)
@@ -1927,6 +1983,9 @@ static PyMethodDef Multiarray_TestsMethods[] = {
{"test_inplace_increment",
inplace_increment,
METH_VARARGS, NULL},
+ {"fromstring_null_term_c_api",
+ fromstring_null_term_c_api,
+ METH_O, NULL},
{"incref_elide",
incref_elide,
METH_VARARGS, NULL},
@@ -1939,6 +1998,12 @@ static PyMethodDef Multiarray_TestsMethods[] = {
{"npy_updateifcopy_deprecation",
npy_updateifcopy_deprecation,
METH_O, NULL},
+ {"npy_pyarrayas1d_deprecation",
+ npy_pyarrayas1d_deprecation,
+ METH_NOARGS, NULL},
+ {"npy_pyarrayas2d_deprecation",
+ npy_pyarrayas2d_deprecation,
+ METH_NOARGS, NULL},
{"npy_create_writebackifcopy",
npy_create_writebackifcopy,
METH_O, NULL},
diff --git a/numpy/core/src/multiarray/alloc.c b/numpy/core/src/multiarray/alloc.c
index addc9f006..a7f34cbe5 100644
--- a/numpy/core/src/multiarray/alloc.c
+++ b/numpy/core/src/multiarray/alloc.c
@@ -25,10 +25,14 @@
#include <assert.h>
-#ifdef HAVE_SYS_MMAN_H
+#ifdef NPY_OS_LINUX
#include <sys/mman.h>
-#if defined MADV_HUGEPAGE && defined HAVE_MADVISE
-#define HAVE_MADV_HUGEPAGE
+#ifndef MADV_HUGEPAGE
+/*
+ * Use code 14 (MADV_HUGEPAGE) if it isn't defined. This gives a chance of
+ * enabling huge pages even if built with linux kernel < 2.6.38
+ */
+#define MADV_HUGEPAGE 14
#endif
#endif
@@ -74,11 +78,15 @@ _npy_alloc_cache(npy_uintp nelem, npy_uintp esz, npy_uint msz,
#ifdef _PyPyGC_AddMemoryPressure
_PyPyPyGC_AddMemoryPressure(nelem * esz);
#endif
-#ifdef HAVE_MADV_HUGEPAGE
+#ifdef NPY_OS_LINUX
/* allow kernel allocating huge pages for large arrays */
if (NPY_UNLIKELY(nelem * esz >= ((1u<<22u)))) {
npy_uintp offset = 4096u - (npy_uintp)p % (4096u);
npy_uintp length = nelem * esz - offset;
+ /**
+ * Intentionally not checking for errors that may be returned by
+ * older kernel versions; optimistically tries enabling huge pages.
+ */
madvise((void*)((npy_uintp)p + offset), length, MADV_HUGEPAGE);
}
#endif
diff --git a/numpy/core/src/multiarray/arrayobject.c b/numpy/core/src/multiarray/arrayobject.c
index bbb736fd0..4e229e321 100644
--- a/numpy/core/src/multiarray/arrayobject.c
+++ b/numpy/core/src/multiarray/arrayobject.c
@@ -462,7 +462,7 @@ WARN_IN_DEALLOC(PyObject* warning, const char * msg) {
PyErr_WriteUnraisable(Py_None);
}
}
-};
+}
/* array object functions */
@@ -483,10 +483,11 @@ array_dealloc(PyArrayObject *self)
char const * msg = "WRITEBACKIFCOPY detected in array_dealloc. "
" Required call to PyArray_ResolveWritebackIfCopy or "
"PyArray_DiscardWritebackIfCopy is missing.";
- Py_INCREF(self); /* hold on to self in next call since if
- * refcount == 0 it will recurse back into
- *array_dealloc
- */
+ /*
+ * prevent reaching 0 twice and thus recursing into dealloc.
+ * Increasing sys.gettotalrefcount, but path should not be taken.
+ */
+ Py_INCREF(self);
WARN_IN_DEALLOC(PyExc_RuntimeWarning, msg);
retval = PyArray_ResolveWritebackIfCopy(self);
if (retval < 0)
@@ -500,10 +501,11 @@ array_dealloc(PyArrayObject *self)
char const * msg = "UPDATEIFCOPY detected in array_dealloc. "
" Required call to PyArray_ResolveWritebackIfCopy or "
"PyArray_DiscardWritebackIfCopy is missing";
- Py_INCREF(self); /* hold on to self in next call since if
- * refcount == 0 it will recurse back into
- *array_dealloc
- */
+ /*
+ * prevent reaching 0 twice and thus recursing into dealloc.
+ * Increasing sys.gettotalrefcount, but path should not be taken.
+ */
+ Py_INCREF(self);
/* 2017-Nov-10 1.14 */
WARN_IN_DEALLOC(PyExc_DeprecationWarning, msg);
retval = PyArray_ResolveWritebackIfCopy(self);
@@ -523,12 +525,7 @@ array_dealloc(PyArrayObject *self)
if ((fa->flags & NPY_ARRAY_OWNDATA) && fa->data) {
/* Free internal references if an Object array */
if (PyDataType_FLAGCHK(fa->descr, NPY_ITEM_REFCOUNT)) {
- Py_INCREF(self); /*hold on to self */
PyArray_XDECREF(self);
- /*
- * Don't need to DECREF -- because we are deleting
- * self already...
- */
}
npy_free_cache(fa->data, PyArray_NBYTES(self));
}
@@ -610,7 +607,7 @@ PyArray_DebugPrint(PyArrayObject *obj)
* TO BE REMOVED - NOT USED INTERNALLY.
*/
NPY_NO_EXPORT void
-PyArray_SetDatetimeParseFunction(PyObject *op)
+PyArray_SetDatetimeParseFunction(PyObject *NPY_UNUSED(op))
{
}
@@ -633,7 +630,7 @@ PyArray_CompareUCS4(npy_ucs4 *s1, npy_ucs4 *s2, size_t len)
/*NUMPY_API
*/
NPY_NO_EXPORT int
-PyArray_CompareString(char *s1, char *s2, size_t len)
+PyArray_CompareString(const char *s1, const char *s2, size_t len)
{
const unsigned char *c1 = (unsigned char *)s1;
const unsigned char *c2 = (unsigned char *)s2;
@@ -1203,15 +1200,28 @@ _void_compare(PyArrayObject *self, PyArrayObject *other, int cmp_op)
}
}
if (res == NULL && !PyErr_Occurred()) {
- PyErr_SetString(PyExc_ValueError, "No fields found.");
+ /* these dtypes had no fields. Use a MultiIter to broadcast them
+ * to an output array, and fill with True (for EQ)*/
+ PyArrayMultiIterObject *mit = (PyArrayMultiIterObject *)
+ PyArray_MultiIterNew(2, self, other);
+ if (mit == NULL) {
+ return NULL;
+ }
+
+ res = PyArray_NewFromDescr(&PyArray_Type,
+ PyArray_DescrFromType(NPY_BOOL),
+ mit->nd, mit->dimensions,
+ NULL, NULL, 0, NULL);
+ Py_DECREF(mit);
+ if (res) {
+ PyArray_FILLWBYTE((PyArrayObject *)res,
+ cmp_op == Py_EQ ? 1 : 0);
+ }
}
return res;
}
else {
- /*
- * compare as a string. Assumes self and
- * other have same descr->type
- */
+ /* compare as a string. Assumes self and other have same descr->type */
return _strings_richcompare(self, other, cmp_op, 0);
}
}
diff --git a/numpy/core/src/multiarray/compiled_base.c b/numpy/core/src/multiarray/compiled_base.c
index dc79bfa09..055d3e60f 100644
--- a/numpy/core/src/multiarray/compiled_base.c
+++ b/numpy/core/src/multiarray/compiled_base.c
@@ -367,6 +367,18 @@ arr_insert(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwdict)
#define LIKELY_IN_CACHE_SIZE 8
+#ifdef __INTEL_COMPILER
+#pragma intel optimization_level 0
+#endif
+static NPY_INLINE npy_intp
+_linear_search(const npy_double key, const npy_double *arr, const npy_intp len, const npy_intp i0)
+{
+ npy_intp i;
+
+ for (i = i0; i < len && key >= arr[i]; i++);
+ return i - 1;
+}
+
/** @brief find index of a sorted array such that arr[i] <= key < arr[i + 1].
*
* If an starting index guess is in-range, the array values around this
@@ -406,10 +418,7 @@ binary_search_with_guess(const npy_double key, const npy_double *arr,
* From above we know key >= arr[0] when we start.
*/
if (len <= 4) {
- npy_intp i;
-
- for (i = 1; i < len && key >= arr[i]; ++i);
- return i - 1;
+ return _linear_search(key, arr, len, 1);
}
if (guess > len - 3) {
@@ -933,6 +942,20 @@ ravel_multi_index_loop(int ravel_ndim, npy_intp *ravel_dims,
char invalid;
npy_intp j, m;
+ /*
+ * Check for 0-dimensional axes unless there is nothing to do.
+ * An empty array/shape cannot be indexed at all.
+ */
+ if (count != 0) {
+ for (i = 0; i < ravel_ndim; ++i) {
+ if (ravel_dims[i] == 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "cannot unravel if shape has zero entries (is empty).");
+ return NPY_FAIL;
+ }
+ }
+ }
+
NPY_BEGIN_ALLOW_THREADS;
invalid = 0;
while (count--) {
diff --git a/numpy/core/src/multiarray/convert.c b/numpy/core/src/multiarray/convert.c
index 7db467308..aa4e40e66 100644
--- a/numpy/core/src/multiarray/convert.c
+++ b/numpy/core/src/multiarray/convert.c
@@ -543,35 +543,6 @@ PyArray_AssignZero(PyArrayObject *dst,
return retcode;
}
-/*
- * Fills an array with ones.
- *
- * dst: The destination array.
- * wheremask: If non-NULL, a boolean mask specifying where to set the values.
- *
- * Returns 0 on success, -1 on failure.
- */
-NPY_NO_EXPORT int
-PyArray_AssignOne(PyArrayObject *dst,
- PyArrayObject *wheremask)
-{
- npy_bool value;
- PyArray_Descr *bool_dtype;
- int retcode;
-
- /* Create a raw bool scalar with the value True */
- bool_dtype = PyArray_DescrFromType(NPY_BOOL);
- if (bool_dtype == NULL) {
- return -1;
- }
- value = 1;
-
- retcode = PyArray_AssignRawScalar(dst, bool_dtype, (char *)&value,
- wheremask, NPY_SAFE_CASTING);
-
- Py_DECREF(bool_dtype);
- return retcode;
-}
/*NUMPY_API
* Copy an array.
diff --git a/numpy/core/src/multiarray/ctors.c b/numpy/core/src/multiarray/ctors.c
index 53efb1cea..c5199c015 100644
--- a/numpy/core/src/multiarray/ctors.c
+++ b/numpy/core/src/multiarray/ctors.c
@@ -40,9 +40,31 @@
* regards to the handling of text representations.
*/
+/*
+ * Scanning function for next element parsing and seperator skipping.
+ * These functions return:
+ * - 0 to indicate more data to read
+ * - -1 when reading stopped at the end of the string/file
+ * - -2 when reading stopped before the end was reached.
+ *
+ * The dtype specific parsing functions may set the python error state
+ * (they have to get the GIL first) additionally.
+ */
typedef int (*next_element)(void **, void *, PyArray_Descr *, void *);
typedef int (*skip_separator)(void **, const char *, void *);
+
+static npy_bool
+string_is_fully_read(char const* start, char const* end) {
+ if (end == NULL) {
+ return *start == '\0'; /* null terminated */
+ }
+ else {
+ return start >= end; /* fixed length */
+ }
+}
+
+
static int
fromstr_next_element(char **s, void *dptr, PyArray_Descr *dtype,
const char *end)
@@ -50,19 +72,23 @@ fromstr_next_element(char **s, void *dptr, PyArray_Descr *dtype,
char *e = *s;
int r = dtype->f->fromstr(*s, dptr, &e, dtype);
/*
- * fromstr always returns 0 for basic dtypes
- * s points to the end of the parsed string
- * if an error occurs s is not changed
+ * fromstr always returns 0 for basic dtypes; s points to the end of the
+ * parsed string. If s is not changed an error occurred or the end was
+ * reached.
*/
- if (*s == e) {
- /* Nothing read */
- return -1;
+ if (*s == e || r < 0) {
+ /* Nothing read, could be end of string or an error (or both) */
+ if (string_is_fully_read(*s, end)) {
+ return -1;
+ }
+ return -2;
}
*s = e;
if (end != NULL && *s > end) {
+ /* Stop the iteration if we read far enough */
return -1;
}
- return r;
+ return 0;
}
static int
@@ -75,9 +101,13 @@ fromfile_next_element(FILE **fp, void *dptr, PyArray_Descr *dtype,
if (r == 1) {
return 0;
}
- else {
+ else if (r == EOF) {
return -1;
}
+ else {
+ /* unable to read more, but EOF not reached indicating an error. */
+ return -2;
+ }
}
/*
@@ -143,9 +173,10 @@ fromstr_skip_separator(char **s, const char *sep, const char *end)
{
char *string = *s;
int result = 0;
+
while (1) {
char c = *string;
- if (c == '\0' || (end != NULL && string >= end)) {
+ if (string_is_fully_read(string, end)) {
result = -1;
break;
}
@@ -936,6 +967,39 @@ discover_dimensions(PyObject *obj, int *maxndim, npy_intp *d, int check_it,
return 0;
}
+static PyObject *
+raise_memory_error(int nd, npy_intp *dims, PyArray_Descr *descr)
+{
+ static PyObject *exc_type = NULL;
+
+ npy_cache_import(
+ "numpy.core._exceptions", "_ArrayMemoryError",
+ &exc_type);
+ if (exc_type == NULL) {
+ goto fail;
+ }
+
+ PyObject *shape = PyArray_IntTupleFromIntp(nd, dims);
+ if (shape == NULL) {
+ goto fail;
+ }
+
+ /* produce an error object */
+ PyObject *exc_value = PyTuple_Pack(2, shape, (PyObject *)descr);
+ Py_DECREF(shape);
+ if (exc_value == NULL){
+ goto fail;
+ }
+ PyErr_SetObject(exc_type, exc_value);
+ Py_DECREF(exc_value);
+ return NULL;
+
+fail:
+ /* we couldn't raise the formatted exception for some reason */
+ PyErr_WriteUnraisable(NULL);
+ return PyErr_NoMemory();
+}
+
/*
* Generic new array creation routine.
* Internal variant with calloc argument for PyArray_Zeros.
@@ -1113,30 +1177,7 @@ PyArray_NewFromDescr_int(
data = npy_alloc_cache(nbytes);
}
if (data == NULL) {
- static PyObject *exc_type = NULL;
-
- npy_cache_import(
- "numpy.core._exceptions", "_ArrayMemoryError",
- &exc_type);
- if (exc_type == NULL) {
- return NULL;
- }
-
- PyObject *shape = PyArray_IntTupleFromIntp(fa->nd,fa->dimensions);
- if (shape == NULL) {
- return NULL;
- }
-
- /* produce an error object */
- PyObject *exc_value = PyTuple_Pack(2, shape, descr);
- Py_DECREF(shape);
- if (exc_value == NULL){
- return NULL;
- }
- PyErr_SetObject(exc_type, exc_value);
- Py_DECREF(exc_value);
- return NULL;
-
+ return raise_memory_error(fa->nd, fa->dimensions, descr);
}
fa->flags |= NPY_ARRAY_OWNDATA;
@@ -1426,28 +1467,6 @@ _dtype_from_buffer_3118(PyObject *memoryview)
}
-/*
- * Call the python _is_from_ctypes
- */
-NPY_NO_EXPORT int
-_is_from_ctypes(PyObject *obj) {
- PyObject *ret_obj;
- static PyObject *py_func = NULL;
-
- npy_cache_import("numpy.core._internal", "_is_from_ctypes", &py_func);
-
- if (py_func == NULL) {
- return -1;
- }
- ret_obj = PyObject_CallFunctionObjArgs(py_func, obj, NULL);
- if (ret_obj == NULL) {
- return -1;
- }
-
- return PyObject_IsTrue(ret_obj);
-}
-
-
NPY_NO_EXPORT PyObject *
_array_from_buffer_3118(PyObject *memoryview)
{
@@ -1849,13 +1868,6 @@ PyArray_GetArrayParamsFromObject(PyObject *op,
*out_arr = NULL;
return 0;
}
- if (is_object && (requested_dtype != NULL) &&
- (requested_dtype->type_num != NPY_OBJECT)) {
- PyErr_SetString(PyExc_ValueError,
- "cannot create an array from unequal-length (ragged) sequences");
- Py_DECREF(*out_dtype);
- return -1;
- }
/* If object arrays are forced */
if (is_object) {
Py_DECREF(*out_dtype);
@@ -2772,61 +2784,30 @@ PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
/* They all zero-out the memory as previously done */
/* steals reference to descr -- and enforces native byteorder on it.*/
+
/*NUMPY_API
- Like FromDimsAndData but uses the Descr structure instead of typecode
- as input.
+ Deprecated, use PyArray_NewFromDescr instead.
*/
NPY_NO_EXPORT PyObject *
-PyArray_FromDimsAndDataAndDescr(int nd, int *d,
+PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd), int *NPY_UNUSED(d),
PyArray_Descr *descr,
- char *data)
+ char *NPY_UNUSED(data))
{
- PyObject *ret;
- int i;
- npy_intp newd[NPY_MAXDIMS];
- char msg[] = "PyArray_FromDimsAndDataAndDescr: use PyArray_NewFromDescr.";
-
- if (DEPRECATE(msg) < 0) {
- /* 2009-04-30, 1.5 */
- return NULL;
- }
- if (!PyArray_ISNBO(descr->byteorder))
- descr->byteorder = '=';
- for (i = 0; i < nd; i++) {
- newd[i] = (npy_intp) d[i];
- }
- ret = PyArray_NewFromDescr(&PyArray_Type, descr,
- nd, newd,
- NULL, data,
- (data ? NPY_ARRAY_CARRAY : 0), NULL);
- return ret;
+ PyErr_SetString(PyExc_NotImplementedError,
+ "PyArray_FromDimsAndDataAndDescr: use PyArray_NewFromDescr.");
+ Py_DECREF(descr);
+ return NULL;
}
/*NUMPY_API
- Construct an empty array from dimensions and typenum
+ Deprecated, use PyArray_SimpleNew instead.
*/
NPY_NO_EXPORT PyObject *
-PyArray_FromDims(int nd, int *d, int type)
+PyArray_FromDims(int NPY_UNUSED(nd), int *NPY_UNUSED(d), int NPY_UNUSED(type))
{
- PyArrayObject *ret;
- char msg[] = "PyArray_FromDims: use PyArray_SimpleNew.";
-
- if (DEPRECATE(msg) < 0) {
- /* 2009-04-30, 1.5 */
- return NULL;
- }
- ret = (PyArrayObject *)PyArray_FromDimsAndDataAndDescr(nd, d,
- PyArray_DescrFromType(type),
- NULL);
- /*
- * Old FromDims set memory to zero --- some algorithms
- * relied on that. Better keep it the same. If
- * Object type, then it's already been set to zero, though.
- */
- if (ret && (PyArray_DESCR(ret)->type_num != NPY_OBJECT)) {
- memset(PyArray_DATA(ret), 0, PyArray_NBYTES(ret));
- }
- return (PyObject *)ret;
+ PyErr_SetString(PyExc_NotImplementedError,
+ "PyArray_FromDims: use PyArray_SimpleNew.");
+ return NULL;
}
/* end old calls */
@@ -3656,6 +3637,7 @@ array_from_text(PyArray_Descr *dtype, npy_intp num, char *sep, size_t *nread,
npy_intp i;
char *dptr, *clean_sep, *tmp;
int err = 0;
+ int stop_reading_flag; /* -1 indicates end reached; -2 a parsing error */
npy_intp thisbuf = 0;
npy_intp size;
npy_intp bytes, totalbytes;
@@ -3683,9 +3665,9 @@ array_from_text(PyArray_Descr *dtype, npy_intp num, char *sep, size_t *nread,
NPY_BEGIN_ALLOW_THREADS;
totalbytes = bytes = size * dtype->elsize;
dptr = PyArray_DATA(r);
- for (i= 0; num < 0 || i < num; i++) {
- if (next(&stream, dptr, dtype, stream_data) < 0) {
- /* EOF */
+ for (i = 0; num < 0 || i < num; i++) {
+ stop_reading_flag = next(&stream, dptr, dtype, stream_data);
+ if (stop_reading_flag < 0) {
break;
}
*nread += 1;
@@ -3702,7 +3684,12 @@ array_from_text(PyArray_Descr *dtype, npy_intp num, char *sep, size_t *nread,
dptr = tmp + (totalbytes - bytes);
thisbuf = 0;
}
- if (skip_sep(&stream, clean_sep, stream_data) < 0) {
+ stop_reading_flag = skip_sep(&stream, clean_sep, stream_data);
+ if (stop_reading_flag < 0) {
+ if (num == i + 1) {
+ /* if we read as much as requested sep is optional */
+ stop_reading_flag = -1;
+ }
break;
}
}
@@ -3721,6 +3708,21 @@ array_from_text(PyArray_Descr *dtype, npy_intp num, char *sep, size_t *nread,
}
}
NPY_END_ALLOW_THREADS;
+
+ if (stop_reading_flag == -2) {
+ if (PyErr_Occurred()) {
+ /* If an error is already set (unlikely), do not create new one */
+ Py_DECREF(r);
+ return NULL;
+ }
+ /* 2019-09-12, NumPy 1.18 */
+ if (DEPRECATE(
+ "string or file could not be read to its end due to unmatched "
+ "data; this will raise a ValueError in the future.") < 0) {
+ goto fail;
+ }
+ }
+
free(clean_sep);
fail:
@@ -3881,7 +3883,13 @@ PyArray_FromBuffer(PyObject *buf, PyArray_Descr *type,
s = (npy_intp)ts - offset;
n = (npy_intp)count;
itemsize = type->elsize;
- if (n < 0 ) {
+ if (n < 0) {
+ if (itemsize == 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "cannot determine count if itemsize is 0");
+ Py_DECREF(type);
+ return NULL;
+ }
if (s % itemsize != 0) {
PyErr_SetString(PyExc_ValueError,
"buffer size must be a multiple"\
@@ -4000,7 +4008,7 @@ PyArray_FromString(char *data, npy_intp slen, PyArray_Descr *dtype,
size_t nread = 0;
char *end;
- if (dtype->f->scanfunc == NULL) {
+ if (dtype->f->fromstr == NULL) {
PyErr_SetString(PyExc_ValueError,
"don't know how to read " \
"character strings with that " \
@@ -4074,7 +4082,7 @@ PyArray_FromIter(PyObject *obj, PyArray_Descr *dtype, npy_intp count)
}
for (i = 0; (i < count || count == -1) &&
(value = PyIter_Next(iter)); i++) {
- if (i >= elcount) {
+ if (i >= elcount && elsize != 0) {
npy_intp nbytes;
/*
Grow PyArray_DATA(ret):
diff --git a/numpy/core/src/multiarray/datetime.c b/numpy/core/src/multiarray/datetime.c
index 768eb1e64..82e046ca1 100644
--- a/numpy/core/src/multiarray/datetime.c
+++ b/numpy/core/src/multiarray/datetime.c
@@ -386,7 +386,8 @@ convert_datetimestruct_to_datetime(PyArray_DatetimeMetaData *meta,
* TO BE REMOVED - NOT USED INTERNALLY.
*/
NPY_NO_EXPORT npy_datetime
-PyArray_DatetimeStructToDatetime(NPY_DATETIMEUNIT fr, npy_datetimestruct *d)
+PyArray_DatetimeStructToDatetime(
+ NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_datetimestruct *NPY_UNUSED(d))
{
PyErr_SetString(PyExc_RuntimeError,
"The NumPy PyArray_DatetimeStructToDatetime function has "
@@ -400,7 +401,8 @@ PyArray_DatetimeStructToDatetime(NPY_DATETIMEUNIT fr, npy_datetimestruct *d)
* TO BE REMOVED - NOT USED INTERNALLY.
*/
NPY_NO_EXPORT npy_datetime
-PyArray_TimedeltaStructToTimedelta(NPY_DATETIMEUNIT fr, npy_timedeltastruct *d)
+PyArray_TimedeltaStructToTimedelta(
+ NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_timedeltastruct *NPY_UNUSED(d))
{
PyErr_SetString(PyExc_RuntimeError,
"The NumPy PyArray_TimedeltaStructToTimedelta function has "
@@ -600,8 +602,9 @@ convert_datetime_to_datetimestruct(PyArray_DatetimeMetaData *meta,
* TO BE REMOVED - NOT USED INTERNALLY.
*/
NPY_NO_EXPORT void
-PyArray_DatetimeToDatetimeStruct(npy_datetime val, NPY_DATETIMEUNIT fr,
- npy_datetimestruct *result)
+PyArray_DatetimeToDatetimeStruct(
+ npy_datetime NPY_UNUSED(val), NPY_DATETIMEUNIT NPY_UNUSED(fr),
+ npy_datetimestruct *result)
{
PyErr_SetString(PyExc_RuntimeError,
"The NumPy PyArray_DatetimeToDatetimeStruct function has "
@@ -621,8 +624,9 @@ PyArray_DatetimeToDatetimeStruct(npy_datetime val, NPY_DATETIMEUNIT fr,
* TO BE REMOVED - NOT USED INTERNALLY.
*/
NPY_NO_EXPORT void
-PyArray_TimedeltaToTimedeltaStruct(npy_timedelta val, NPY_DATETIMEUNIT fr,
- npy_timedeltastruct *result)
+PyArray_TimedeltaToTimedeltaStruct(
+ npy_timedelta NPY_UNUSED(val), NPY_DATETIMEUNIT NPY_UNUSED(fr),
+ npy_timedeltastruct *result)
{
PyErr_SetString(PyExc_RuntimeError,
"The NumPy PyArray_TimedeltaToTimedeltaStruct function has "
@@ -2272,7 +2276,10 @@ convert_pydatetime_to_datetimestruct(PyObject *obj, npy_datetimestruct *out,
if (tmp == NULL) {
return -1;
}
- seconds_offset = PyInt_AsLong(tmp);
+ /* Rounding here is no worse than the integer division below.
+ * Only whole minute offsets are supported by numpy anyway.
+ */
+ seconds_offset = (int)PyFloat_AsDouble(tmp);
if (error_converting(seconds_offset)) {
Py_DECREF(tmp);
return -1;
@@ -3125,7 +3132,7 @@ is_any_numpy_datetime_or_timedelta(PyObject *obj)
*/
NPY_NO_EXPORT int
convert_pyobjects_to_datetimes(int count,
- PyObject **objs, int *type_nums,
+ PyObject **objs, const int *type_nums,
NPY_CASTING casting,
npy_int64 *out_values,
PyArray_DatetimeMetaData *inout_meta)
diff --git a/numpy/core/src/multiarray/datetime_busday.c b/numpy/core/src/multiarray/datetime_busday.c
index c04a6c125..cdeb65d0e 100644
--- a/numpy/core/src/multiarray/datetime_busday.c
+++ b/numpy/core/src/multiarray/datetime_busday.c
@@ -48,7 +48,7 @@ get_day_of_week(npy_datetime date)
*/
static int
is_holiday(npy_datetime date,
- npy_datetime *holidays_begin, npy_datetime *holidays_end)
+ npy_datetime *holidays_begin, const npy_datetime *holidays_end)
{
npy_datetime *trial;
@@ -88,7 +88,7 @@ is_holiday(npy_datetime date,
*/
static npy_datetime *
find_earliest_holiday_on_or_after(npy_datetime date,
- npy_datetime *holidays_begin, npy_datetime *holidays_end)
+ npy_datetime *holidays_begin, const npy_datetime *holidays_end)
{
npy_datetime *trial;
@@ -127,7 +127,7 @@ find_earliest_holiday_on_or_after(npy_datetime date,
*/
static npy_datetime *
find_earliest_holiday_after(npy_datetime date,
- npy_datetime *holidays_begin, npy_datetime *holidays_end)
+ npy_datetime *holidays_begin, const npy_datetime *holidays_end)
{
npy_datetime *trial;
@@ -159,7 +159,7 @@ static int
apply_business_day_roll(npy_datetime date, npy_datetime *out,
int *out_day_of_week,
NPY_BUSDAY_ROLL roll,
- npy_bool *weekmask,
+ const npy_bool *weekmask,
npy_datetime *holidays_begin, npy_datetime *holidays_end)
{
int day_of_week;
@@ -361,7 +361,7 @@ apply_business_day_offset(npy_datetime date, npy_int64 offset,
static int
apply_business_day_count(npy_datetime date_begin, npy_datetime date_end,
npy_int64 *out,
- npy_bool *weekmask, int busdays_in_weekmask,
+ const npy_bool *weekmask, int busdays_in_weekmask,
npy_datetime *holidays_begin, npy_datetime *holidays_end)
{
npy_int64 count, whole_weeks;
@@ -722,7 +722,7 @@ finish:
*/
NPY_NO_EXPORT PyArrayObject *
is_business_day(PyArrayObject *dates, PyArrayObject *out,
- npy_bool *weekmask, int busdays_in_weekmask,
+ const npy_bool *weekmask, int busdays_in_weekmask,
npy_datetime *holidays_begin, npy_datetime *holidays_end)
{
PyArray_DatetimeMetaData temp_meta;
diff --git a/numpy/core/src/multiarray/descriptor.c b/numpy/core/src/multiarray/descriptor.c
index ff85c3fcb..734255a9d 100644
--- a/numpy/core/src/multiarray/descriptor.c
+++ b/numpy/core/src/multiarray/descriptor.c
@@ -102,6 +102,7 @@ _arraydescr_from_dtype_attr(PyObject *obj, PyArray_Descr **newdescr)
if (Py_EnterRecursiveCall(
" while trying to convert the given data type from its "
"`.dtype` attribute.") != 0) {
+ Py_DECREF(dtypedescr);
return 1;
}
@@ -148,7 +149,7 @@ array_set_typeDict(PyObject *NPY_UNUSED(ignored), PyObject *args)
arg == '|' || arg == '=')
static int
-_check_for_commastring(char *type, Py_ssize_t len)
+_check_for_commastring(const char *type, Py_ssize_t len)
{
Py_ssize_t i;
int sqbracket;
@@ -497,9 +498,6 @@ _convert_from_array_descr(PyObject *obj, int align)
else {
ret = PyArray_DescrConverter(PyTuple_GET_ITEM(item, 1), &conv);
}
- if (ret == NPY_FAIL) {
- PyObject_Print(PyTuple_GET_ITEM(item, 1), stderr, 0);
- }
}
else if (PyTuple_GET_SIZE(item) == 3) {
newobj = PyTuple_GetSlice(item, 1, 3);
@@ -517,6 +515,7 @@ _convert_from_array_descr(PyObject *obj, int align)
if (ret == NPY_FAIL) {
goto fail;
}
+
if ((PyDict_GetItem(fields, name) != NULL)
|| (title
&& PyBaseString_Check(title)
@@ -3278,7 +3277,7 @@ arraydescr_richcompare(PyArray_Descr *self, PyObject *other, int cmp_op)
}
static int
-descr_nonzero(PyObject *self)
+descr_nonzero(PyObject *NPY_UNUSED(self))
{
/* `bool(np.dtype(...)) == True` for all dtypes. Needed to override default
* nonzero implementation, which checks if `len(object) > 0`. */
diff --git a/numpy/core/src/multiarray/dtype_transfer.c b/numpy/core/src/multiarray/dtype_transfer.c
index a90416a40..ef0dd4a01 100644
--- a/numpy/core/src/multiarray/dtype_transfer.c
+++ b/numpy/core/src/multiarray/dtype_transfer.c
@@ -3337,7 +3337,7 @@ get_decsrcref_transfer_function(int aligned,
/* If there are subarrays, need to wrap it */
else if (PyDataType_HASSUBARRAY(src_dtype)) {
PyArray_Dims src_shape = {NULL, -1};
- npy_intp src_size = 1;
+ npy_intp src_size;
PyArray_StridedUnaryOp *stransfer;
NpyAuxData *data;
diff --git a/numpy/core/src/multiarray/getset.c b/numpy/core/src/multiarray/getset.c
index bed92403f..116e37ce5 100644
--- a/numpy/core/src/multiarray/getset.c
+++ b/numpy/core/src/multiarray/getset.c
@@ -190,7 +190,7 @@ array_strides_set(PyArrayObject *self, PyObject *obj)
static PyObject *
-array_priority_get(PyArrayObject *self)
+array_priority_get(PyArrayObject *NPY_UNUSED(self))
{
return PyFloat_FromDouble(NPY_PRIORITY);
}
diff --git a/numpy/core/src/multiarray/item_selection.c b/numpy/core/src/multiarray/item_selection.c
index 762563eb5..a6ac902d3 100644
--- a/numpy/core/src/multiarray/item_selection.c
+++ b/numpy/core/src/multiarray/item_selection.c
@@ -1336,7 +1336,11 @@ PyArray_ArgPartition(PyArrayObject *op, PyArrayObject *ktharray, int axis,
PyArray_ArgSortFunc *argsort;
PyObject *ret;
- if (which < 0 || which >= NPY_NSELECTS) {
+ /*
+ * As a C-exported function, enum NPY_SELECTKIND loses its enum property
+ * Check the values to make sure they are in range
+ */
+ if ((int)which < 0 || (int)which >= NPY_NSELECTS) {
PyErr_SetString(PyExc_ValueError,
"not a valid partition kind");
return NULL;
@@ -1456,8 +1460,8 @@ PyArray_LexSort(PyObject *sort_keys, int axis)
/* Now we can check the axis */
nd = PyArray_NDIM(mps[0]);
- if ((nd == 0) || (PyArray_SIZE(mps[0]) == 1)) {
- /* single element case */
+ if ((nd == 0) || (PyArray_SIZE(mps[0]) <= 1)) {
+ /* empty/single element case */
ret = (PyArrayObject *)PyArray_NewFromDescr(
&PyArray_Type, PyArray_DescrFromType(NPY_INTP),
PyArray_NDIM(mps[0]), PyArray_DIMS(mps[0]), NULL, NULL,
@@ -1466,7 +1470,9 @@ PyArray_LexSort(PyObject *sort_keys, int axis)
if (ret == NULL) {
goto fail;
}
- *((npy_intp *)(PyArray_DATA(ret))) = 0;
+ if (PyArray_SIZE(mps[0]) > 0) {
+ *((npy_intp *)(PyArray_DATA(ret))) = 0;
+ }
goto finish;
}
if (check_and_adjust_axis(&axis, nd) < 0) {
@@ -1516,19 +1522,28 @@ PyArray_LexSort(PyObject *sort_keys, int axis)
char *valbuffer, *indbuffer;
int *swaps;
- if (N == 0 || maxelsize == 0 || sizeof(npy_intp) == 0) {
- goto fail;
+ assert(N > 0); /* Guaranteed and assumed by indbuffer */
+ npy_intp valbufsize = N * maxelsize;
+ if (NPY_UNLIKELY(valbufsize) == 0) {
+ valbufsize = 1; /* Ensure allocation is not empty */
}
- valbuffer = PyDataMem_NEW(N * maxelsize);
+
+ valbuffer = PyDataMem_NEW(valbufsize);
if (valbuffer == NULL) {
goto fail;
}
indbuffer = PyDataMem_NEW(N * sizeof(npy_intp));
if (indbuffer == NULL) {
+ PyDataMem_FREE(valbuffer);
+ goto fail;
+ }
+ swaps = malloc(NPY_LIKELY(n > 0) ? n * sizeof(int) : 1);
+ if (swaps == NULL) {
+ PyDataMem_FREE(valbuffer);
PyDataMem_FREE(indbuffer);
goto fail;
}
- swaps = malloc(n*sizeof(int));
+
for (j = 0; j < n; j++) {
swaps[j] = PyArray_ISBYTESWAPPED(mps[j]);
}
@@ -1557,8 +1572,8 @@ PyArray_LexSort(PyObject *sort_keys, int axis)
#else
if (rcode < 0) {
#endif
- npy_free_cache(valbuffer, N * maxelsize);
- npy_free_cache(indbuffer, N * sizeof(npy_intp));
+ PyDataMem_FREE(valbuffer);
+ PyDataMem_FREE(indbuffer);
free(swaps);
goto fail;
}
@@ -2464,7 +2479,7 @@ finish:
* array of values, which must be of length PyArray_NDIM(self).
*/
NPY_NO_EXPORT PyObject *
-PyArray_MultiIndexGetItem(PyArrayObject *self, npy_intp *multi_index)
+PyArray_MultiIndexGetItem(PyArrayObject *self, const npy_intp *multi_index)
{
int idim, ndim = PyArray_NDIM(self);
char *data = PyArray_DATA(self);
@@ -2492,7 +2507,7 @@ PyArray_MultiIndexGetItem(PyArrayObject *self, npy_intp *multi_index)
* Returns 0 on success, -1 on failure.
*/
NPY_NO_EXPORT int
-PyArray_MultiIndexSetItem(PyArrayObject *self, npy_intp *multi_index,
+PyArray_MultiIndexSetItem(PyArrayObject *self, const npy_intp *multi_index,
PyObject *obj)
{
int idim, ndim = PyArray_NDIM(self);
diff --git a/numpy/core/src/multiarray/item_selection.h b/numpy/core/src/multiarray/item_selection.h
index 90bb5100d..2276b4db7 100644
--- a/numpy/core/src/multiarray/item_selection.h
+++ b/numpy/core/src/multiarray/item_selection.h
@@ -15,7 +15,7 @@ count_boolean_trues(int ndim, char *data, npy_intp *ashape, npy_intp *astrides);
* array of values, which must be of length PyArray_NDIM(self).
*/
NPY_NO_EXPORT PyObject *
-PyArray_MultiIndexGetItem(PyArrayObject *self, npy_intp *multi_index);
+PyArray_MultiIndexGetItem(PyArrayObject *self, const npy_intp *multi_index);
/*
* Sets a single item in the array, based on a single multi-index
@@ -24,7 +24,7 @@ PyArray_MultiIndexGetItem(PyArrayObject *self, npy_intp *multi_index);
* Returns 0 on success, -1 on failure.
*/
NPY_NO_EXPORT int
-PyArray_MultiIndexSetItem(PyArrayObject *self, npy_intp *multi_index,
+PyArray_MultiIndexSetItem(PyArrayObject *self, const npy_intp *multi_index,
PyObject *obj);
#endif
diff --git a/numpy/core/src/multiarray/iterators.c b/numpy/core/src/multiarray/iterators.c
index 83eafaf74..e66bb36aa 100644
--- a/numpy/core/src/multiarray/iterators.c
+++ b/numpy/core/src/multiarray/iterators.c
@@ -98,7 +98,7 @@ parse_index_entry(PyObject *op, npy_intp *step_size,
/* get the dataptr from its current coordinates for simple iterator */
static char*
-get_ptr_simple(PyArrayIterObject* iter, npy_intp *coordinates)
+get_ptr_simple(PyArrayIterObject* iter, const npy_intp *coordinates)
{
npy_intp i;
char *ret;
@@ -116,10 +116,12 @@ get_ptr_simple(PyArrayIterObject* iter, npy_intp *coordinates)
* This is common initialization code between PyArrayIterObject and
* PyArrayNeighborhoodIterObject
*
- * Increase ao refcount
+ * Steals a reference to the array object which gets removed at deallocation,
+ * if the iterator is allocated statically and its dealloc not called, it
+ * can be thought of as borrowing the reference.
*/
-static PyObject *
-array_iter_base_init(PyArrayIterObject *it, PyArrayObject *ao)
+NPY_NO_EXPORT void
+PyArray_RawIterBaseInit(PyArrayIterObject *it, PyArrayObject *ao)
{
int nd, i;
@@ -131,7 +133,6 @@ array_iter_base_init(PyArrayIterObject *it, PyArrayObject *ao)
else {
it->contiguous = 0;
}
- Py_INCREF(ao);
it->ao = ao;
it->size = PyArray_SIZE(ao);
it->nd_m1 = nd - 1;
@@ -155,7 +156,7 @@ array_iter_base_init(PyArrayIterObject *it, PyArrayObject *ao)
it->translate = &get_ptr_simple;
PyArray_ITER_RESET(it);
- return (PyObject *)it;
+ return;
}
static void
@@ -170,6 +171,10 @@ array_iter_base_dealloc(PyArrayIterObject *it)
NPY_NO_EXPORT PyObject *
PyArray_IterNew(PyObject *obj)
{
+ /*
+ * Note that internall PyArray_RawIterBaseInit may be called directly on a
+ * statically allocated PyArrayIterObject.
+ */
PyArrayIterObject *it;
PyArrayObject *ao;
@@ -186,7 +191,8 @@ PyArray_IterNew(PyObject *obj)
return NULL;
}
- array_iter_base_init(it, ao);
+ Py_INCREF(ao); /* PyArray_RawIterBaseInit steals a reference */
+ PyArray_RawIterBaseInit(it, ao);
return (PyObject *)it;
}
@@ -390,6 +396,10 @@ arrayiter_next(PyArrayIterObject *it)
static void
arrayiter_dealloc(PyArrayIterObject *it)
{
+ /*
+ * Note that it is possible to statically allocate a PyArrayIterObject,
+ * which does not call this function.
+ */
array_iter_base_dealloc(it);
PyArray_free(it);
}
@@ -830,7 +840,6 @@ iter_ass_subscript(PyArrayIterObject *self, PyObject *ind, PyObject *val)
if (check_and_adjust_index(&start, self->size, -1, NULL) < 0) {
goto finish;
}
- retval = 0;
PyArray_ITER_GOTO1D(self, start);
retval = type->f->setitem(val, self->dataptr, self->ao);
PyArray_ITER_RESET(self);
@@ -1656,7 +1665,7 @@ static char* _set_constant(PyArrayNeighborhoodIterObject* iter,
/* set the dataptr from its current coordinates */
static char*
-get_ptr_constant(PyArrayIterObject* _iter, npy_intp *coordinates)
+get_ptr_constant(PyArrayIterObject* _iter, const npy_intp *coordinates)
{
int i;
npy_intp bd, _coordinates[NPY_MAXDIMS];
@@ -1711,7 +1720,7 @@ __npy_pos_remainder(npy_intp i, npy_intp n)
/* set the dataptr from its current coordinates */
static char*
-get_ptr_mirror(PyArrayIterObject* _iter, npy_intp *coordinates)
+get_ptr_mirror(PyArrayIterObject* _iter, const npy_intp *coordinates)
{
int i;
npy_intp bd, _coordinates[NPY_MAXDIMS], lb;
@@ -1745,7 +1754,7 @@ __npy_euclidean_division(npy_intp i, npy_intp n)
_coordinates[c] = lb + __npy_euclidean_division(bd, p->limits_sizes[c]);
static char*
-get_ptr_circular(PyArrayIterObject* _iter, npy_intp *coordinates)
+get_ptr_circular(PyArrayIterObject* _iter, const npy_intp *coordinates)
{
int i;
npy_intp bd, _coordinates[NPY_MAXDIMS], lb;
@@ -1767,7 +1776,7 @@ get_ptr_circular(PyArrayIterObject* _iter, npy_intp *coordinates)
* A Neighborhood Iterator object.
*/
NPY_NO_EXPORT PyObject*
-PyArray_NeighborhoodIterNew(PyArrayIterObject *x, npy_intp *bounds,
+PyArray_NeighborhoodIterNew(PyArrayIterObject *x, const npy_intp *bounds,
int mode, PyArrayObject* fill)
{
int i;
@@ -1779,7 +1788,8 @@ PyArray_NeighborhoodIterNew(PyArrayIterObject *x, npy_intp *bounds,
}
PyObject_Init((PyObject *)ret, &PyArrayNeighborhoodIter_Type);
- array_iter_base_init((PyArrayIterObject*)ret, x->ao);
+ Py_INCREF(x->ao); /* PyArray_RawIterBaseInit steals a reference */
+ PyArray_RawIterBaseInit((PyArrayIterObject*)ret, x->ao);
Py_INCREF(x);
ret->_internal_iter = x;
diff --git a/numpy/core/src/multiarray/iterators.h b/numpy/core/src/multiarray/iterators.h
index 376dc154a..d942f45b8 100644
--- a/numpy/core/src/multiarray/iterators.h
+++ b/numpy/core/src/multiarray/iterators.h
@@ -7,4 +7,7 @@ NPY_NO_EXPORT PyObject
NPY_NO_EXPORT int
iter_ass_subscript(PyArrayIterObject *, PyObject *, PyObject *);
+NPY_NO_EXPORT void
+PyArray_RawIterBaseInit(PyArrayIterObject *it, PyArrayObject *ao);
+
#endif
diff --git a/numpy/core/src/multiarray/mapping.c b/numpy/core/src/multiarray/mapping.c
index add1143b2..247864775 100644
--- a/numpy/core/src/multiarray/mapping.c
+++ b/numpy/core/src/multiarray/mapping.c
@@ -176,7 +176,7 @@ unpack_tuple(PyTupleObject *index, PyObject **result, npy_intp result_n)
/* Unpack a single scalar index, taking a new reference to match unpack_tuple */
static NPY_INLINE npy_intp
-unpack_scalar(PyObject *index, PyObject **result, npy_intp result_n)
+unpack_scalar(PyObject *index, PyObject **result, npy_intp NPY_UNUSED(result_n))
{
Py_INCREF(index);
result[0] = index;
@@ -1699,7 +1699,7 @@ array_subscript(PyArrayObject *self, PyObject *op)
PyArray_SHAPE(tmp_arr),
PyArray_STRIDES(tmp_arr),
PyArray_BYTES(tmp_arr),
- PyArray_FLAGS(self),
+ PyArray_FLAGS(tmp_arr),
(PyObject *)self, (PyObject *)tmp_arr);
Py_DECREF(tmp_arr);
if (result == NULL) {
diff --git a/numpy/core/src/multiarray/methods.c b/numpy/core/src/multiarray/methods.c
index 79c60aa2e..e5845f2f6 100644
--- a/numpy/core/src/multiarray/methods.c
+++ b/numpy/core/src/multiarray/methods.c
@@ -1051,7 +1051,7 @@ any_array_ufunc_overrides(PyObject *args, PyObject *kwds)
NPY_NO_EXPORT PyObject *
-array_ufunc(PyArrayObject *self, PyObject *args, PyObject *kwds)
+array_ufunc(PyArrayObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds)
{
PyObject *ufunc, *method_name, *normal_args, *ufunc_method;
PyObject *result = NULL;
@@ -1100,7 +1100,7 @@ cleanup:
}
static PyObject *
-array_function(PyArrayObject *self, PyObject *c_args, PyObject *c_kwds)
+array_function(PyArrayObject *NPY_UNUSED(self), PyObject *c_args, PyObject *c_kwds)
{
PyObject *func, *types, *args, *kwargs, *result;
static char *kwlist[] = {"func", "types", "args", "kwargs", NULL};
@@ -1179,7 +1179,7 @@ array_resize(PyArrayObject *self, PyObject *args, PyObject *kwds)
return NULL;
}
- ret = PyArray_Resize(self, &newshape, refcheck, NPY_CORDER);
+ ret = PyArray_Resize(self, &newshape, refcheck, NPY_ANYORDER);
npy_free_cache_dim_obj(newshape);
if (ret == NULL) {
return NULL;
@@ -1732,7 +1732,7 @@ array_reduce(PyArrayObject *self, PyObject *NPY_UNUSED(args))
}
static PyObject *
-array_reduce_ex_regular(PyArrayObject *self, int protocol)
+array_reduce_ex_regular(PyArrayObject *self, int NPY_UNUSED(protocol))
{
PyObject *subclass_array_reduce = NULL;
PyObject *ret;
@@ -1861,7 +1861,7 @@ array_reduce_ex(PyArrayObject *self, PyObject *args)
PyDataType_FLAGCHK(descr, NPY_ITEM_HASOBJECT) ||
(PyType_IsSubtype(((PyObject*)self)->ob_type, &PyArray_Type) &&
((PyObject*)self)->ob_type != &PyArray_Type) ||
- PyDataType_ISUNSIZED(descr)) {
+ descr->elsize == 0) {
/* The PickleBuffer class from version 5 of the pickle protocol
* can only be used for arrays backed by a contiguous data buffer.
* For all other cases we fallback to the generic array_reduce
diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c
index bef978c94..441567049 100644
--- a/numpy/core/src/multiarray/multiarraymodule.c
+++ b/numpy/core/src/multiarray/multiarraymodule.c
@@ -286,7 +286,8 @@ PyArray_AsCArray(PyObject **op, void *ptr, npy_intp *dims, int nd,
* Convert to a 1D C-array
*/
NPY_NO_EXPORT int
-PyArray_As1D(PyObject **op, char **ptr, int *d1, int typecode)
+PyArray_As1D(PyObject **NPY_UNUSED(op), char **NPY_UNUSED(ptr),
+ int *NPY_UNUSED(d1), int NPY_UNUSED(typecode))
{
/* 2008-07-14, 1.5 */
PyErr_SetString(PyExc_NotImplementedError,
@@ -298,7 +299,8 @@ PyArray_As1D(PyObject **op, char **ptr, int *d1, int typecode)
* Convert to a 2D C-array
*/
NPY_NO_EXPORT int
-PyArray_As2D(PyObject **op, char ***ptr, int *d1, int *d2, int typecode)
+PyArray_As2D(PyObject **NPY_UNUSED(op), char ***NPY_UNUSED(ptr),
+ int *NPY_UNUSED(d1), int *NPY_UNUSED(d2), int NPY_UNUSED(typecode))
{
/* 2008-07-14, 1.5 */
PyErr_SetString(PyExc_NotImplementedError,
@@ -1560,7 +1562,8 @@ _array_fromobject(PyObject *NPY_UNUSED(ignored), PyObject *args, PyObject *kws)
PyArrayObject *oparr = NULL, *ret = NULL;
npy_bool subok = NPY_FALSE;
npy_bool copy = NPY_TRUE;
- int ndmin = 0, nd;
+ int nd;
+ npy_intp ndmin = 0;
PyArray_Descr *type = NULL;
PyArray_Descr *oldtype = NULL;
NPY_ORDER order = NPY_KEEPORDER;
@@ -1631,12 +1634,10 @@ _array_fromobject(PyObject *NPY_UNUSED(ignored), PyObject *args, PyObject *kws)
}
}
- /* copy=False with default dtype, order and ndim */
- if (STRIDING_OK(oparr, order)) {
- ret = oparr;
- Py_INCREF(ret);
- goto finish;
- }
+ /* copy=False with default dtype, order (any is OK) and ndim */
+ ret = oparr;
+ Py_INCREF(ret);
+ goto finish;
}
}
@@ -3781,7 +3782,7 @@ _vec_string_no_args(PyArrayObject* char_array,
}
static PyObject *
-_vec_string(PyObject *NPY_UNUSED(dummy), PyObject *args, PyObject *kwds)
+_vec_string(PyObject *NPY_UNUSED(dummy), PyObject *args, PyObject *NPY_UNUSED(kwds))
{
PyArrayObject* char_array = NULL;
PyArray_Descr *type;
diff --git a/numpy/core/src/multiarray/nditer_api.c b/numpy/core/src/multiarray/nditer_api.c
index 18ca127e1..db0bfcece 100644
--- a/numpy/core/src/multiarray/nditer_api.c
+++ b/numpy/core/src/multiarray/nditer_api.c
@@ -1628,15 +1628,12 @@ npyiter_coalesce_axes(NpyIter *iter)
npy_intp istrides, nstrides = NAD_NSTRIDES();
NpyIter_AxisData *axisdata = NIT_AXISDATA(iter);
npy_intp sizeof_axisdata = NIT_AXISDATA_SIZEOF(itflags, ndim, nop);
- NpyIter_AxisData *ad_compress;
+ NpyIter_AxisData *ad_compress = axisdata;
npy_intp new_ndim = 1;
/* The HASMULTIINDEX or IDENTPERM flags do not apply after coalescing */
NIT_ITFLAGS(iter) &= ~(NPY_ITFLAG_IDENTPERM|NPY_ITFLAG_HASMULTIINDEX);
- axisdata = NIT_AXISDATA(iter);
- ad_compress = axisdata;
-
for (idim = 0; idim < ndim-1; ++idim) {
int can_coalesce = 1;
npy_intp shape0 = NAD_SHAPE(ad_compress);
diff --git a/numpy/core/src/multiarray/nditer_constr.c b/numpy/core/src/multiarray/nditer_constr.c
index 3b3635afe..d40836dc2 100644
--- a/numpy/core/src/multiarray/nditer_constr.c
+++ b/numpy/core/src/multiarray/nditer_constr.c
@@ -24,7 +24,7 @@ static int
npyiter_check_global_flags(npy_uint32 flags, npy_uint32* itflags);
static int
npyiter_check_op_axes(int nop, int oa_ndim, int **op_axes,
- npy_intp *itershape);
+ const npy_intp *itershape);
static int
npyiter_calculate_ndim(int nop, PyArrayObject **op_in,
int oa_ndim);
@@ -55,7 +55,7 @@ npyiter_check_casting(int nop, PyArrayObject **op,
static int
npyiter_fill_axisdata(NpyIter *iter, npy_uint32 flags, npyiter_opitflags *op_itflags,
char **op_dataptr,
- npy_uint32 *op_flags, int **op_axes,
+ const npy_uint32 *op_flags, int **op_axes,
npy_intp *itershape);
static void
npyiter_replace_axisdata(NpyIter *iter, int iop,
@@ -74,23 +74,23 @@ static void
npyiter_find_best_axis_ordering(NpyIter *iter);
static PyArray_Descr *
npyiter_get_common_dtype(int nop, PyArrayObject **op,
- npyiter_opitflags *op_itflags, PyArray_Descr **op_dtype,
+ const npyiter_opitflags *op_itflags, PyArray_Descr **op_dtype,
PyArray_Descr **op_request_dtypes,
int only_inputs);
static PyArrayObject *
npyiter_new_temp_array(NpyIter *iter, PyTypeObject *subtype,
npy_uint32 flags, npyiter_opitflags *op_itflags,
int op_ndim, npy_intp *shape,
- PyArray_Descr *op_dtype, int *op_axes);
+ PyArray_Descr *op_dtype, const int *op_axes);
static int
npyiter_allocate_arrays(NpyIter *iter,
npy_uint32 flags,
PyArray_Descr **op_dtype, PyTypeObject *subtype,
- npy_uint32 *op_flags, npyiter_opitflags *op_itflags,
+ const npy_uint32 *op_flags, npyiter_opitflags *op_itflags,
int **op_axes);
static void
npyiter_get_priority_subtype(int nop, PyArrayObject **op,
- npyiter_opitflags *op_itflags,
+ const npyiter_opitflags *op_itflags,
double *subtype_priority, PyTypeObject **subtype);
static int
npyiter_allocate_transfer_functions(NpyIter *iter);
@@ -787,7 +787,7 @@ npyiter_check_global_flags(npy_uint32 flags, npy_uint32* itflags)
static int
npyiter_check_op_axes(int nop, int oa_ndim, int **op_axes,
- npy_intp *itershape)
+ const npy_intp *itershape)
{
char axes_dupcheck[NPY_MAXDIMS];
int iop, idim;
@@ -1423,7 +1423,7 @@ check_mask_for_writemasked_reduction(NpyIter *iter, int iop)
static int
npyiter_fill_axisdata(NpyIter *iter, npy_uint32 flags, npyiter_opitflags *op_itflags,
char **op_dataptr,
- npy_uint32 *op_flags, int **op_axes,
+ const npy_uint32 *op_flags, int **op_axes,
npy_intp *itershape)
{
npy_uint32 itflags = NIT_ITFLAGS(iter);
@@ -2409,7 +2409,7 @@ npyiter_find_best_axis_ordering(NpyIter *iter)
*/
static PyArray_Descr *
npyiter_get_common_dtype(int nop, PyArrayObject **op,
- npyiter_opitflags *op_itflags, PyArray_Descr **op_dtype,
+ const npyiter_opitflags *op_itflags, PyArray_Descr **op_dtype,
PyArray_Descr **op_request_dtypes,
int only_inputs)
{
@@ -2477,7 +2477,7 @@ static PyArrayObject *
npyiter_new_temp_array(NpyIter *iter, PyTypeObject *subtype,
npy_uint32 flags, npyiter_opitflags *op_itflags,
int op_ndim, npy_intp *shape,
- PyArray_Descr *op_dtype, int *op_axes)
+ PyArray_Descr *op_dtype, const int *op_axes)
{
npy_uint32 itflags = NIT_ITFLAGS(iter);
int idim, ndim = NIT_NDIM(iter);
@@ -2706,7 +2706,7 @@ static int
npyiter_allocate_arrays(NpyIter *iter,
npy_uint32 flags,
PyArray_Descr **op_dtype, PyTypeObject *subtype,
- npy_uint32 *op_flags, npyiter_opitflags *op_itflags,
+ const npy_uint32 *op_flags, npyiter_opitflags *op_itflags,
int **op_axes)
{
npy_uint32 itflags = NIT_ITFLAGS(iter);
@@ -3109,7 +3109,7 @@ npyiter_allocate_arrays(NpyIter *iter,
*/
static void
npyiter_get_priority_subtype(int nop, PyArrayObject **op,
- npyiter_opitflags *op_itflags,
+ const npyiter_opitflags *op_itflags,
double *subtype_priority,
PyTypeObject **subtype)
{
diff --git a/numpy/core/src/multiarray/nditer_pywrap.c b/numpy/core/src/multiarray/nditer_pywrap.c
index ffea08bb3..4b9d41aa4 100644
--- a/numpy/core/src/multiarray/nditer_pywrap.c
+++ b/numpy/core/src/multiarray/nditer_pywrap.c
@@ -82,7 +82,8 @@ static int npyiter_cache_values(NewNpyArrayIterObject *self)
}
static PyObject *
-npyiter_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)
+npyiter_new(PyTypeObject *subtype, PyObject *NPY_UNUSED(args),
+ PyObject *NPY_UNUSED(kwds))
{
NewNpyArrayIterObject *self;
@@ -535,7 +536,7 @@ try_single_dtype:
}
static int
-npyiter_convert_op_axes(PyObject *op_axes_in, npy_intp nop,
+npyiter_convert_op_axes(PyObject *op_axes_in, int nop,
int **op_axes, int *oa_ndim)
{
PyObject *a;
@@ -2365,7 +2366,7 @@ npyiter_close(NewNpyArrayIterObject *self)
}
static PyObject *
-npyiter_exit(NewNpyArrayIterObject *self, PyObject *args)
+npyiter_exit(NewNpyArrayIterObject *self, PyObject *NPY_UNUSED(args))
{
/* even if called via exception handling, writeback any data */
return npyiter_close(self);
diff --git a/numpy/core/src/multiarray/number.c b/numpy/core/src/multiarray/number.c
index 0ceb994ef..dabc866ff 100644
--- a/numpy/core/src/multiarray/number.c
+++ b/numpy/core/src/multiarray/number.c
@@ -391,7 +391,8 @@ array_matrix_multiply(PyArrayObject *m1, PyObject *m2)
}
static PyObject *
-array_inplace_matrix_multiply(PyArrayObject *m1, PyObject *m2)
+array_inplace_matrix_multiply(
+ PyArrayObject *NPY_UNUSED(m1), PyObject *NPY_UNUSED(m2))
{
PyErr_SetString(PyExc_TypeError,
"In-place matrix multiplication is not (yet) supported. "
diff --git a/numpy/core/src/multiarray/refcount.c b/numpy/core/src/multiarray/refcount.c
index b8230c81a..6033929d9 100644
--- a/numpy/core/src/multiarray/refcount.c
+++ b/numpy/core/src/multiarray/refcount.c
@@ -11,6 +11,7 @@
#define _MULTIARRAYMODULE
#include "numpy/arrayobject.h"
#include "numpy/arrayscalars.h"
+#include "iterators.h"
#include "npy_config.h"
@@ -210,21 +211,22 @@ PyArray_XDECREF(PyArrayObject *mp)
npy_intp i, n;
PyObject **data;
PyObject *temp;
- PyArrayIterObject *it;
+ /*
+ * statically allocating it allows this function to not modify the
+ * reference count of the array for use during dealloc.
+ * (statically is not necessary as such)
+ */
+ PyArrayIterObject it;
if (!PyDataType_REFCHK(PyArray_DESCR(mp))) {
return 0;
}
if (PyArray_DESCR(mp)->type_num != NPY_OBJECT) {
- it = (PyArrayIterObject *)PyArray_IterNew((PyObject *)mp);
- if (it == NULL) {
- return -1;
+ PyArray_RawIterBaseInit(&it, mp);
+ while(it.index < it.size) {
+ PyArray_Item_XDECREF(it.dataptr, PyArray_DESCR(mp));
+ PyArray_ITER_NEXT(&it);
}
- while(it->index < it->size) {
- PyArray_Item_XDECREF(it->dataptr, PyArray_DESCR(mp));
- PyArray_ITER_NEXT(it);
- }
- Py_DECREF(it);
return 0;
}
@@ -242,16 +244,12 @@ PyArray_XDECREF(PyArrayObject *mp)
}
}
else { /* handles misaligned data too */
- it = (PyArrayIterObject *)PyArray_IterNew((PyObject *)mp);
- if (it == NULL) {
- return -1;
- }
- while(it->index < it->size) {
- NPY_COPY_PYOBJECT_PTR(&temp, it->dataptr);
+ PyArray_RawIterBaseInit(&it, mp);
+ while(it.index < it.size) {
+ NPY_COPY_PYOBJECT_PTR(&temp, it.dataptr);
Py_XDECREF(temp);
- PyArray_ITER_NEXT(it);
+ PyArray_ITER_NEXT(&it);
}
- Py_DECREF(it);
}
return 0;
}
diff --git a/numpy/core/src/multiarray/scalartypes.c.src b/numpy/core/src/multiarray/scalartypes.c.src
index 34839b866..9adca6773 100644
--- a/numpy/core/src/multiarray/scalartypes.c.src
+++ b/numpy/core/src/multiarray/scalartypes.c.src
@@ -4492,6 +4492,36 @@ initialize_numeric_types(void)
PyArrayIter_Type.tp_iter = PyObject_SelfIter;
PyArrayMapIter_Type.tp_iter = PyObject_SelfIter;
+
+ /*
+ * Give types different names when they are the same size (gh-9799).
+ * `np.intX` always refers to the first int of that size in the sequence
+ * `['LONG', 'LONGLONG', 'INT', 'SHORT', 'BYTE']`.
+ */
+#if (NPY_SIZEOF_BYTE == NPY_SIZEOF_SHORT)
+ PyByteArrType_Type.tp_name = "numpy.byte";
+ PyUByteArrType_Type.tp_name = "numpy.ubyte";
+#endif
+#if (NPY_SIZEOF_SHORT == NPY_SIZEOF_INT)
+ PyShortArrType_Type.tp_name = "numpy.short";
+ PyUShortArrType_Type.tp_name = "numpy.ushort";
+#endif
+#if (NPY_SIZEOF_INT == NPY_SIZEOF_LONG)
+ PyIntArrType_Type.tp_name = "numpy.intc";
+ PyUIntArrType_Type.tp_name = "numpy.uintc";
+#endif
+#if (NPY_SIZEOF_LONGLONG == NPY_SIZEOF_LONG)
+ PyLongLongArrType_Type.tp_name = "numpy.longlong";
+ PyULongLongArrType_Type.tp_name = "numpy.ulonglong";
+#endif
+
+ /*
+ Do the same for longdouble
+ */
+#if (NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE)
+ PyLongDoubleArrType_Type.tp_name = "numpy.longdouble";
+ PyCLongDoubleArrType_Type.tp_name = "numpy.clongdouble";
+#endif
}
typedef struct {
diff --git a/numpy/core/src/multiarray/shape.c b/numpy/core/src/multiarray/shape.c
index 30820737e..4e31f003b 100644
--- a/numpy/core/src/multiarray/shape.c
+++ b/numpy/core/src/multiarray/shape.c
@@ -26,7 +26,7 @@ static int
_fix_unknown_dimension(PyArray_Dims *newshape, PyArrayObject *arr);
static int
-_attempt_nocopy_reshape(PyArrayObject *self, int newnd, npy_intp* newdims,
+_attempt_nocopy_reshape(PyArrayObject *self, int newnd, const npy_intp *newdims,
npy_intp *newstrides, int is_f_order);
static void
@@ -40,11 +40,11 @@ _putzero(char *optr, PyObject *zero, PyArray_Descr *dtype);
*/
NPY_NO_EXPORT PyObject *
PyArray_Resize(PyArrayObject *self, PyArray_Dims *newshape, int refcheck,
- NPY_ORDER order)
+ NPY_ORDER NPY_UNUSED(order))
{
npy_intp oldnbytes, newnbytes;
npy_intp oldsize, newsize;
- int new_nd=newshape->len, k, n, elsize;
+ int new_nd=newshape->len, k, elsize;
int refcnt;
npy_intp* new_dimensions=newshape->ptr;
npy_intp new_strides[NPY_MAXDIMS];
@@ -136,8 +136,8 @@ PyArray_Resize(PyArrayObject *self, PyArray_Dims *newshape, int refcheck,
PyObject *zero = PyInt_FromLong(0);
char *optr;
optr = PyArray_BYTES(self) + oldnbytes;
- n = newsize - oldsize;
- for (k = 0; k < n; k++) {
+ npy_intp n_new = newsize - oldsize;
+ for (npy_intp i = 0; i < n_new; i++) {
_putzero((char *)optr, zero, PyArray_DESCR(self));
optr += elsize;
}
@@ -361,7 +361,7 @@ _putzero(char *optr, PyObject *zero, PyArray_Descr *dtype)
* stride of the next-fastest index.
*/
static int
-_attempt_nocopy_reshape(PyArrayObject *self, int newnd, npy_intp* newdims,
+_attempt_nocopy_reshape(PyArrayObject *self, int newnd, const npy_intp *newdims,
npy_intp *newstrides, int is_f_order)
{
int oldnd;
@@ -766,7 +766,7 @@ static int _npy_stride_sort_item_comparator(const void *a, const void *b)
* [(2, 12), (0, 4), (1, -2)].
*/
NPY_NO_EXPORT void
-PyArray_CreateSortedStridePerm(int ndim, npy_intp *strides,
+PyArray_CreateSortedStridePerm(int ndim, npy_intp const *strides,
npy_stride_sort_item *out_strideperm)
{
int i;
@@ -1048,7 +1048,7 @@ build_shape_string(npy_intp n, npy_intp *vals)
* from a reduction result once its computation is complete.
*/
NPY_NO_EXPORT void
-PyArray_RemoveAxesInPlace(PyArrayObject *arr, npy_bool *flags)
+PyArray_RemoveAxesInPlace(PyArrayObject *arr, const npy_bool *flags)
{
PyArrayObject_fields *fa = (PyArrayObject_fields *)arr;
npy_intp *shape = fa->dimensions, *strides = fa->strides;
diff --git a/numpy/core/src/npymath/npy_math_complex.c.src b/numpy/core/src/npymath/npy_math_complex.c.src
index dad381232..8c432e483 100644
--- a/numpy/core/src/npymath/npy_math_complex.c.src
+++ b/numpy/core/src/npymath/npy_math_complex.c.src
@@ -40,13 +40,14 @@
* flag in an efficient way. The flag is IEEE specific. See
* https://github.com/freebsd/freebsd/blob/4c6378299/lib/msun/src/catrig.c#L42
*/
+#if !defined(HAVE_CACOSF) || !defined(HAVE_CACOSL) || !defined(HAVE_CASINHF) || !defined(HAVE_CASINHL)
#define raise_inexact() do { \
volatile npy_float NPY_UNUSED(junk) = 1 + tiny; \
} while (0)
static const volatile npy_float tiny = 3.9443045e-31f;
-
+#endif
/**begin repeat
* #type = npy_float, npy_double, npy_longdouble#
@@ -64,9 +65,6 @@ static const volatile npy_float tiny = 3.9443045e-31f;
* Constants
*=========================================================*/
static const @ctype@ c_1@c@ = {1.0@C@, 0.0};
-static const @ctype@ c_half@c@ = {0.5@C@, 0.0};
-static const @ctype@ c_i@c@ = {0.0, 1.0@C@};
-static const @ctype@ c_ihalf@c@ = {0.0, 0.5@C@};
/*==========================================================
* Helper functions
@@ -76,22 +74,6 @@ static const @ctype@ c_ihalf@c@ = {0.0, 0.5@C@};
*=========================================================*/
static NPY_INLINE
@ctype@
-cadd@c@(@ctype@ a, @ctype@ b)
-{
- return npy_cpack@c@(npy_creal@c@(a) + npy_creal@c@(b),
- npy_cimag@c@(a) + npy_cimag@c@(b));
-}
-
-static NPY_INLINE
-@ctype@
-csub@c@(@ctype@ a, @ctype@ b)
-{
- return npy_cpack@c@(npy_creal@c@(a) - npy_creal@c@(b),
- npy_cimag@c@(a) - npy_cimag@c@(b));
-}
-
-static NPY_INLINE
-@ctype@
cmul@c@(@ctype@ a, @ctype@ b)
{
@type@ ar, ai, br, bi;
@@ -132,20 +114,6 @@ cdiv@c@(@ctype@ a, @ctype@ b)
}
}
-static NPY_INLINE
-@ctype@
-cneg@c@(@ctype@ a)
-{
- return npy_cpack@c@(-npy_creal@c@(a), -npy_cimag@c@(a));
-}
-
-static NPY_INLINE
-@ctype@
-cmuli@c@(@ctype@ a)
-{
- return npy_cpack@c@(-npy_cimag@c@(a), npy_creal@c@(a));
-}
-
/*==========================================================
* Custom implementation of missing complex C99 functions
*=========================================================*/
diff --git a/numpy/core/src/npymath/npy_math_internal.h.src b/numpy/core/src/npymath/npy_math_internal.h.src
index fa820baac..18b6d1434 100644
--- a/numpy/core/src/npymath/npy_math_internal.h.src
+++ b/numpy/core/src/npymath/npy_math_internal.h.src
@@ -716,3 +716,44 @@ npy_@func@@c@(@type@ a, @type@ b)
return npy_@func@u@c@(a < 0 ? -a : a, b < 0 ? -b : b);
}
/**end repeat**/
+
+/* Unlike LCM and GCD, we need byte and short variants for the shift operators,
+ * since the result is dependent on the width of the type
+ */
+/**begin repeat
+ *
+ * #type = byte, short, int, long, longlong#
+ * #c = hh,h,,l,ll#
+ */
+/**begin repeat1
+ *
+ * #u = u,#
+ * #is_signed = 0,1#
+ */
+NPY_INPLACE npy_@u@@type@
+npy_lshift@u@@c@(npy_@u@@type@ a, npy_@u@@type@ b)
+{
+ if (NPY_LIKELY((size_t)b < sizeof(a) * CHAR_BIT)) {
+ return a << b;
+ }
+ else {
+ return 0;
+ }
+}
+NPY_INPLACE npy_@u@@type@
+npy_rshift@u@@c@(npy_@u@@type@ a, npy_@u@@type@ b)
+{
+ if (NPY_LIKELY((size_t)b < sizeof(a) * CHAR_BIT)) {
+ return a >> b;
+ }
+#if @is_signed@
+ else if (a < 0) {
+ return (npy_@u@@type@)-1; /* preserve the sign bit */
+ }
+#endif
+ else {
+ return 0;
+ }
+}
+/**end repeat1**/
+/**end repeat**/
diff --git a/numpy/core/src/npysort/radixsort.c.src b/numpy/core/src/npysort/radixsort.c.src
index c90b06974..72887d7e4 100644
--- a/numpy/core/src/npysort/radixsort.c.src
+++ b/numpy/core/src/npysort/radixsort.c.src
@@ -198,9 +198,9 @@ aradixsort_@suff@(void *start, npy_intp* tosort, npy_intp num, void *NPY_UNUSED(
return 0;
}
- k1 = KEY_OF(arr[0]);
+ k1 = KEY_OF(arr[tosort[0]]);
for (npy_intp i = 1; i < num; i++) {
- k2 = KEY_OF(arr[i]);
+ k2 = KEY_OF(arr[tosort[i]]);
if (k1 > k2) {
all_sorted = 0;
break;
diff --git a/numpy/core/src/umath/_rational_tests.c.src b/numpy/core/src/umath/_rational_tests.c.src
index 9e74845df..615e395c7 100644
--- a/numpy/core/src/umath/_rational_tests.c.src
+++ b/numpy/core/src/umath/_rational_tests.c.src
@@ -539,11 +539,11 @@ static PyObject*
pyrational_str(PyObject* self) {
rational x = ((PyRational*)self)->r;
if (d(x)!=1) {
- return PyString_FromFormat(
+ return PyUString_FromFormat(
"%ld/%ld",(long)x.n,(long)d(x));
}
else {
- return PyString_FromFormat(
+ return PyUString_FromFormat(
"%ld",(long)x.n);
}
}
diff --git a/numpy/core/src/umath/cpuid.c b/numpy/core/src/umath/cpuid.c
index 8673f1736..72c6493e8 100644
--- a/numpy/core/src/umath/cpuid.c
+++ b/numpy/core/src/umath/cpuid.c
@@ -48,6 +48,25 @@ int os_avx512_support(void)
#endif
}
+static NPY_INLINE
+int cpu_supports_fma(void)
+{
+#ifdef __x86_64__
+ unsigned int feature = 0x01;
+ unsigned int a, b, c, d;
+ __asm__ volatile (
+ "cpuid" "\n\t"
+ : "=a" (a), "=b" (b), "=c" (c), "=d" (d)
+ : "a" (feature));
+ /*
+ * FMA is the 12th bit of ECX
+ */
+ return (c >> 12) & 1;
+#else
+ return 0;
+#endif
+}
+
/*
* Primitive cpu feature detect function
* Currently only supports checking for avx on gcc compatible compilers.
@@ -63,6 +82,9 @@ npy_cpu_supports(const char * feature)
return 0;
#endif
}
+ else if (strcmp(feature, "fma") == 0) {
+ return cpu_supports_fma() && __builtin_cpu_supports("avx2") && os_avx_support();
+ }
else if (strcmp(feature, "avx2") == 0) {
return __builtin_cpu_supports("avx2") && os_avx_support();
}
diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src
index 1a4885133..5443223ab 100644
--- a/numpy/core/src/umath/loops.c.src
+++ b/numpy/core/src/umath/loops.c.src
@@ -699,6 +699,7 @@ BOOL_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED
* #ftype = npy_float, npy_float, npy_float, npy_float, npy_double, npy_double,
* npy_double, npy_double, npy_double, npy_double#
* #SIGNED = 1, 0, 1, 0, 1, 0, 1, 0, 1, 0#
+ * #c = hh,uhh,h,uh,,u,l,ul,ll,ull#
*/
#define @TYPE@_floor_divide @TYPE@_divide
@@ -776,16 +777,15 @@ NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
/**begin repeat2
* Arithmetic
- * #kind = add, subtract, multiply, bitwise_and, bitwise_or, bitwise_xor,
- * left_shift, right_shift#
- * #OP = +, -,*, &, |, ^, <<, >>#
+ * #kind = add, subtract, multiply, bitwise_and, bitwise_or, bitwise_xor#
+ * #OP = +, -, *, &, |, ^#
*/
#if @CHK@
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
@TYPE@_@kind@@isa@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
{
- if(IS_BINARY_REDUCE) {
+ if (IS_BINARY_REDUCE) {
BINARY_REDUCE_LOOP(@type@) {
io1 @OP@= *(@type@ *)ip2;
}
@@ -799,6 +799,47 @@ NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
/**end repeat2**/
+/*
+ * Arithmetic bit shift operations.
+ *
+ * Intel hardware masks bit shift values, so large shifts wrap around
+ * and can produce surprising results. The special handling ensures that
+ * behavior is independent of compiler or hardware.
+ * TODO: We could implement consistent behavior for negative shifts,
+ * which is undefined in C.
+ */
+
+#define INT_left_shift_needs_clear_floatstatus
+#define UINT_left_shift_needs_clear_floatstatus
+
+NPY_NO_EXPORT NPY_GCC_OPT_3 void
+@TYPE@_left_shift@isa@(char **args, npy_intp *dimensions, npy_intp *steps,
+ void *NPY_UNUSED(func))
+{
+ BINARY_LOOP_FAST(@type@, @type@, *out = npy_lshift@c@(in1, in2));
+
+#ifdef @TYPE@_left_shift_needs_clear_floatstatus
+ // For some reason, our macOS CI sets an "invalid" flag here, but only
+ // for some types.
+ npy_clear_floatstatus_barrier((char*)dimensions);
+#endif
+}
+
+#undef INT_left_shift_needs_clear_floatstatus
+#undef UINT_left_shift_needs_clear_floatstatus
+
+NPY_NO_EXPORT
+#ifndef NPY_DO_NOT_OPTIMIZE_@TYPE@_right_shift
+NPY_GCC_OPT_3
+#endif
+void
+@TYPE@_right_shift@isa@(char **args, npy_intp *dimensions, npy_intp *steps,
+ void *NPY_UNUSED(func))
+{
+ BINARY_LOOP_FAST(@type@, @type@, *out = npy_rshift@c@(in1, in2));
+}
+
+
/**begin repeat2
* #kind = equal, not_equal, greater, greater_equal, less, less_equal,
* logical_and, logical_or#
@@ -1594,8 +1635,8 @@ NPY_NO_EXPORT void
/**end repeat**/
/**begin repeat
- * #func = exp, log#
- * #scalarf = npy_expf, npy_logf#
+ * #func = sin, cos, exp, log#
+ * #scalarf = npy_sinf, npy_cosf, npy_expf, npy_logf#
*/
NPY_NO_EXPORT NPY_GCC_OPT_3 void
@@ -1610,8 +1651,8 @@ FLOAT_@func@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSE
/**end repeat**/
/**begin repeat
- * #isa = avx512f, avx2#
- * #ISA = AVX512F, AVX2#
+ * #isa = avx512f, fma#
+ * #ISA = AVX512F, FMA#
* #CHK = HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS, HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS#
*/
@@ -1642,6 +1683,31 @@ FLOAT_@func@_@isa@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY
}
/**end repeat1**/
+
+/**begin repeat1
+ * #func = cos, sin#
+ * #enum = npy_compute_cos, npy_compute_sin#
+ * #scalarf = npy_cosf, npy_sinf#
+ */
+
+NPY_NO_EXPORT NPY_GCC_OPT_3 void
+FLOAT_@func@_@isa@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(data))
+{
+ if (!run_unary_@isa@_sincos_FLOAT(args, dimensions, steps, @enum@)) {
+ UNARY_LOOP {
+#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
+ @ISA@_sincos_FLOAT((npy_float *)op1, (npy_float *)ip1, 1, steps[0], @enum@);
+#else
+ const npy_float in1 = *(npy_float *)ip1;
+ *(npy_float *)op1 = @scalarf@(in1);
+#endif
+ }
+ }
+}
+
+/**end repeat1**/
+
+
/**end repeat**/
/**begin repeat
diff --git a/numpy/core/src/umath/loops.h.src b/numpy/core/src/umath/loops.h.src
index 7f05a693a..5070ab38b 100644
--- a/numpy/core/src/umath/loops.h.src
+++ b/numpy/core/src/umath/loops.h.src
@@ -178,13 +178,13 @@ NPY_NO_EXPORT void
/**end repeat**/
/**begin repeat
- * #func = exp, log#
+ * #func = sin, cos, exp, log#
*/
NPY_NO_EXPORT void
FLOAT_@func@(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func));
/**begin repeat1
- * #isa = avx512f, avx2#
+ * #isa = avx512f, fma#
*/
NPY_NO_EXPORT void
diff --git a/numpy/core/src/umath/matmul.c.src b/numpy/core/src/umath/matmul.c.src
index 480c0c72f..b5204eca5 100644
--- a/numpy/core/src/umath/matmul.c.src
+++ b/numpy/core/src/umath/matmul.c.src
@@ -196,16 +196,14 @@ NPY_NO_EXPORT void
* FLOAT, DOUBLE, HALF,
* CFLOAT, CDOUBLE, CLONGDOUBLE,
* UBYTE, USHORT, UINT, ULONG, ULONGLONG,
- * BYTE, SHORT, INT, LONG, LONGLONG,
- * BOOL#
+ * BYTE, SHORT, INT, LONG, LONGLONG#
* #typ = npy_longdouble,
* npy_float,npy_double,npy_half,
* npy_cfloat, npy_cdouble, npy_clongdouble,
* npy_ubyte, npy_ushort, npy_uint, npy_ulong, npy_ulonglong,
- * npy_byte, npy_short, npy_int, npy_long, npy_longlong,
- * npy_bool#
- * #IS_COMPLEX = 0, 0, 0, 0, 1, 1, 1, 0*11#
- * #IS_HALF = 0, 0, 0, 1, 0*14#
+ * npy_byte, npy_short, npy_int, npy_long, npy_longlong#
+ * #IS_COMPLEX = 0, 0, 0, 0, 1, 1, 1, 0*10#
+ * #IS_HALF = 0, 0, 0, 1, 0*13#
*/
NPY_NO_EXPORT void
@@ -266,7 +264,44 @@ NPY_NO_EXPORT void
}
/**end repeat**/
+NPY_NO_EXPORT void
+BOOL_matmul_inner_noblas(void *_ip1, npy_intp is1_m, npy_intp is1_n,
+ void *_ip2, npy_intp is2_n, npy_intp is2_p,
+ void *_op, npy_intp os_m, npy_intp os_p,
+ npy_intp dm, npy_intp dn, npy_intp dp)
+
+{
+ npy_intp m, n, p;
+ npy_intp ib2_p, ob_p;
+ char *ip1 = (char *)_ip1, *ip2 = (char *)_ip2, *op = (char *)_op;
+ ib2_p = is2_p * dp;
+ ob_p = os_p * dp;
+
+ for (m = 0; m < dm; m++) {
+ for (p = 0; p < dp; p++) {
+ char *ip1tmp = ip1;
+ char *ip2tmp = ip2;
+ *(npy_bool *)op = NPY_FALSE;
+ for (n = 0; n < dn; n++) {
+ npy_bool val1 = (*(npy_bool *)ip1tmp);
+ npy_bool val2 = (*(npy_bool *)ip2tmp);
+ if (val1 != 0 && val2 != 0) {
+ *(npy_bool *)op = NPY_TRUE;
+ break;
+ }
+ ip2tmp += is2_n;
+ ip1tmp += is1_n;
+ }
+ op += os_p;
+ ip2 += is2_p;
+ }
+ op -= ob_p;
+ ip2 -= ib2_p;
+ ip1 += is1_m;
+ op += os_m;
+ }
+}
NPY_NO_EXPORT void
OBJECT_matmul_inner_noblas(void *_ip1, npy_intp is1_m, npy_intp is1_n,
diff --git a/numpy/core/src/umath/reduction.c b/numpy/core/src/umath/reduction.c
index 8ae2f65e0..4ce8d8ab7 100644
--- a/numpy/core/src/umath/reduction.c
+++ b/numpy/core/src/umath/reduction.c
@@ -36,7 +36,7 @@
* If 'dtype' isn't NULL, this function steals its reference.
*/
static PyArrayObject *
-allocate_reduce_result(PyArrayObject *arr, npy_bool *axis_flags,
+allocate_reduce_result(PyArrayObject *arr, const npy_bool *axis_flags,
PyArray_Descr *dtype, int subok)
{
npy_intp strides[NPY_MAXDIMS], stride;
@@ -84,7 +84,7 @@ allocate_reduce_result(PyArrayObject *arr, npy_bool *axis_flags,
* The return value is a view into 'out'.
*/
static PyArrayObject *
-conform_reduce_result(int ndim, npy_bool *axis_flags,
+conform_reduce_result(int ndim, const npy_bool *axis_flags,
PyArrayObject *out, int keepdims, const char *funcname,
int need_copy)
{
@@ -251,7 +251,7 @@ PyArray_CreateReduceResult(PyArrayObject *operand, PyArrayObject *out,
* Count the number of dimensions selected in 'axis_flags'
*/
static int
-count_axes(int ndim, npy_bool *axis_flags)
+count_axes(int ndim, const npy_bool *axis_flags)
{
int idim;
int naxes = 0;
@@ -299,7 +299,7 @@ count_axes(int ndim, npy_bool *axis_flags)
NPY_NO_EXPORT PyArrayObject *
PyArray_InitializeReduceResult(
PyArrayObject *result, PyArrayObject *operand,
- npy_bool *axis_flags,
+ const npy_bool *axis_flags,
npy_intp *out_skip_first_count, const char *funcname)
{
npy_intp *strides, *shape, shape_orig[NPY_MAXDIMS];
diff --git a/numpy/core/src/umath/scalarmath.c.src b/numpy/core/src/umath/scalarmath.c.src
index a7987acda..9cce0b7f0 100644
--- a/numpy/core/src/umath/scalarmath.c.src
+++ b/numpy/core/src/umath/scalarmath.c.src
@@ -246,25 +246,26 @@ static void
/**end repeat**/
-
-/* QUESTION: Should we check for overflow / underflow in (l,r)shift? */
-
/**begin repeat
* #name = byte, ubyte, short, ushort, int, uint,
* long, ulong, longlong, ulonglong#
* #type = npy_byte, npy_ubyte, npy_short, npy_ushort, npy_int, npy_uint,
* npy_long, npy_ulong, npy_longlong, npy_ulonglong#
+ * #suffix = hh,uhh,h,uh,,u,l,ul,ll,ull#
*/
/**begin repeat1
- * #oper = and, xor, or, lshift, rshift#
- * #op = &, ^, |, <<, >>#
+ * #oper = and, xor, or#
+ * #op = &, ^, |#
*/
#define @name@_ctype_@oper@(arg1, arg2, out) *(out) = (arg1) @op@ (arg2)
/**end repeat1**/
+#define @name@_ctype_lshift(arg1, arg2, out) *(out) = npy_lshift@suffix@(arg1, arg2)
+#define @name@_ctype_rshift(arg1, arg2, out) *(out) = npy_rshift@suffix@(arg1, arg2)
+
/**end repeat**/
/**begin repeat
@@ -570,7 +571,7 @@ static void
* 1) Convert the types to the common type if both are scalars (0 return)
* 2) If both are not scalars use ufunc machinery (-2 return)
* 3) If both are scalars but cannot be cast to the right type
- * return NotImplmented (-1 return)
+ * return NotImplemented (-1 return)
*
* 4) Perform the function on the C-type.
* 5) If an error condition occurred, check to see
@@ -1429,24 +1430,53 @@ static PyObject *
/**begin repeat
*
+ * #name = byte, ubyte, short, ushort, int, uint,
+ * long, ulong, longlong, ulonglong,
+ * half, float, double, longdouble,
+ * cfloat, cdouble, clongdouble#
+ * #Name = Byte, UByte, Short, UShort, Int, UInt,
+ * Long, ULong, LongLong, ULongLong,
+ * Half, Float, Double, LongDouble,
+ * CFloat, CDouble, CLongDouble#
+ * #cmplx = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1#
+ * #to_ctype = , , , , , , , , , , npy_half_to_double, , , , , , #
+ * #func = PyFloat_FromDouble*17#
+ */
+static NPY_INLINE PyObject *
+@name@_float(PyObject *obj)
+{
+#if @cmplx@
+ if (emit_complexwarning() < 0) {
+ return NULL;
+ }
+ return @func@(@to_ctype@(PyArrayScalar_VAL(obj, @Name@).real));
+#else
+ return @func@(@to_ctype@(PyArrayScalar_VAL(obj, @Name@)));
+#endif
+}
+/**end repeat**/
+
+
+#if !defined(NPY_PY3K)
+
+/**begin repeat
+ *
* #name = (byte, ubyte, short, ushort, int, uint,
* long, ulong, longlong, ulonglong,
* half, float, double, longdouble,
- * cfloat, cdouble, clongdouble)*2#
+ * cfloat, cdouble, clongdouble)#
* #Name = (Byte, UByte, Short, UShort, Int, UInt,
* Long, ULong, LongLong, ULongLong,
* Half, Float, Double, LongDouble,
- * CFloat, CDouble, CLongDouble)*2#
- * #cmplx = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)*2#
- * #to_ctype = (, , , , , , , , , , npy_half_to_double, , , , , , )*2#
- * #which = long*17, float*17#
+ * CFloat, CDouble, CLongDouble)#
+ * #cmplx = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)#
+ * #to_ctype = (, , , , , , , , , , npy_half_to_double, , , , , , )#
* #func = (PyLong_FromLongLong, PyLong_FromUnsignedLongLong)*5,
* PyLong_FromDouble*3, npy_longdouble_to_PyLong,
- * PyLong_FromDouble*2, npy_longdouble_to_PyLong,
- * PyFloat_FromDouble*17#
+ * PyLong_FromDouble*2, npy_longdouble_to_PyLong#
*/
static NPY_INLINE PyObject *
-@name@_@which@(PyObject *obj)
+@name@_long(PyObject *obj)
{
#if @cmplx@
if (emit_complexwarning() < 0) {
@@ -1459,8 +1489,6 @@ static NPY_INLINE PyObject *
}
/**end repeat**/
-#if !defined(NPY_PY3K)
-
/**begin repeat
*
* #name = (byte, ubyte, short, ushort, int, uint,
diff --git a/numpy/core/src/umath/simd.inc.src b/numpy/core/src/umath/simd.inc.src
index ecf2a7951..88e5e1f1b 100644
--- a/numpy/core/src/umath/simd.inc.src
+++ b/numpy/core/src/umath/simd.inc.src
@@ -130,8 +130,9 @@ abs_ptrdiff(char *a, char *b)
*/
/**begin repeat
- * #ISA = AVX2, AVX512F#
- * #isa = avx2, avx512f#
+ * #ISA = FMA, AVX512F#
+ * #isa = fma, avx512f#
+ * #CHK = HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS, HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS#
* #REGISTER_SIZE = 32, 64#
*/
@@ -141,7 +142,7 @@ abs_ptrdiff(char *a, char *b)
* #func = exp, log#
*/
-#if defined HAVE_ATTRIBUTE_TARGET_@ISA@_WITH_INTRINSICS && defined NPY_HAVE_SSE2_INTRINSICS
+#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
static NPY_INLINE void
@ISA@_@func@_FLOAT(npy_float *, npy_float *, const npy_intp n, const npy_intp stride);
#endif
@@ -149,7 +150,7 @@ static NPY_INLINE void
static NPY_INLINE int
run_unary_@isa@_@func@_FLOAT(char **args, npy_intp *dimensions, npy_intp *steps)
{
-#if defined HAVE_ATTRIBUTE_TARGET_@ISA@_WITH_INTRINSICS && defined NPY_HAVE_SSE2_INTRINSICS
+#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
if (IS_OUTPUT_BLOCKABLE_UNARY(sizeof(npy_float), @REGISTER_SIZE@)) {
@ISA@_@func@_FLOAT((npy_float*)args[1], (npy_float*)args[0], dimensions[0], steps[0]);
return 1;
@@ -162,6 +163,25 @@ run_unary_@isa@_@func@_FLOAT(char **args, npy_intp *dimensions, npy_intp *steps)
/**end repeat1**/
+#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
+static NPY_INLINE void
+@ISA@_sincos_FLOAT(npy_float *, npy_float *, const npy_intp n, const npy_intp steps, NPY_TRIG_OP);
+#endif
+
+static NPY_INLINE int
+run_unary_@isa@_sincos_FLOAT(char **args, npy_intp *dimensions, npy_intp *steps, NPY_TRIG_OP my_trig_op)
+{
+#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
+ if (IS_OUTPUT_BLOCKABLE_UNARY(sizeof(npy_float), @REGISTER_SIZE@)) {
+ @ISA@_sincos_FLOAT((npy_float*)args[1], (npy_float*)args[0], dimensions[0], steps[0], my_trig_op);
+ return 1;
+ }
+ else
+ return 0;
+#endif
+ return 0;
+}
+
/**end repeat**/
@@ -997,7 +1017,7 @@ sse2_sqrt_@TYPE@(@type@ * op, @type@ * ip, const npy_intp n)
LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES) {
op[i] = @scalarf@(ip[i]);
}
- assert(n < (VECTOR_SIZE_BYTES / sizeof(@type@)) ||
+ assert((npy_uintp)n < (VECTOR_SIZE_BYTES / sizeof(@type@)) ||
npy_is_aligned(&op[i], VECTOR_SIZE_BYTES));
if (npy_is_aligned(&ip[i], VECTOR_SIZE_BYTES)) {
LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
@@ -1049,7 +1069,7 @@ sse2_@kind@_@TYPE@(@type@ * op, @type@ * ip, const npy_intp n)
LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES) {
op[i] = @scalar@_@type@(ip[i]);
}
- assert(n < (VECTOR_SIZE_BYTES / sizeof(@type@)) ||
+ assert((npy_uintp)n < (VECTOR_SIZE_BYTES / sizeof(@type@)) ||
npy_is_aligned(&op[i], VECTOR_SIZE_BYTES));
if (npy_is_aligned(&ip[i], VECTOR_SIZE_BYTES)) {
LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
@@ -1084,7 +1104,7 @@ sse2_@kind@_@TYPE@(@type@ * ip, @type@ * op, const npy_intp n)
/* Order of operations important for MSVC 2015 */
*op = (*op @OP@ ip[i] || npy_isnan(*op)) ? *op : ip[i];
}
- assert(n < (stride) || npy_is_aligned(&ip[i], VECTOR_SIZE_BYTES));
+ assert((npy_uintp)n < (stride) || npy_is_aligned(&ip[i], VECTOR_SIZE_BYTES));
if (i + 3 * stride <= n) {
/* load the first elements */
@vtype@ c1 = @vpre@_load_@vsuf@((@type@*)&ip[i]);
@@ -1123,20 +1143,14 @@ sse2_@kind@_@TYPE@(@type@ * ip, @type@ * op, const npy_intp n)
/* bunch of helper functions used in ISA_exp/log_FLOAT*/
#if defined HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_fmadd(__m256 a, __m256 b, __m256 c)
-{
- return _mm256_add_ps(_mm256_mul_ps(a, b), c);
-}
-
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_get_full_load_mask(void)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_get_full_load_mask(void)
{
return _mm256_set1_ps(-1.0);
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_get_partial_load_mask(const npy_int num_lanes, const npy_int total_elem)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_get_partial_load_mask(const npy_int num_lanes, const npy_int total_elem)
{
float maskint[16] = {-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};
@@ -1144,8 +1158,8 @@ avx2_get_partial_load_mask(const npy_int num_lanes, const npy_int total_elem)
return _mm256_loadu_ps(addr);
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_masked_gather(__m256 src,
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_masked_gather(__m256 src,
npy_float* addr,
__m256i vindex,
__m256 mask)
@@ -1153,26 +1167,39 @@ avx2_masked_gather(__m256 src,
return _mm256_mask_i32gather_ps(src, addr, vindex, mask, 4);
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_masked_load(__m256 mask, npy_float* addr)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_masked_load(__m256 mask, npy_float* addr)
{
return _mm256_maskload_ps(addr, _mm256_cvtps_epi32(mask));
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_set_masked_lanes(__m256 x, __m256 val, __m256 mask)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_set_masked_lanes(__m256 x, __m256 val, __m256 mask)
{
return _mm256_blendv_ps(x, val, mask);
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_blend(__m256 x, __m256 y, __m256 ymask)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_blend(__m256 x, __m256 y, __m256 ymask)
{
return _mm256_blendv_ps(x, y, ymask);
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_get_exponent(__m256 x)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_should_calculate_sine(__m256i k, __m256i andop, __m256i cmp)
+{
+ return _mm256_cvtepi32_ps(
+ _mm256_cmpeq_epi32(_mm256_and_si256(k, andop), cmp));
+}
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_should_negate(__m256i k, __m256i andop, __m256i cmp)
+{
+ return fma_should_calculate_sine(k, andop, cmp);
+}
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_get_exponent(__m256 x)
{
/*
* Special handling of denormals:
@@ -1198,8 +1225,8 @@ avx2_get_exponent(__m256 x)
return _mm256_blendv_ps(exp, denorm_exp, denormal_mask);
}
-static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
-avx2_get_mantissa(__m256 x)
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA __m256
+fma_get_mantissa(__m256 x)
{
/*
* Special handling of denormals:
@@ -1223,6 +1250,46 @@ avx2_get_mantissa(__m256 x)
_mm256_and_si256(
_mm256_castps_si256(x), mantissa_bits), exp_126_bits));
}
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
+fma_scalef_ps(__m256 poly, __m256 quadrant)
+{
+ /*
+ * Handle denormals (which occur when quadrant <= -125):
+ * 1) This function computes poly*(2^quad) by adding the exponent of
+ poly to quad
+ * 2) When quad <= -125, the output is a denormal and the above logic
+ breaks down
+ * 3) To handle such cases, we split quadrant: -125 + (quadrant + 125)
+ * 4) poly*(2^-125) is computed the usual way
+ * 5) 2^(quad-125) can be computed by: 2 << abs(quad-125)
+ * 6) The final div operation generates the denormal
+ */
+ __m256 minquadrant = _mm256_set1_ps(-125.0f);
+ __m256 denormal_mask = _mm256_cmp_ps(quadrant, minquadrant, _CMP_LE_OQ);
+ if (_mm256_movemask_ps(denormal_mask) != 0x0000) {
+ __m256 quad_diff = _mm256_sub_ps(quadrant, minquadrant);
+ quad_diff = _mm256_sub_ps(_mm256_setzero_ps(), quad_diff);
+ quad_diff = _mm256_blendv_ps(_mm256_setzero_ps(), quad_diff, denormal_mask);
+ __m256i two_power_diff = _mm256_sllv_epi32(
+ _mm256_set1_epi32(1), _mm256_cvtps_epi32(quad_diff));
+ quadrant = _mm256_max_ps(quadrant, minquadrant); //keep quadrant >= -126
+ __m256i exponent = _mm256_slli_epi32(_mm256_cvtps_epi32(quadrant), 23);
+ poly = _mm256_castsi256_ps(
+ _mm256_add_epi32(
+ _mm256_castps_si256(poly), exponent));
+ __m256 denorm_poly = _mm256_div_ps(poly, _mm256_cvtepi32_ps(two_power_diff));
+ return _mm256_blendv_ps(poly, denorm_poly, denormal_mask);
+ }
+ else {
+ __m256i exponent = _mm256_slli_epi32(_mm256_cvtps_epi32(quadrant), 23);
+ poly = _mm256_castsi256_ps(
+ _mm256_add_epi32(
+ _mm256_castps_si256(poly), exponent));
+ return poly;
+ }
+}
+
#endif
#if defined HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS
@@ -1265,6 +1332,18 @@ avx512_blend(__m512 x, __m512 y, __mmask16 ymask)
return _mm512_mask_mov_ps(x, ymask, y);
}
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX512F __mmask16
+avx512_should_calculate_sine(__m512i k, __m512i andop, __m512i cmp)
+{
+ return _mm512_cmpeq_epi32_mask(_mm512_and_epi32(k, andop), cmp);
+}
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX512F __mmask16
+avx512_should_negate(__m512i k, __m512i andop, __m512i cmp)
+{
+ return avx512_should_calculate_sine(k, andop, cmp);
+}
+
static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX512F __m512
avx512_get_exponent(__m512 x)
{
@@ -1276,20 +1355,37 @@ avx512_get_mantissa(__m512 x)
{
return _mm512_getmant_ps(x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
}
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX512F __m512
+avx512_scalef_ps(__m512 poly, __m512 quadrant)
+{
+ return _mm512_scalef_ps(poly, quadrant);
+}
#endif
/**begin repeat
- * #ISA = AVX2, AVX512F#
- * #isa = avx2, avx512#
+ * #ISA = FMA, AVX512F#
+ * #isa = fma, avx512#
* #vtype = __m256, __m512#
* #vsize = 256, 512#
* #or = or_ps, kor#
* #vsub = , _mask#
* #mask = __m256, __mmask16#
- * #fmadd = avx2_fmadd,_mm512_fmadd_ps#
+ * #fmadd = _mm256_fmadd_ps, _mm512_fmadd_ps#
+ * #CHK = HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS, HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS#
**/
-#if defined HAVE_ATTRIBUTE_TARGET_@ISA@_WITH_INTRINSICS
+#if defined @CHK@
+
+/*
+ * Vectorized Cody-Waite range reduction technique
+ * Performs the reduction step x* = x - y*C in three steps:
+ * 1) x* = x - y*c1
+ * 2) x* = x - y*c2
+ * 3) x* = x - y*c3
+ * c1, c2 are exact floating points, c3 = C - c1 - c2 simulates higher precision
+ */
+
static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
@isa@_range_reduction(@vtype@ x, @vtype@ y, @vtype@ c1, @vtype@ c2, @vtype@ c3)
{
@@ -1298,12 +1394,56 @@ static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
reduced_x = @fmadd@(y, c3, reduced_x);
return reduced_x;
}
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @mask@
+@isa@_in_range_mask(@vtype@ x, npy_float fmax, npy_float fmin)
+{
+ @mask@ m1 = _mm@vsize@_cmp_ps@vsub@(
+ x, _mm@vsize@_set1_ps(fmax), _CMP_GT_OQ);
+ @mask@ m2 = _mm@vsize@_cmp_ps@vsub@(
+ x, _mm@vsize@_set1_ps(fmin), _CMP_LT_OQ);
+ return _mm@vsize@_@or@(m1,m2);
+}
+
+/*
+ * Approximate cosine algorithm for x \in [-PI/4, PI/4]
+ * Maximum ULP across all 32-bit floats = 0.875
+ */
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
+@isa@_cosine(@vtype@ x2, @vtype@ invf8, @vtype@ invf6, @vtype@ invf4,
+ @vtype@ invf2, @vtype@ invf0)
+{
+ @vtype@ cos = @fmadd@(invf8, x2, invf6);
+ cos = @fmadd@(cos, x2, invf4);
+ cos = @fmadd@(cos, x2, invf2);
+ cos = @fmadd@(cos, x2, invf0);
+ return cos;
+}
+
+/*
+ * Approximate sine algorithm for x \in [-PI/4, PI/4]
+ * Maximum ULP across all 32-bit floats = 0.647
+ */
+
+static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
+@isa@_sine(@vtype@ x, @vtype@ x2, @vtype@ invf9, @vtype@ invf7,
+ @vtype@ invf5, @vtype@ invf3,
+ @vtype@ zero)
+{
+ @vtype@ sin = @fmadd@(invf9, x2, invf7);
+ sin = @fmadd@(sin, x2, invf5);
+ sin = @fmadd@(sin, x2, invf3);
+ sin = @fmadd@(sin, x2, zero);
+ sin = @fmadd@(sin, x, x);
+ return sin;
+}
#endif
/**end repeat**/
/**begin repeat
- * #ISA = AVX2, AVX512F#
- * #isa = avx2, avx512#
+ * #ISA = FMA, AVX512F#
+ * #isa = fma, avx512#
* #vtype = __m256, __m512#
* #vsize = 256, 512#
* #BYTES = 32, 64#
@@ -1312,13 +1452,165 @@ static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
* #or_masks =_mm256_or_ps, _mm512_kor#
* #and_masks =_mm256_and_ps, _mm512_kand#
* #xor_masks =_mm256_xor_ps, _mm512_kxor#
- * #fmadd = avx2_fmadd,_mm512_fmadd_ps#
+ * #fmadd = _mm256_fmadd_ps, _mm512_fmadd_ps#
* #mask_to_int = _mm256_movemask_ps, #
* #full_mask= 0xFF, 0xFFFF#
* #masked_store = _mm256_maskstore_ps, _mm512_mask_storeu_ps#
* #cvtps_epi32 = _mm256_cvtps_epi32, #
+ * #CHK = HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS, HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS#
+ */
+
+
+/*
+ * Vectorized approximate sine/cosine algorithms: The following code is a
+ * vectorized version of the algorithm presented here:
+ * https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
+ * (1) Load data in ZMM/YMM registers and generate mask for elements that are
+ * within range [-71476.0625f, 71476.0625f] for cosine and [-117435.992f,
+ * 117435.992f] for sine.
+ * (2) For elements within range, perform range reduction using Cody-Waite's
+ * method: x* = x - y*PI/2, where y = rint(x*2/PI). x* \in [-PI/4, PI/4].
+ * (3) Map cos(x) to (+/-)sine or (+/-)cosine of x* based on the quadrant k =
+ * int(y).
+ * (4) For elements outside that range, Cody-Waite reduction peforms poorly
+ * leading to catastrophic cancellation. We compute cosine by calling glibc in
+ * a scalar fashion.
+ * (5) Vectorized implementation has a max ULP of 1.49 and performs at least
+ * 5-7x faster than scalar implementations when magnitude of all elements in
+ * the array < 71476.0625f (117435.992f for sine). Worst case performance is
+ * when all the elements are large leading to about 1-2% reduction in
+ * performance.
*/
+#if defined @CHK@
+static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
+@ISA@_sincos_FLOAT(npy_float * op,
+ npy_float * ip,
+ const npy_intp array_size,
+ const npy_intp steps,
+ NPY_TRIG_OP my_trig_op)
+{
+ const npy_intp stride = steps/sizeof(npy_float);
+ const npy_int num_lanes = @BYTES@/sizeof(npy_float);
+ npy_float large_number = 71476.0625f;
+ if (my_trig_op == npy_compute_sin) {
+ large_number = 117435.992f;
+ }
+
+ /* Load up frequently used constants */
+ @vtype@i zeros = _mm@vsize@_set1_epi32(0);
+ @vtype@i ones = _mm@vsize@_set1_epi32(1);
+ @vtype@i twos = _mm@vsize@_set1_epi32(2);
+ @vtype@ two_over_pi = _mm@vsize@_set1_ps(NPY_TWO_O_PIf);
+ @vtype@ codyw_c1 = _mm@vsize@_set1_ps(NPY_CODY_WAITE_PI_O_2_HIGHf);
+ @vtype@ codyw_c2 = _mm@vsize@_set1_ps(NPY_CODY_WAITE_PI_O_2_MEDf);
+ @vtype@ codyw_c3 = _mm@vsize@_set1_ps(NPY_CODY_WAITE_PI_O_2_LOWf);
+ @vtype@ cos_invf0 = _mm@vsize@_set1_ps(NPY_COEFF_INVF0_COSINEf);
+ @vtype@ cos_invf2 = _mm@vsize@_set1_ps(NPY_COEFF_INVF2_COSINEf);
+ @vtype@ cos_invf4 = _mm@vsize@_set1_ps(NPY_COEFF_INVF4_COSINEf);
+ @vtype@ cos_invf6 = _mm@vsize@_set1_ps(NPY_COEFF_INVF6_COSINEf);
+ @vtype@ cos_invf8 = _mm@vsize@_set1_ps(NPY_COEFF_INVF8_COSINEf);
+ @vtype@ sin_invf3 = _mm@vsize@_set1_ps(NPY_COEFF_INVF3_SINEf);
+ @vtype@ sin_invf5 = _mm@vsize@_set1_ps(NPY_COEFF_INVF5_SINEf);
+ @vtype@ sin_invf7 = _mm@vsize@_set1_ps(NPY_COEFF_INVF7_SINEf);
+ @vtype@ sin_invf9 = _mm@vsize@_set1_ps(NPY_COEFF_INVF9_SINEf);
+ @vtype@ cvt_magic = _mm@vsize@_set1_ps(NPY_RINT_CVT_MAGICf);
+ @vtype@ zero_f = _mm@vsize@_set1_ps(0.0f);
+ @vtype@ quadrant, reduced_x, reduced_x2, cos, sin;
+ @vtype@i iquadrant;
+ @mask@ nan_mask, glibc_mask, sine_mask, negate_mask;
+ @mask@ load_mask = @isa@_get_full_load_mask();
+ npy_intp num_remaining_elements = array_size;
+ npy_int indexarr[16];
+ for (npy_int ii = 0; ii < 16; ii++) {
+ indexarr[ii] = ii*stride;
+ }
+ @vtype@i vindex = _mm@vsize@_loadu_si@vsize@((@vtype@i*)&indexarr[0]);
+
+ while (num_remaining_elements > 0) {
+
+ if (num_remaining_elements < num_lanes) {
+ load_mask = @isa@_get_partial_load_mask(num_remaining_elements,
+ num_lanes);
+ }
+
+ @vtype@ x;
+ if (stride == 1) {
+ x = @isa@_masked_load(load_mask, ip);
+ }
+ else {
+ x = @isa@_masked_gather(zero_f, ip, vindex, load_mask);
+ }
+
+ /*
+ * For elements outside of this range, Cody-Waite's range reduction
+ * becomes inaccurate and we will call glibc to compute cosine for
+ * these numbers
+ */
+
+ glibc_mask = @isa@_in_range_mask(x, large_number,-large_number);
+ glibc_mask = @and_masks@(load_mask, glibc_mask);
+ nan_mask = _mm@vsize@_cmp_ps@vsub@(x, x, _CMP_NEQ_UQ);
+ x = @isa@_set_masked_lanes(x, zero_f, @or_masks@(nan_mask, glibc_mask));
+ npy_int iglibc_mask = @mask_to_int@(glibc_mask);
+
+ if (iglibc_mask != @full_mask@) {
+ quadrant = _mm@vsize@_mul_ps(x, two_over_pi);
+
+ /* round to nearest */
+ quadrant = _mm@vsize@_add_ps(quadrant, cvt_magic);
+ quadrant = _mm@vsize@_sub_ps(quadrant, cvt_magic);
+
+ /* Cody-Waite's range reduction algorithm */
+ reduced_x = @isa@_range_reduction(x, quadrant,
+ codyw_c1, codyw_c2, codyw_c3);
+ reduced_x2 = _mm@vsize@_mul_ps(reduced_x, reduced_x);
+
+ /* compute cosine and sine */
+ cos = @isa@_cosine(reduced_x2, cos_invf8, cos_invf6, cos_invf4,
+ cos_invf2, cos_invf0);
+ sin = @isa@_sine(reduced_x, reduced_x2, sin_invf9, sin_invf7,
+ sin_invf5, sin_invf3, zero_f);
+
+ iquadrant = _mm@vsize@_cvtps_epi32(quadrant);
+ if (my_trig_op == npy_compute_cos) {
+ iquadrant = _mm@vsize@_add_epi32(iquadrant, ones);
+ }
+
+ /* blend sin and cos based on the quadrant */
+ sine_mask = @isa@_should_calculate_sine(iquadrant, ones, zeros);
+ cos = @isa@_blend(cos, sin, sine_mask);
+
+ /* multiply by -1 for appropriate elements */
+ negate_mask = @isa@_should_negate(iquadrant, twos, twos);
+ cos = @isa@_blend(cos, _mm@vsize@_sub_ps(zero_f, cos), negate_mask);
+ cos = @isa@_set_masked_lanes(cos, _mm@vsize@_set1_ps(NPY_NANF), nan_mask);
+
+ @masked_store@(op, @cvtps_epi32@(load_mask), cos);
+ }
+
+ /* process elements using glibc for large elements */
+ if (my_trig_op == npy_compute_cos) {
+ for (int ii = 0; iglibc_mask != 0; ii++) {
+ if (iglibc_mask & 0x01) {
+ op[ii] = npy_cosf(ip[ii]);
+ }
+ iglibc_mask = iglibc_mask >> 1;
+ }
+ }
+ else {
+ for (int ii = 0; iglibc_mask != 0; ii++) {
+ if (iglibc_mask & 0x01) {
+ op[ii] = npy_sinf(ip[ii]);
+ }
+ iglibc_mask = iglibc_mask >> 1;
+ }
+ }
+ ip += num_lanes*stride;
+ op += num_lanes;
+ num_remaining_elements -= num_lanes;
+ }
+}
/*
* Vectorized implementation of exp using AVX2 and AVX512:
@@ -1335,7 +1627,6 @@ static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
* same x = 0xc2781e37)
*/
-#if defined HAVE_ATTRIBUTE_TARGET_@ISA@_WITH_INTRINSICS
static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
@ISA@_exp_FLOAT(npy_float * op,
npy_float * ip,
@@ -1345,7 +1636,7 @@ static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
const npy_intp stride = steps/sizeof(npy_float);
const npy_int num_lanes = @BYTES@/sizeof(npy_float);
npy_float xmax = 88.72283935546875f;
- npy_float xmin = -87.3365478515625f;
+ npy_float xmin = -103.97208404541015625f;
npy_int indexarr[16];
for (npy_int ii = 0; ii < 16; ii++) {
indexarr[ii] = ii*stride;
@@ -1369,7 +1660,6 @@ static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
@vtype@ zeros_f = _mm@vsize@_set1_ps(0.0f);
@vtype@ poly, num_poly, denom_poly, quadrant;
@vtype@i vindex = _mm@vsize@_loadu_si@vsize@((@vtype@i*)&indexarr[0]);
- @vtype@i exponent;
@mask@ xmax_mask, xmin_mask, nan_mask, inf_mask;
@mask@ overflow_mask = @isa@_get_partial_load_mask(0, num_lanes);
@@ -1426,10 +1716,7 @@ static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
* exponent of quadrant to the exponent of poly. quadrant is an int,
* so extracting exponent is simply extracting 8 bits.
*/
- exponent = _mm@vsize@_slli_epi32(_mm@vsize@_cvtps_epi32(quadrant), 23);
- poly = _mm@vsize@_castsi@vsize@_ps(
- _mm@vsize@_add_epi32(
- _mm@vsize@_castps_si@vsize@(poly), exponent));
+ poly = @isa@_scalef_ps(poly, quadrant);
/*
* elem > xmax; return inf
@@ -1494,6 +1781,7 @@ static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
@vtype@ log_q5 = _mm@vsize@_set1_ps(NPY_COEFF_Q5_LOGf);
@vtype@ loge2 = _mm@vsize@_set1_ps(NPY_LOGE2f);
@vtype@ nan = _mm@vsize@_set1_ps(NPY_NANF);
+ @vtype@ neg_nan = _mm@vsize@_set1_ps(-NPY_NANF);
@vtype@ neg_inf = _mm@vsize@_set1_ps(-NPY_INFINITYF);
@vtype@ inf = _mm@vsize@_set1_ps(NPY_INFINITYF);
@vtype@ zeros_f = _mm@vsize@_set1_ps(0.0f);
@@ -1560,11 +1848,12 @@ static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
poly = @fmadd@(exponent, loge2, poly);
/*
- * x < 0.0f; return NAN
+ * x < 0.0f; return -NAN
* x = +/- NAN; return NAN
* x = 0.0f; return -INF
*/
- poly = @isa@_set_masked_lanes(poly, nan, @or_masks@(negx_mask, nan_mask));
+ poly = @isa@_set_masked_lanes(poly, nan, nan_mask);
+ poly = @isa@_set_masked_lanes(poly, neg_nan, negx_mask);
poly = @isa@_set_masked_lanes(poly, neg_inf, zero_mask);
poly = @isa@_set_masked_lanes(poly, inf, inf_mask);
diff --git a/numpy/core/src/umath/ufunc_object.c b/numpy/core/src/umath/ufunc_object.c
index 5f9a0f7f4..c36680ed2 100644
--- a/numpy/core/src/umath/ufunc_object.c
+++ b/numpy/core/src/umath/ufunc_object.c
@@ -908,7 +908,7 @@ parse_ufunc_keywords(PyUFuncObject *ufunc, PyObject *kwds, PyObject **kwnames, .
typedef int converter(PyObject *, void *);
while (PyDict_Next(kwds, &pos, &key, &value)) {
- int i;
+ npy_intp i;
converter *convert;
void *output = NULL;
npy_intp index = locate_key(kwnames, key);
@@ -2297,7 +2297,7 @@ _parse_axes_arg(PyUFuncObject *ufunc, int op_core_num_dims[], PyObject *axes,
* Returns 0 on success, and -1 on failure
*/
static int
-_parse_axis_arg(PyUFuncObject *ufunc, int core_num_dims[], PyObject *axis,
+_parse_axis_arg(PyUFuncObject *ufunc, const int core_num_dims[], PyObject *axis,
PyArrayObject **op, int broadcast_ndim, int **remap_axis) {
int nop = ufunc->nargs;
int iop, axis_int;
@@ -2368,7 +2368,7 @@ _parse_axis_arg(PyUFuncObject *ufunc, int core_num_dims[], PyObject *axis,
*/
static int
_get_coredim_sizes(PyUFuncObject *ufunc, PyArrayObject **op,
- int *op_core_num_dims, npy_uint32 *core_dim_flags,
+ const int *op_core_num_dims, npy_uint32 *core_dim_flags,
npy_intp *core_dim_sizes, int **remap_axis) {
int i;
int nin = ufunc->nin;
@@ -4053,14 +4053,14 @@ PyUFunc_Reduceat(PyUFuncObject *ufunc, PyArrayObject *arr, PyArrayObject *ind,
int *op_axes[3] = {op_axes_arrays[0], op_axes_arrays[1],
op_axes_arrays[2]};
npy_uint32 op_flags[3];
- int i, idim, ndim, otype_final;
+ int idim, ndim, otype_final;
int need_outer_iterator = 0;
NpyIter *iter = NULL;
/* The reduceat indices - ind must be validated outside this call */
npy_intp *reduceat_ind;
- npy_intp ind_size, red_axis_size;
+ npy_intp i, ind_size, red_axis_size;
/* The selected inner loop */
PyUFuncGenericFunction innerloop = NULL;
void *innerloopdata = NULL;
@@ -4146,7 +4146,7 @@ PyUFunc_Reduceat(PyUFuncObject *ufunc, PyArrayObject *arr, PyArrayObject *ind,
#endif
/* Set up the op_axes for the outer loop */
- for (i = 0, idim = 0; idim < ndim; ++idim) {
+ for (idim = 0; idim < ndim; ++idim) {
/* Use the i-th iteration dimension to match up ind */
if (idim == axis) {
op_axes_arrays[0][idim] = axis;
@@ -4866,7 +4866,7 @@ ufunc_seterr(PyObject *NPY_UNUSED(dummy), PyObject *args)
NPY_NO_EXPORT int
PyUFunc_ReplaceLoopBySignature(PyUFuncObject *func,
PyUFuncGenericFunction newfunc,
- int *signature,
+ const int *signature,
PyUFuncGenericFunction *oldfunc)
{
int i, j;
@@ -4921,7 +4921,7 @@ PyUFunc_FromFuncAndDataAndSignatureAndIdentity(PyUFuncGenericFunction *func, voi
char *types, int ntypes,
int nin, int nout, int identity,
const char *name, const char *doc,
- int unused, const char *signature,
+ const int unused, const char *signature,
PyObject *identity_value)
{
PyUFuncObject *ufunc;
@@ -5223,7 +5223,7 @@ NPY_NO_EXPORT int
PyUFunc_RegisterLoopForType(PyUFuncObject *ufunc,
int usertype,
PyUFuncGenericFunction function,
- int *arg_types,
+ const int *arg_types,
void *data)
{
PyArray_Descr *descr;
diff --git a/numpy/core/src/umath/ufunc_type_resolution.c b/numpy/core/src/umath/ufunc_type_resolution.c
index d837df117..9be7b63a0 100644
--- a/numpy/core/src/umath/ufunc_type_resolution.c
+++ b/numpy/core/src/umath/ufunc_type_resolution.c
@@ -1958,7 +1958,8 @@ linear_search_type_resolver(PyUFuncObject *self,
npy_intp i, j, nin = self->nin, nop = nin + self->nout;
int types[NPY_MAXARGS];
const char *ufunc_name;
- int no_castable_output, use_min_scalar;
+ int no_castable_output = 0;
+ int use_min_scalar;
/* For making a better error message on coercion error */
char err_dst_typecode = '-', err_src_typecode = '-';
diff --git a/numpy/core/tests/data/umath-validation-set-README b/numpy/core/tests/data/umath-validation-set-README
new file mode 100644
index 000000000..6561ca3b5
--- /dev/null
+++ b/numpy/core/tests/data/umath-validation-set-README
@@ -0,0 +1,15 @@
+Steps to validate transcendental functions:
+1) Add a file 'umath-validation-set-<ufuncname>', where ufuncname is name of
+ the function in NumPy you want to validate
+2) The file should contain 4 columns: dtype,input,expected output,ulperror
+ a. dtype: one of np.float16, np.float32, np.float64
+ b. input: floating point input to ufunc in hex. Example: 0x414570a4
+ represents 12.340000152587890625
+ c. expected output: floating point output for the corresponding input in hex.
+ This should be computed using a high(er) precision library and then rounded to
+ same format as the input.
+ d. ulperror: expected maximum ulp error of the function. This
+ should be same across all rows of the same dtype. Otherwise, the function is
+ tested for the maximum ulp error among all entries of that dtype.
+3) Add file umath-validation-set-<ufuncname> to the test file test_umath_accuracy.py
+ which will then validate your ufunc.
diff --git a/numpy/core/tests/data/umath-validation-set-cos b/numpy/core/tests/data/umath-validation-set-cos
new file mode 100644
index 000000000..360ebcd6a
--- /dev/null
+++ b/numpy/core/tests/data/umath-validation-set-cos
@@ -0,0 +1,707 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0x3f800000,2
+np.float32,0x007b2490,0x3f800000,2
+np.float32,0x007c99fa,0x3f800000,2
+np.float32,0x00734a0c,0x3f800000,2
+np.float32,0x0070de24,0x3f800000,2
+np.float32,0x007fffff,0x3f800000,2
+np.float32,0x00000001,0x3f800000,2
+## -ve denormals ##
+np.float32,0x80495d65,0x3f800000,2
+np.float32,0x806894f6,0x3f800000,2
+np.float32,0x80555a76,0x3f800000,2
+np.float32,0x804e1fb8,0x3f800000,2
+np.float32,0x80687de9,0x3f800000,2
+np.float32,0x807fffff,0x3f800000,2
+np.float32,0x80000001,0x3f800000,2
+## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
+np.float32,0x00000000,0x3f800000,2
+np.float32,0x80000000,0x3f800000,2
+np.float32,0x00800000,0x3f800000,2
+np.float32,0x7f7fffff,0x3f5a5f96,2
+np.float32,0x80800000,0x3f800000,2
+np.float32,0xff7fffff,0x3f5a5f96,2
+## 1.00f + 0x00000001 ##
+np.float32,0x3f800000,0x3f0a5140,2
+np.float32,0x3f800001,0x3f0a513f,2
+np.float32,0x3f800002,0x3f0a513d,2
+np.float32,0xc090a8b0,0xbe4332ce,2
+np.float32,0x41ce3184,0x3f4d1de1,2
+np.float32,0xc1d85848,0xbeaa8980,2
+np.float32,0x402b8820,0xbf653aa3,2
+np.float32,0x42b4e454,0xbf4a338b,2
+np.float32,0x42a67a60,0x3c58202e,2
+np.float32,0x41d92388,0xbed987c7,2
+np.float32,0x422dd66c,0x3f5dcab3,2
+np.float32,0xc28f5be6,0xbf5688d8,2
+np.float32,0x41ab2674,0xbf53aa3b,2
+np.float32,0xd0102756,0x3f45d12d,2
+np.float32,0xcf99405e,0xbe9cf281,2
+np.float32,0xcfd83a12,0x3eaae4ca,2
+np.float32,0x4fb54db0,0xbf7b2894,2
+np.float32,0xcfcca29d,0x3f752e4e,2
+np.float32,0xceec2ac0,0xbf745303,2
+np.float32,0xcfdca97f,0x3ef554a7,2
+np.float32,0xcfe92b0a,0x3f4618f2,2
+np.float32,0x5014b0eb,0x3ee933e6,2
+np.float32,0xcfa7ee96,0xbeedeeb2,2
+np.float32,0x754c09a0,0xbef298de,2
+np.float32,0x77a731fb,0x3f24599f,2
+np.float32,0x76de2494,0x3f79576c,2
+np.float32,0xf74920dc,0xbf4d196e,2
+np.float32,0x7707a312,0xbeb5cb8e,2
+np.float32,0x75bf9790,0xbf7fd7fe,2
+np.float32,0xf4ca7c40,0xbe15107d,2
+np.float32,0x77e91899,0xbe8a968b,2
+np.float32,0xf74c9820,0xbf7f9677,2
+np.float32,0x7785ca29,0xbe6ef93b,2
+np.float32,0x3f490fdb,0x3f3504f3,2
+np.float32,0xbf490fdb,0x3f3504f3,2
+np.float32,0x3fc90fdb,0xb33bbd2e,2
+np.float32,0xbfc90fdb,0xb33bbd2e,2
+np.float32,0x40490fdb,0xbf800000,2
+np.float32,0xc0490fdb,0xbf800000,2
+np.float32,0x3fc90fdb,0xb33bbd2e,2
+np.float32,0xbfc90fdb,0xb33bbd2e,2
+np.float32,0x40490fdb,0xbf800000,2
+np.float32,0xc0490fdb,0xbf800000,2
+np.float32,0x40c90fdb,0x3f800000,2
+np.float32,0xc0c90fdb,0x3f800000,2
+np.float32,0x4016cbe4,0xbf3504f3,2
+np.float32,0xc016cbe4,0xbf3504f3,2
+np.float32,0x4096cbe4,0x324cde2e,2
+np.float32,0xc096cbe4,0x324cde2e,2
+np.float32,0x4116cbe4,0xbf800000,2
+np.float32,0xc116cbe4,0xbf800000,2
+np.float32,0x40490fdb,0xbf800000,2
+np.float32,0xc0490fdb,0xbf800000,2
+np.float32,0x40c90fdb,0x3f800000,2
+np.float32,0xc0c90fdb,0x3f800000,2
+np.float32,0x41490fdb,0x3f800000,2
+np.float32,0xc1490fdb,0x3f800000,2
+np.float32,0x407b53d2,0xbf3504f1,2
+np.float32,0xc07b53d2,0xbf3504f1,2
+np.float32,0x40fb53d2,0xb4b5563d,2
+np.float32,0xc0fb53d2,0xb4b5563d,2
+np.float32,0x417b53d2,0xbf800000,2
+np.float32,0xc17b53d2,0xbf800000,2
+np.float32,0x4096cbe4,0x324cde2e,2
+np.float32,0xc096cbe4,0x324cde2e,2
+np.float32,0x4116cbe4,0xbf800000,2
+np.float32,0xc116cbe4,0xbf800000,2
+np.float32,0x4196cbe4,0x3f800000,2
+np.float32,0xc196cbe4,0x3f800000,2
+np.float32,0x40afede0,0x3f3504f7,2
+np.float32,0xc0afede0,0x3f3504f7,2
+np.float32,0x412fede0,0x353222c4,2
+np.float32,0xc12fede0,0x353222c4,2
+np.float32,0x41afede0,0xbf800000,2
+np.float32,0xc1afede0,0xbf800000,2
+np.float32,0x40c90fdb,0x3f800000,2
+np.float32,0xc0c90fdb,0x3f800000,2
+np.float32,0x41490fdb,0x3f800000,2
+np.float32,0xc1490fdb,0x3f800000,2
+np.float32,0x41c90fdb,0x3f800000,2
+np.float32,0xc1c90fdb,0x3f800000,2
+np.float32,0x40e231d6,0x3f3504f3,2
+np.float32,0xc0e231d6,0x3f3504f3,2
+np.float32,0x416231d6,0xb319a6a2,2
+np.float32,0xc16231d6,0xb319a6a2,2
+np.float32,0x41e231d6,0xbf800000,2
+np.float32,0xc1e231d6,0xbf800000,2
+np.float32,0x40fb53d2,0xb4b5563d,2
+np.float32,0xc0fb53d2,0xb4b5563d,2
+np.float32,0x417b53d2,0xbf800000,2
+np.float32,0xc17b53d2,0xbf800000,2
+np.float32,0x41fb53d2,0x3f800000,2
+np.float32,0xc1fb53d2,0x3f800000,2
+np.float32,0x410a3ae7,0xbf3504fb,2
+np.float32,0xc10a3ae7,0xbf3504fb,2
+np.float32,0x418a3ae7,0x35b08908,2
+np.float32,0xc18a3ae7,0x35b08908,2
+np.float32,0x420a3ae7,0xbf800000,2
+np.float32,0xc20a3ae7,0xbf800000,2
+np.float32,0x4116cbe4,0xbf800000,2
+np.float32,0xc116cbe4,0xbf800000,2
+np.float32,0x4196cbe4,0x3f800000,2
+np.float32,0xc196cbe4,0x3f800000,2
+np.float32,0x4216cbe4,0x3f800000,2
+np.float32,0xc216cbe4,0x3f800000,2
+np.float32,0x41235ce2,0xbf3504ef,2
+np.float32,0xc1235ce2,0xbf3504ef,2
+np.float32,0x41a35ce2,0xb53889b6,2
+np.float32,0xc1a35ce2,0xb53889b6,2
+np.float32,0x42235ce2,0xbf800000,2
+np.float32,0xc2235ce2,0xbf800000,2
+np.float32,0x412fede0,0x353222c4,2
+np.float32,0xc12fede0,0x353222c4,2
+np.float32,0x41afede0,0xbf800000,2
+np.float32,0xc1afede0,0xbf800000,2
+np.float32,0x422fede0,0x3f800000,2
+np.float32,0xc22fede0,0x3f800000,2
+np.float32,0x413c7edd,0x3f3504f4,2
+np.float32,0xc13c7edd,0x3f3504f4,2
+np.float32,0x41bc7edd,0x33800add,2
+np.float32,0xc1bc7edd,0x33800add,2
+np.float32,0x423c7edd,0xbf800000,2
+np.float32,0xc23c7edd,0xbf800000,2
+np.float32,0x41490fdb,0x3f800000,2
+np.float32,0xc1490fdb,0x3f800000,2
+np.float32,0x41c90fdb,0x3f800000,2
+np.float32,0xc1c90fdb,0x3f800000,2
+np.float32,0x42490fdb,0x3f800000,2
+np.float32,0xc2490fdb,0x3f800000,2
+np.float32,0x4155a0d9,0x3f3504eb,2
+np.float32,0xc155a0d9,0x3f3504eb,2
+np.float32,0x41d5a0d9,0xb5b3bc81,2
+np.float32,0xc1d5a0d9,0xb5b3bc81,2
+np.float32,0x4255a0d9,0xbf800000,2
+np.float32,0xc255a0d9,0xbf800000,2
+np.float32,0x416231d6,0xb319a6a2,2
+np.float32,0xc16231d6,0xb319a6a2,2
+np.float32,0x41e231d6,0xbf800000,2
+np.float32,0xc1e231d6,0xbf800000,2
+np.float32,0x426231d6,0x3f800000,2
+np.float32,0xc26231d6,0x3f800000,2
+np.float32,0x416ec2d4,0xbf3504f7,2
+np.float32,0xc16ec2d4,0xbf3504f7,2
+np.float32,0x41eec2d4,0x353ef0a7,2
+np.float32,0xc1eec2d4,0x353ef0a7,2
+np.float32,0x426ec2d4,0xbf800000,2
+np.float32,0xc26ec2d4,0xbf800000,2
+np.float32,0x417b53d2,0xbf800000,2
+np.float32,0xc17b53d2,0xbf800000,2
+np.float32,0x41fb53d2,0x3f800000,2
+np.float32,0xc1fb53d2,0x3f800000,2
+np.float32,0x427b53d2,0x3f800000,2
+np.float32,0xc27b53d2,0x3f800000,2
+np.float32,0x4183f268,0xbf3504e7,2
+np.float32,0xc183f268,0xbf3504e7,2
+np.float32,0x4203f268,0xb6059a13,2
+np.float32,0xc203f268,0xb6059a13,2
+np.float32,0x4283f268,0xbf800000,2
+np.float32,0xc283f268,0xbf800000,2
+np.float32,0x418a3ae7,0x35b08908,2
+np.float32,0xc18a3ae7,0x35b08908,2
+np.float32,0x420a3ae7,0xbf800000,2
+np.float32,0xc20a3ae7,0xbf800000,2
+np.float32,0x428a3ae7,0x3f800000,2
+np.float32,0xc28a3ae7,0x3f800000,2
+np.float32,0x41908365,0x3f3504f0,2
+np.float32,0xc1908365,0x3f3504f0,2
+np.float32,0x42108365,0xb512200d,2
+np.float32,0xc2108365,0xb512200d,2
+np.float32,0x42908365,0xbf800000,2
+np.float32,0xc2908365,0xbf800000,2
+np.float32,0x4196cbe4,0x3f800000,2
+np.float32,0xc196cbe4,0x3f800000,2
+np.float32,0x4216cbe4,0x3f800000,2
+np.float32,0xc216cbe4,0x3f800000,2
+np.float32,0x4296cbe4,0x3f800000,2
+np.float32,0xc296cbe4,0x3f800000,2
+np.float32,0x419d1463,0x3f3504ef,2
+np.float32,0xc19d1463,0x3f3504ef,2
+np.float32,0x421d1463,0xb5455799,2
+np.float32,0xc21d1463,0xb5455799,2
+np.float32,0x429d1463,0xbf800000,2
+np.float32,0xc29d1463,0xbf800000,2
+np.float32,0x41a35ce2,0xb53889b6,2
+np.float32,0xc1a35ce2,0xb53889b6,2
+np.float32,0x42235ce2,0xbf800000,2
+np.float32,0xc2235ce2,0xbf800000,2
+np.float32,0x42a35ce2,0x3f800000,2
+np.float32,0xc2a35ce2,0x3f800000,2
+np.float32,0x41a9a561,0xbf3504ff,2
+np.float32,0xc1a9a561,0xbf3504ff,2
+np.float32,0x4229a561,0x360733d0,2
+np.float32,0xc229a561,0x360733d0,2
+np.float32,0x42a9a561,0xbf800000,2
+np.float32,0xc2a9a561,0xbf800000,2
+np.float32,0x41afede0,0xbf800000,2
+np.float32,0xc1afede0,0xbf800000,2
+np.float32,0x422fede0,0x3f800000,2
+np.float32,0xc22fede0,0x3f800000,2
+np.float32,0x42afede0,0x3f800000,2
+np.float32,0xc2afede0,0x3f800000,2
+np.float32,0x41b6365e,0xbf3504f6,2
+np.float32,0xc1b6365e,0xbf3504f6,2
+np.float32,0x4236365e,0x350bb91c,2
+np.float32,0xc236365e,0x350bb91c,2
+np.float32,0x42b6365e,0xbf800000,2
+np.float32,0xc2b6365e,0xbf800000,2
+np.float32,0x41bc7edd,0x33800add,2
+np.float32,0xc1bc7edd,0x33800add,2
+np.float32,0x423c7edd,0xbf800000,2
+np.float32,0xc23c7edd,0xbf800000,2
+np.float32,0x42bc7edd,0x3f800000,2
+np.float32,0xc2bc7edd,0x3f800000,2
+np.float32,0x41c2c75c,0x3f3504f8,2
+np.float32,0xc1c2c75c,0x3f3504f8,2
+np.float32,0x4242c75c,0x354bbe8a,2
+np.float32,0xc242c75c,0x354bbe8a,2
+np.float32,0x42c2c75c,0xbf800000,2
+np.float32,0xc2c2c75c,0xbf800000,2
+np.float32,0x41c90fdb,0x3f800000,2
+np.float32,0xc1c90fdb,0x3f800000,2
+np.float32,0x42490fdb,0x3f800000,2
+np.float32,0xc2490fdb,0x3f800000,2
+np.float32,0x42c90fdb,0x3f800000,2
+np.float32,0xc2c90fdb,0x3f800000,2
+np.float32,0x41cf585a,0x3f3504e7,2
+np.float32,0xc1cf585a,0x3f3504e7,2
+np.float32,0x424f585a,0xb608cd8c,2
+np.float32,0xc24f585a,0xb608cd8c,2
+np.float32,0x42cf585a,0xbf800000,2
+np.float32,0xc2cf585a,0xbf800000,2
+np.float32,0x41d5a0d9,0xb5b3bc81,2
+np.float32,0xc1d5a0d9,0xb5b3bc81,2
+np.float32,0x4255a0d9,0xbf800000,2
+np.float32,0xc255a0d9,0xbf800000,2
+np.float32,0x42d5a0d9,0x3f800000,2
+np.float32,0xc2d5a0d9,0x3f800000,2
+np.float32,0x41dbe958,0xbf350507,2
+np.float32,0xc1dbe958,0xbf350507,2
+np.float32,0x425be958,0x365eab75,2
+np.float32,0xc25be958,0x365eab75,2
+np.float32,0x42dbe958,0xbf800000,2
+np.float32,0xc2dbe958,0xbf800000,2
+np.float32,0x41e231d6,0xbf800000,2
+np.float32,0xc1e231d6,0xbf800000,2
+np.float32,0x426231d6,0x3f800000,2
+np.float32,0xc26231d6,0x3f800000,2
+np.float32,0x42e231d6,0x3f800000,2
+np.float32,0xc2e231d6,0x3f800000,2
+np.float32,0x41e87a55,0xbf3504ef,2
+np.float32,0xc1e87a55,0xbf3504ef,2
+np.float32,0x42687a55,0xb552257b,2
+np.float32,0xc2687a55,0xb552257b,2
+np.float32,0x42e87a55,0xbf800000,2
+np.float32,0xc2e87a55,0xbf800000,2
+np.float32,0x41eec2d4,0x353ef0a7,2
+np.float32,0xc1eec2d4,0x353ef0a7,2
+np.float32,0x426ec2d4,0xbf800000,2
+np.float32,0xc26ec2d4,0xbf800000,2
+np.float32,0x42eec2d4,0x3f800000,2
+np.float32,0xc2eec2d4,0x3f800000,2
+np.float32,0x41f50b53,0x3f3504ff,2
+np.float32,0xc1f50b53,0x3f3504ff,2
+np.float32,0x42750b53,0x360a6748,2
+np.float32,0xc2750b53,0x360a6748,2
+np.float32,0x42f50b53,0xbf800000,2
+np.float32,0xc2f50b53,0xbf800000,2
+np.float32,0x41fb53d2,0x3f800000,2
+np.float32,0xc1fb53d2,0x3f800000,2
+np.float32,0x427b53d2,0x3f800000,2
+np.float32,0xc27b53d2,0x3f800000,2
+np.float32,0x42fb53d2,0x3f800000,2
+np.float32,0xc2fb53d2,0x3f800000,2
+np.float32,0x4200ce28,0x3f3504f6,2
+np.float32,0xc200ce28,0x3f3504f6,2
+np.float32,0x4280ce28,0x34fdd672,2
+np.float32,0xc280ce28,0x34fdd672,2
+np.float32,0x4300ce28,0xbf800000,2
+np.float32,0xc300ce28,0xbf800000,2
+np.float32,0x4203f268,0xb6059a13,2
+np.float32,0xc203f268,0xb6059a13,2
+np.float32,0x4283f268,0xbf800000,2
+np.float32,0xc283f268,0xbf800000,2
+np.float32,0x4303f268,0x3f800000,2
+np.float32,0xc303f268,0x3f800000,2
+np.float32,0x420716a7,0xbf3504f8,2
+np.float32,0xc20716a7,0xbf3504f8,2
+np.float32,0x428716a7,0x35588c6d,2
+np.float32,0xc28716a7,0x35588c6d,2
+np.float32,0x430716a7,0xbf800000,2
+np.float32,0xc30716a7,0xbf800000,2
+np.float32,0x420a3ae7,0xbf800000,2
+np.float32,0xc20a3ae7,0xbf800000,2
+np.float32,0x428a3ae7,0x3f800000,2
+np.float32,0xc28a3ae7,0x3f800000,2
+np.float32,0x430a3ae7,0x3f800000,2
+np.float32,0xc30a3ae7,0x3f800000,2
+np.float32,0x420d5f26,0xbf3504e7,2
+np.float32,0xc20d5f26,0xbf3504e7,2
+np.float32,0x428d5f26,0xb60c0105,2
+np.float32,0xc28d5f26,0xb60c0105,2
+np.float32,0x430d5f26,0xbf800000,2
+np.float32,0xc30d5f26,0xbf800000,2
+np.float32,0x42108365,0xb512200d,2
+np.float32,0xc2108365,0xb512200d,2
+np.float32,0x42908365,0xbf800000,2
+np.float32,0xc2908365,0xbf800000,2
+np.float32,0x43108365,0x3f800000,2
+np.float32,0xc3108365,0x3f800000,2
+np.float32,0x4213a7a5,0x3f350507,2
+np.float32,0xc213a7a5,0x3f350507,2
+np.float32,0x4293a7a5,0x3661deee,2
+np.float32,0xc293a7a5,0x3661deee,2
+np.float32,0x4313a7a5,0xbf800000,2
+np.float32,0xc313a7a5,0xbf800000,2
+np.float32,0x4216cbe4,0x3f800000,2
+np.float32,0xc216cbe4,0x3f800000,2
+np.float32,0x4296cbe4,0x3f800000,2
+np.float32,0xc296cbe4,0x3f800000,2
+np.float32,0x4316cbe4,0x3f800000,2
+np.float32,0xc316cbe4,0x3f800000,2
+np.float32,0x4219f024,0x3f3504d8,2
+np.float32,0xc219f024,0x3f3504d8,2
+np.float32,0x4299f024,0xb69bde6c,2
+np.float32,0xc299f024,0xb69bde6c,2
+np.float32,0x4319f024,0xbf800000,2
+np.float32,0xc319f024,0xbf800000,2
+np.float32,0x421d1463,0xb5455799,2
+np.float32,0xc21d1463,0xb5455799,2
+np.float32,0x429d1463,0xbf800000,2
+np.float32,0xc29d1463,0xbf800000,2
+np.float32,0x431d1463,0x3f800000,2
+np.float32,0xc31d1463,0x3f800000,2
+np.float32,0x422038a3,0xbf350516,2
+np.float32,0xc22038a3,0xbf350516,2
+np.float32,0x42a038a3,0x36c6cd61,2
+np.float32,0xc2a038a3,0x36c6cd61,2
+np.float32,0x432038a3,0xbf800000,2
+np.float32,0xc32038a3,0xbf800000,2
+np.float32,0x42235ce2,0xbf800000,2
+np.float32,0xc2235ce2,0xbf800000,2
+np.float32,0x42a35ce2,0x3f800000,2
+np.float32,0xc2a35ce2,0x3f800000,2
+np.float32,0x43235ce2,0x3f800000,2
+np.float32,0xc3235ce2,0x3f800000,2
+np.float32,0x42268121,0xbf3504f6,2
+np.float32,0xc2268121,0xbf3504f6,2
+np.float32,0x42a68121,0x34e43aac,2
+np.float32,0xc2a68121,0x34e43aac,2
+np.float32,0x43268121,0xbf800000,2
+np.float32,0xc3268121,0xbf800000,2
+np.float32,0x4229a561,0x360733d0,2
+np.float32,0xc229a561,0x360733d0,2
+np.float32,0x42a9a561,0xbf800000,2
+np.float32,0xc2a9a561,0xbf800000,2
+np.float32,0x4329a561,0x3f800000,2
+np.float32,0xc329a561,0x3f800000,2
+np.float32,0x422cc9a0,0x3f3504f8,2
+np.float32,0xc22cc9a0,0x3f3504f8,2
+np.float32,0x42acc9a0,0x35655a50,2
+np.float32,0xc2acc9a0,0x35655a50,2
+np.float32,0x432cc9a0,0xbf800000,2
+np.float32,0xc32cc9a0,0xbf800000,2
+np.float32,0x422fede0,0x3f800000,2
+np.float32,0xc22fede0,0x3f800000,2
+np.float32,0x42afede0,0x3f800000,2
+np.float32,0xc2afede0,0x3f800000,2
+np.float32,0x432fede0,0x3f800000,2
+np.float32,0xc32fede0,0x3f800000,2
+np.float32,0x4233121f,0x3f3504e7,2
+np.float32,0xc233121f,0x3f3504e7,2
+np.float32,0x42b3121f,0xb60f347d,2
+np.float32,0xc2b3121f,0xb60f347d,2
+np.float32,0x4333121f,0xbf800000,2
+np.float32,0xc333121f,0xbf800000,2
+np.float32,0x4236365e,0x350bb91c,2
+np.float32,0xc236365e,0x350bb91c,2
+np.float32,0x42b6365e,0xbf800000,2
+np.float32,0xc2b6365e,0xbf800000,2
+np.float32,0x4336365e,0x3f800000,2
+np.float32,0xc336365e,0x3f800000,2
+np.float32,0x42395a9e,0xbf350507,2
+np.float32,0xc2395a9e,0xbf350507,2
+np.float32,0x42b95a9e,0x36651267,2
+np.float32,0xc2b95a9e,0x36651267,2
+np.float32,0x43395a9e,0xbf800000,2
+np.float32,0xc3395a9e,0xbf800000,2
+np.float32,0x423c7edd,0xbf800000,2
+np.float32,0xc23c7edd,0xbf800000,2
+np.float32,0x42bc7edd,0x3f800000,2
+np.float32,0xc2bc7edd,0x3f800000,2
+np.float32,0x433c7edd,0x3f800000,2
+np.float32,0xc33c7edd,0x3f800000,2
+np.float32,0x423fa31d,0xbf3504d7,2
+np.float32,0xc23fa31d,0xbf3504d7,2
+np.float32,0x42bfa31d,0xb69d7828,2
+np.float32,0xc2bfa31d,0xb69d7828,2
+np.float32,0x433fa31d,0xbf800000,2
+np.float32,0xc33fa31d,0xbf800000,2
+np.float32,0x4242c75c,0x354bbe8a,2
+np.float32,0xc242c75c,0x354bbe8a,2
+np.float32,0x42c2c75c,0xbf800000,2
+np.float32,0xc2c2c75c,0xbf800000,2
+np.float32,0x4342c75c,0x3f800000,2
+np.float32,0xc342c75c,0x3f800000,2
+np.float32,0x4245eb9c,0x3f350517,2
+np.float32,0xc245eb9c,0x3f350517,2
+np.float32,0x42c5eb9c,0x36c8671d,2
+np.float32,0xc2c5eb9c,0x36c8671d,2
+np.float32,0x4345eb9c,0xbf800000,2
+np.float32,0xc345eb9c,0xbf800000,2
+np.float32,0x42490fdb,0x3f800000,2
+np.float32,0xc2490fdb,0x3f800000,2
+np.float32,0x42c90fdb,0x3f800000,2
+np.float32,0xc2c90fdb,0x3f800000,2
+np.float32,0x43490fdb,0x3f800000,2
+np.float32,0xc3490fdb,0x3f800000,2
+np.float32,0x424c341a,0x3f3504f5,2
+np.float32,0xc24c341a,0x3f3504f5,2
+np.float32,0x42cc341a,0x34ca9ee6,2
+np.float32,0xc2cc341a,0x34ca9ee6,2
+np.float32,0x434c341a,0xbf800000,2
+np.float32,0xc34c341a,0xbf800000,2
+np.float32,0x424f585a,0xb608cd8c,2
+np.float32,0xc24f585a,0xb608cd8c,2
+np.float32,0x42cf585a,0xbf800000,2
+np.float32,0xc2cf585a,0xbf800000,2
+np.float32,0x434f585a,0x3f800000,2
+np.float32,0xc34f585a,0x3f800000,2
+np.float32,0x42527c99,0xbf3504f9,2
+np.float32,0xc2527c99,0xbf3504f9,2
+np.float32,0x42d27c99,0x35722833,2
+np.float32,0xc2d27c99,0x35722833,2
+np.float32,0x43527c99,0xbf800000,2
+np.float32,0xc3527c99,0xbf800000,2
+np.float32,0x4255a0d9,0xbf800000,2
+np.float32,0xc255a0d9,0xbf800000,2
+np.float32,0x42d5a0d9,0x3f800000,2
+np.float32,0xc2d5a0d9,0x3f800000,2
+np.float32,0x4355a0d9,0x3f800000,2
+np.float32,0xc355a0d9,0x3f800000,2
+np.float32,0x4258c518,0xbf3504e6,2
+np.float32,0xc258c518,0xbf3504e6,2
+np.float32,0x42d8c518,0xb61267f6,2
+np.float32,0xc2d8c518,0xb61267f6,2
+np.float32,0x4358c518,0xbf800000,2
+np.float32,0xc358c518,0xbf800000,2
+np.float32,0x425be958,0x365eab75,2
+np.float32,0xc25be958,0x365eab75,2
+np.float32,0x42dbe958,0xbf800000,2
+np.float32,0xc2dbe958,0xbf800000,2
+np.float32,0x435be958,0x3f800000,2
+np.float32,0xc35be958,0x3f800000,2
+np.float32,0x425f0d97,0x3f350508,2
+np.float32,0xc25f0d97,0x3f350508,2
+np.float32,0x42df0d97,0x366845e0,2
+np.float32,0xc2df0d97,0x366845e0,2
+np.float32,0x435f0d97,0xbf800000,2
+np.float32,0xc35f0d97,0xbf800000,2
+np.float32,0x426231d6,0x3f800000,2
+np.float32,0xc26231d6,0x3f800000,2
+np.float32,0x42e231d6,0x3f800000,2
+np.float32,0xc2e231d6,0x3f800000,2
+np.float32,0x436231d6,0x3f800000,2
+np.float32,0xc36231d6,0x3f800000,2
+np.float32,0x42655616,0x3f3504d7,2
+np.float32,0xc2655616,0x3f3504d7,2
+np.float32,0x42e55616,0xb69f11e5,2
+np.float32,0xc2e55616,0xb69f11e5,2
+np.float32,0x43655616,0xbf800000,2
+np.float32,0xc3655616,0xbf800000,2
+np.float32,0x42687a55,0xb552257b,2
+np.float32,0xc2687a55,0xb552257b,2
+np.float32,0x42e87a55,0xbf800000,2
+np.float32,0xc2e87a55,0xbf800000,2
+np.float32,0x43687a55,0x3f800000,2
+np.float32,0xc3687a55,0x3f800000,2
+np.float32,0x426b9e95,0xbf350517,2
+np.float32,0xc26b9e95,0xbf350517,2
+np.float32,0x42eb9e95,0x36ca00d9,2
+np.float32,0xc2eb9e95,0x36ca00d9,2
+np.float32,0x436b9e95,0xbf800000,2
+np.float32,0xc36b9e95,0xbf800000,2
+np.float32,0x426ec2d4,0xbf800000,2
+np.float32,0xc26ec2d4,0xbf800000,2
+np.float32,0x42eec2d4,0x3f800000,2
+np.float32,0xc2eec2d4,0x3f800000,2
+np.float32,0x436ec2d4,0x3f800000,2
+np.float32,0xc36ec2d4,0x3f800000,2
+np.float32,0x4271e713,0xbf3504f5,2
+np.float32,0xc271e713,0xbf3504f5,2
+np.float32,0x42f1e713,0x34b10321,2
+np.float32,0xc2f1e713,0x34b10321,2
+np.float32,0x4371e713,0xbf800000,2
+np.float32,0xc371e713,0xbf800000,2
+np.float32,0x42750b53,0x360a6748,2
+np.float32,0xc2750b53,0x360a6748,2
+np.float32,0x42f50b53,0xbf800000,2
+np.float32,0xc2f50b53,0xbf800000,2
+np.float32,0x43750b53,0x3f800000,2
+np.float32,0xc3750b53,0x3f800000,2
+np.float32,0x42782f92,0x3f3504f9,2
+np.float32,0xc2782f92,0x3f3504f9,2
+np.float32,0x42f82f92,0x357ef616,2
+np.float32,0xc2f82f92,0x357ef616,2
+np.float32,0x43782f92,0xbf800000,2
+np.float32,0xc3782f92,0xbf800000,2
+np.float32,0x427b53d2,0x3f800000,2
+np.float32,0xc27b53d2,0x3f800000,2
+np.float32,0x42fb53d2,0x3f800000,2
+np.float32,0xc2fb53d2,0x3f800000,2
+np.float32,0x437b53d2,0x3f800000,2
+np.float32,0xc37b53d2,0x3f800000,2
+np.float32,0x427e7811,0x3f3504e6,2
+np.float32,0xc27e7811,0x3f3504e6,2
+np.float32,0x42fe7811,0xb6159b6f,2
+np.float32,0xc2fe7811,0xb6159b6f,2
+np.float32,0x437e7811,0xbf800000,2
+np.float32,0xc37e7811,0xbf800000,2
+np.float32,0x4280ce28,0x34fdd672,2
+np.float32,0xc280ce28,0x34fdd672,2
+np.float32,0x4300ce28,0xbf800000,2
+np.float32,0xc300ce28,0xbf800000,2
+np.float32,0x4380ce28,0x3f800000,2
+np.float32,0xc380ce28,0x3f800000,2
+np.float32,0x42826048,0xbf350508,2
+np.float32,0xc2826048,0xbf350508,2
+np.float32,0x43026048,0x366b7958,2
+np.float32,0xc3026048,0x366b7958,2
+np.float32,0x43826048,0xbf800000,2
+np.float32,0xc3826048,0xbf800000,2
+np.float32,0x4283f268,0xbf800000,2
+np.float32,0xc283f268,0xbf800000,2
+np.float32,0x4303f268,0x3f800000,2
+np.float32,0xc303f268,0x3f800000,2
+np.float32,0x4383f268,0x3f800000,2
+np.float32,0xc383f268,0x3f800000,2
+np.float32,0x42858487,0xbf350504,2
+np.float32,0xc2858487,0xbf350504,2
+np.float32,0x43058487,0x363ea8be,2
+np.float32,0xc3058487,0x363ea8be,2
+np.float32,0x43858487,0xbf800000,2
+np.float32,0xc3858487,0xbf800000,2
+np.float32,0x428716a7,0x35588c6d,2
+np.float32,0xc28716a7,0x35588c6d,2
+np.float32,0x430716a7,0xbf800000,2
+np.float32,0xc30716a7,0xbf800000,2
+np.float32,0x438716a7,0x3f800000,2
+np.float32,0xc38716a7,0x3f800000,2
+np.float32,0x4288a8c7,0x3f350517,2
+np.float32,0xc288a8c7,0x3f350517,2
+np.float32,0x4308a8c7,0x36cb9a96,2
+np.float32,0xc308a8c7,0x36cb9a96,2
+np.float32,0x4388a8c7,0xbf800000,2
+np.float32,0xc388a8c7,0xbf800000,2
+np.float32,0x428a3ae7,0x3f800000,2
+np.float32,0xc28a3ae7,0x3f800000,2
+np.float32,0x430a3ae7,0x3f800000,2
+np.float32,0xc30a3ae7,0x3f800000,2
+np.float32,0x438a3ae7,0x3f800000,2
+np.float32,0xc38a3ae7,0x3f800000,2
+np.float32,0x428bcd06,0x3f3504f5,2
+np.float32,0xc28bcd06,0x3f3504f5,2
+np.float32,0x430bcd06,0x3497675b,2
+np.float32,0xc30bcd06,0x3497675b,2
+np.float32,0x438bcd06,0xbf800000,2
+np.float32,0xc38bcd06,0xbf800000,2
+np.float32,0x428d5f26,0xb60c0105,2
+np.float32,0xc28d5f26,0xb60c0105,2
+np.float32,0x430d5f26,0xbf800000,2
+np.float32,0xc30d5f26,0xbf800000,2
+np.float32,0x438d5f26,0x3f800000,2
+np.float32,0xc38d5f26,0x3f800000,2
+np.float32,0x428ef146,0xbf350526,2
+np.float32,0xc28ef146,0xbf350526,2
+np.float32,0x430ef146,0x3710bc40,2
+np.float32,0xc30ef146,0x3710bc40,2
+np.float32,0x438ef146,0xbf800000,2
+np.float32,0xc38ef146,0xbf800000,2
+np.float32,0x42908365,0xbf800000,2
+np.float32,0xc2908365,0xbf800000,2
+np.float32,0x43108365,0x3f800000,2
+np.float32,0xc3108365,0x3f800000,2
+np.float32,0x43908365,0x3f800000,2
+np.float32,0xc3908365,0x3f800000,2
+np.float32,0x42921585,0xbf3504e6,2
+np.float32,0xc2921585,0xbf3504e6,2
+np.float32,0x43121585,0xb618cee8,2
+np.float32,0xc3121585,0xb618cee8,2
+np.float32,0x43921585,0xbf800000,2
+np.float32,0xc3921585,0xbf800000,2
+np.float32,0x4293a7a5,0x3661deee,2
+np.float32,0xc293a7a5,0x3661deee,2
+np.float32,0x4313a7a5,0xbf800000,2
+np.float32,0xc313a7a5,0xbf800000,2
+np.float32,0x4393a7a5,0x3f800000,2
+np.float32,0xc393a7a5,0x3f800000,2
+np.float32,0x429539c5,0x3f350536,2
+np.float32,0xc29539c5,0x3f350536,2
+np.float32,0x431539c5,0x373bab34,2
+np.float32,0xc31539c5,0x373bab34,2
+np.float32,0x439539c5,0xbf800000,2
+np.float32,0xc39539c5,0xbf800000,2
+np.float32,0x4296cbe4,0x3f800000,2
+np.float32,0xc296cbe4,0x3f800000,2
+np.float32,0x4316cbe4,0x3f800000,2
+np.float32,0xc316cbe4,0x3f800000,2
+np.float32,0x4396cbe4,0x3f800000,2
+np.float32,0xc396cbe4,0x3f800000,2
+np.float32,0x42985e04,0x3f3504d7,2
+np.float32,0xc2985e04,0x3f3504d7,2
+np.float32,0x43185e04,0xb6a2455d,2
+np.float32,0xc3185e04,0xb6a2455d,2
+np.float32,0x43985e04,0xbf800000,2
+np.float32,0xc3985e04,0xbf800000,2
+np.float32,0x4299f024,0xb69bde6c,2
+np.float32,0xc299f024,0xb69bde6c,2
+np.float32,0x4319f024,0xbf800000,2
+np.float32,0xc319f024,0xbf800000,2
+np.float32,0x4399f024,0x3f800000,2
+np.float32,0xc399f024,0x3f800000,2
+np.float32,0x429b8243,0xbf3504ea,2
+np.float32,0xc29b8243,0xbf3504ea,2
+np.float32,0x431b8243,0xb5cb2eb8,2
+np.float32,0xc31b8243,0xb5cb2eb8,2
+np.float32,0x439b8243,0xbf800000,2
+np.float32,0xc39b8243,0xbf800000,2
+np.float32,0x435b2047,0x3f3504c1,2
+np.float32,0x42a038a2,0xb5e4ca7e,2
+np.float32,0x432038a2,0xbf800000,2
+np.float32,0x4345eb9b,0xbf800000,2
+np.float32,0x42c5eb9b,0xb5de638c,2
+np.float32,0x42eb9e94,0xb5d7fc9b,2
+np.float32,0x4350ea79,0x3631dadb,2
+np.float32,0x42dbe957,0xbf800000,2
+np.float32,0x425be957,0xb505522a,2
+np.float32,0x435be957,0x3f800000,2
+np.float32,0x487fe5ab,0xba140185,2
+np.float32,0x497fe5ab,0x3f7fffd5,2
+np.float32,0x49ffe5ab,0x3f7fff55,2
+np.float32,0x49ffeb37,0x3b9382f5,2
+np.float32,0x497ff0c3,0x3b13049f,2
+np.float32,0x49fff0c3,0xbf7fff57,2
+np.float32,0x49fff64f,0xbb928618,2
+np.float32,0x497ffbdb,0xbf7fffd6,2
+np.float32,0x49fffbdb,0x3f7fff59,2
+np.float32,0x48fffbdb,0xba9207c6,2
+np.float32,0x4e736e56,0xbf800000,2
+np.float32,0x4d4da377,0xbf800000,2
+np.float32,0x4ece58c3,0xbf800000,2
+np.float32,0x4ee0db9c,0xbf800000,2
+np.float32,0x4dee7002,0x3f800000,2
+np.float32,0x4ee86afc,0x38857a23,2
+np.float32,0x4dca4f3f,0xbf800000,2
+np.float32,0x4ecb48af,0xb95d1e10,2
+np.float32,0x4e51e33f,0xbf800000,2
+np.float32,0x4ef5f421,0xbf800000,2
+np.float32,0x46027eb2,0x3e7d94c9,2
+np.float32,0x4477baed,0xbe7f1824,2
+np.float32,0x454b8024,0x3e7f5268,2
+np.float32,0x455d2c09,0x3e7f40cb,2
+np.float32,0x4768d3de,0xba14b4af,2
+np.float32,0x46c1e7cd,0x3e7fb102,2
+np.float32,0x44a52949,0xbe7dc9d5,2
+np.float32,0x4454633a,0x3e7dbc7d,2
+np.float32,0x4689810b,0x3e7eb02b,2
+np.float32,0x473473cd,0xbe7eef6f,2
+np.float32,0x44a5193f,0x3e7e1b1f,2
+np.float32,0x46004b36,0x3e7dac59,2
+np.float32,0x467f604b,0x3d7ffd3a,2
+np.float32,0x45ea1805,0x3dffd2e0,2
+np.float32,0x457b6af3,0x3dff7831,2
+np.float32,0x44996159,0xbe7d85f4,2
+np.float32,0x47883553,0xbb80584e,2
+np.float32,0x44e19f0c,0xbdffcfe6,2
+np.float32,0x472b3bf6,0xbe7f7a82,2
+np.float32,0x4600bb4e,0x3a135e33,2
+np.float32,0x449f4556,0x3e7e42e5,2
+np.float32,0x474e9420,0x3dff77b2,2
+np.float32,0x45cbdb23,0x3dff7240,2
+np.float32,0x44222747,0x3dffb039,2
+np.float32,0x4772e419,0xbdff74b8,2
diff --git a/numpy/core/tests/data/umath-validation-set-exp b/numpy/core/tests/data/umath-validation-set-exp
new file mode 100644
index 000000000..1b2cc9ce4
--- /dev/null
+++ b/numpy/core/tests/data/umath-validation-set-exp
@@ -0,0 +1,135 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0x3f800000,3
+np.float32,0x007b2490,0x3f800000,3
+np.float32,0x007c99fa,0x3f800000,3
+np.float32,0x00734a0c,0x3f800000,3
+np.float32,0x0070de24,0x3f800000,3
+np.float32,0x00495d65,0x3f800000,3
+np.float32,0x006894f6,0x3f800000,3
+np.float32,0x00555a76,0x3f800000,3
+np.float32,0x004e1fb8,0x3f800000,3
+np.float32,0x00687de9,0x3f800000,3
+## -ve denormals ##
+np.float32,0x805b59af,0x3f800000,3
+np.float32,0x807ed8ed,0x3f800000,3
+np.float32,0x807142ad,0x3f800000,3
+np.float32,0x80772002,0x3f800000,3
+np.float32,0x8062abcb,0x3f800000,3
+np.float32,0x8045e31c,0x3f800000,3
+np.float32,0x805f01c2,0x3f800000,3
+np.float32,0x80506432,0x3f800000,3
+np.float32,0x8060089d,0x3f800000,3
+np.float32,0x8071292f,0x3f800000,3
+## floats that output a denormal ##
+np.float32,0xc2cf3fc1,0x00000001,3
+np.float32,0xc2c79726,0x00000021,3
+np.float32,0xc2cb295d,0x00000005,3
+np.float32,0xc2b49e6b,0x00068c4c,3
+np.float32,0xc2ca8116,0x00000008,3
+np.float32,0xc2c23f82,0x000001d7,3
+np.float32,0xc2cb69c0,0x00000005,3
+np.float32,0xc2cc1f4d,0x00000003,3
+np.float32,0xc2ae094e,0x00affc4c,3
+np.float32,0xc2c86c44,0x00000015,3
+## random floats between -87.0f and 88.0f ##
+np.float32,0x4030d7e0,0x417d9a05,3
+np.float32,0x426f60e8,0x6aa1be2c,3
+np.float32,0x41a1b220,0x4e0efc11,3
+np.float32,0xc20cc722,0x26159da7,3
+np.float32,0x41c492bc,0x512ec79d,3
+np.float32,0x40980210,0x42e73a0e,3
+np.float32,0xbf1f7b80,0x3f094de3,3
+np.float32,0x42a678a4,0x7b87a383,3
+np.float32,0xc20f3cfd,0x25a1c304,3
+np.float32,0x423ff34c,0x6216467f,3
+np.float32,0x00000000,0x3f800000,3
+## floats that cause an overflow ##
+np.float32,0x7f06d8c1,0x7f800000,3
+np.float32,0x7f451912,0x7f800000,3
+np.float32,0x7ecceac3,0x7f800000,3
+np.float32,0x7f643b45,0x7f800000,3
+np.float32,0x7e910ea0,0x7f800000,3
+np.float32,0x7eb4756b,0x7f800000,3
+np.float32,0x7f4ec708,0x7f800000,3
+np.float32,0x7f6b4551,0x7f800000,3
+np.float32,0x7d8edbda,0x7f800000,3
+np.float32,0x7f730718,0x7f800000,3
+np.float32,0x42b17217,0x7f7fff84,3
+np.float32,0x42b17218,0x7f800000,3
+np.float32,0x42b17219,0x7f800000,3
+np.float32,0xfef2b0bc,0x00000000,3
+np.float32,0xff69f83e,0x00000000,3
+np.float32,0xff4ecb12,0x00000000,3
+np.float32,0xfeac6d86,0x00000000,3
+np.float32,0xfde0cdb8,0x00000000,3
+np.float32,0xff26aef4,0x00000000,3
+np.float32,0xff6f9277,0x00000000,3
+np.float32,0xff7adfc4,0x00000000,3
+np.float32,0xff0ad40e,0x00000000,3
+np.float32,0xff6fd8f3,0x00000000,3
+np.float32,0xc2cff1b4,0x00000001,3
+np.float32,0xc2cff1b5,0x00000000,3
+np.float32,0xc2cff1b6,0x00000000,3
+np.float32,0x7f800000,0x7f800000,3
+np.float32,0xff800000,0x00000000,3
+np.float32,0x4292f27c,0x7480000a,3
+np.float32,0x42a920be,0x7c7fff94,3
+np.float32,0x41c214c9,0x50ffffd9,3
+np.float32,0x41abe686,0x4effffd9,3
+np.float32,0x4287db5a,0x707fffd3,3
+np.float32,0x41902cbb,0x4c800078,3
+np.float32,0x42609466,0x67ffffeb,3
+np.float32,0x41a65af5,0x4e7fffd1,3
+np.float32,0x417f13ff,0x4affffc9,3
+np.float32,0x426d0e6c,0x6a3504f2,3
+np.float32,0x41bc8934,0x507fff51,3
+np.float32,0x42a7bdde,0x7c0000d6,3
+np.float32,0x4120cf66,0x46b504f6,3
+np.float32,0x4244da8f,0x62ffff1a,3
+np.float32,0x41a0cf69,0x4e000034,3
+np.float32,0x41cd2bec,0x52000005,3
+np.float32,0x42893e41,0x7100009e,3
+np.float32,0x41b437e1,0x4fb50502,3
+np.float32,0x41d8430f,0x5300001d,3
+np.float32,0x4244da92,0x62ffffda,3
+np.float32,0x41a0cf63,0x4dffffa9,3
+np.float32,0x3eb17218,0x3fb504f3,3
+np.float32,0x428729e8,0x703504dc,3
+np.float32,0x41a0cf67,0x4e000014,3
+np.float32,0x4252b77d,0x65800011,3
+np.float32,0x41902cb9,0x4c800058,3
+np.float32,0x42a0cf67,0x79800052,3
+np.float32,0x4152b77b,0x48ffffe9,3
+np.float32,0x41265af3,0x46ffffc8,3
+np.float32,0x42187e0b,0x5affff9a,3
+np.float32,0xc0d2b77c,0x3ab504f6,3
+np.float32,0xc283b2ac,0x10000072,3
+np.float32,0xc1cff1b4,0x2cb504f5,3
+np.float32,0xc05dce9e,0x3d000000,3
+np.float32,0xc28ec9d2,0x0bfffea5,3
+np.float32,0xc23c893a,0x1d7fffde,3
+np.float32,0xc2a920c0,0x027fff6c,3
+np.float32,0xc1f9886f,0x2900002b,3
+np.float32,0xc2c42920,0x000000b5,3
+np.float32,0xc2893e41,0x0dfffec5,3
+np.float32,0xc2c4da93,0x00000080,3
+np.float32,0xc17f1401,0x3400000c,3
+np.float32,0xc1902cb6,0x327fffaf,3
+np.float32,0xc27c4e3b,0x11ffffc5,3
+np.float32,0xc268e5c5,0x157ffe9d,3
+np.float32,0xc2b4e953,0x0005a826,3
+np.float32,0xc287db5a,0x0e800016,3
+np.float32,0xc207db5a,0x2700000b,3
+np.float32,0xc2b2d4fe,0x000ffff1,3
+np.float32,0xc268e5c0,0x157fffdd,3
+np.float32,0xc22920bd,0x2100003b,3
+np.float32,0xc2902caf,0x0b80011e,3
+np.float32,0xc1902cba,0x327fff2f,3
+np.float32,0xc2ca6625,0x00000008,3
+np.float32,0xc280ece8,0x10fffeb5,3
+np.float32,0xc2918f94,0x0b0000ea,3
+np.float32,0xc29b43d5,0x077ffffc,3
+np.float32,0xc1e61ff7,0x2ab504f5,3
+np.float32,0xc2867878,0x0effff15,3
+np.float32,0xc2a2324a,0x04fffff4,3
diff --git a/numpy/core/tests/data/umath-validation-set-log b/numpy/core/tests/data/umath-validation-set-log
new file mode 100644
index 000000000..a7bd98481
--- /dev/null
+++ b/numpy/core/tests/data/umath-validation-set-log
@@ -0,0 +1,118 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0xc2afbc1b,4
+np.float32,0x007b2490,0xc2aec01e,4
+np.float32,0x007c99fa,0xc2aeba17,4
+np.float32,0x00734a0c,0xc2aee1dc,4
+np.float32,0x0070de24,0xc2aeecba,4
+np.float32,0x007fffff,0xc2aeac50,4
+np.float32,0x00000001,0xc2ce8ed0,4
+## -ve denormals ##
+np.float32,0x80495d65,0xffc00000,4
+np.float32,0x806894f6,0xffc00000,4
+np.float32,0x80555a76,0xffc00000,4
+np.float32,0x804e1fb8,0xffc00000,4
+np.float32,0x80687de9,0xffc00000,4
+np.float32,0x807fffff,0xffc00000,4
+np.float32,0x80000001,0xffc00000,4
+## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
+np.float32,0x00000000,0xff800000,4
+np.float32,0x80000000,0xff800000,4
+np.float32,0x7f7fffff,0x42b17218,4
+np.float32,0x80800000,0xffc00000,4
+np.float32,0xff7fffff,0xffc00000,4
+## 1.00f + 0x00000001 ##
+np.float32,0x3f800000,0x00000000,4
+np.float32,0x3f800001,0x33ffffff,4
+np.float32,0x3f800002,0x347ffffe,4
+np.float32,0x3f7fffff,0xb3800000,4
+np.float32,0x3f7ffffe,0xb4000000,4
+np.float32,0x3f7ffffd,0xb4400001,4
+np.float32,0x402df853,0x3f7ffffe,4
+np.float32,0x402df854,0x3f7fffff,4
+np.float32,0x402df855,0x3f800000,4
+np.float32,0x402df856,0x3f800001,4
+np.float32,0x3ebc5ab0,0xbf800001,4
+np.float32,0x3ebc5ab1,0xbf800000,4
+np.float32,0x3ebc5ab2,0xbf800000,4
+np.float32,0x3ebc5ab3,0xbf7ffffe,4
+np.float32,0x423ef575,0x407768ab,4
+np.float32,0x427b8c61,0x408485dd,4
+np.float32,0x4211e9ee,0x406630b0,4
+np.float32,0x424d5c41,0x407c0fed,4
+np.float32,0x42be722a,0x4091cc91,4
+np.float32,0x42b73d30,0x4090908b,4
+np.float32,0x427e48e2,0x4084de7f,4
+np.float32,0x428f759b,0x4088bba3,4
+np.float32,0x41629069,0x4029a0cc,4
+np.float32,0x4272c99d,0x40836379,4
+np.float32,0x4d1b7458,0x4197463d,4
+np.float32,0x4f10c594,0x41ace2b2,4
+np.float32,0x4ea397c2,0x41a85171,4
+np.float32,0x4fefa9d1,0x41b6769c,4
+np.float32,0x4ebac6ab,0x41a960dc,4
+np.float32,0x4f6efb42,0x41b0e535,4
+np.float32,0x4e9ab8e7,0x41a7df44,4
+np.float32,0x4e81b5d1,0x41a67625,4
+np.float32,0x5014d9f2,0x41b832bd,4
+np.float32,0x4f02175c,0x41ac07b8,4
+np.float32,0x7f034f89,0x42b01c47,4
+np.float32,0x7f56d00e,0x42b11849,4
+np.float32,0x7f1cd5f6,0x42b0773a,4
+np.float32,0x7e979174,0x42af02d7,4
+np.float32,0x7f23369f,0x42b08ba2,4
+np.float32,0x7f0637ae,0x42b0277d,4
+np.float32,0x7efcb6e8,0x42b00897,4
+np.float32,0x7f7907c8,0x42b163f6,4
+np.float32,0x7e95c4c2,0x42aefcba,4
+np.float32,0x7f4577b2,0x42b0ed2d,4
+np.float32,0x3f49c92e,0xbe73ae84,4
+np.float32,0x3f4a23d1,0xbe71e2f8,4
+np.float32,0x3f4abb67,0xbe6ee430,4
+np.float32,0x3f48169a,0xbe7c5532,4
+np.float32,0x3f47f5fa,0xbe7cfc37,4
+np.float32,0x3f488309,0xbe7a2ad8,4
+np.float32,0x3f479df4,0xbe7ebf5f,4
+np.float32,0x3f47cfff,0xbe7dbec9,4
+np.float32,0x3f496704,0xbe75a125,4
+np.float32,0x3f478ee8,0xbe7f0c92,4
+np.float32,0x3f4a763b,0xbe7041ce,4
+np.float32,0x3f47a108,0xbe7eaf94,4
+np.float32,0x3f48136c,0xbe7c6578,4
+np.float32,0x3f481c17,0xbe7c391c,4
+np.float32,0x3f47cd28,0xbe7dcd56,4
+np.float32,0x3f478be8,0xbe7f1bf7,4
+np.float32,0x3f4c1f8e,0xbe67e367,4
+np.float32,0x3f489b0c,0xbe79b03f,4
+np.float32,0x3f4934cf,0xbe76a08a,4
+np.float32,0x3f4954df,0xbe75fd6a,4
+np.float32,0x3f47a3f5,0xbe7ea093,4
+np.float32,0x3f4ba4fc,0xbe6a4b02,4
+np.float32,0x3f47a0e1,0xbe7eb05c,4
+np.float32,0x3f48c30a,0xbe78e42f,4
+np.float32,0x3f48cab8,0xbe78bd05,4
+np.float32,0x3f4b0569,0xbe6d6ea4,4
+np.float32,0x3f47de32,0xbe7d7607,4
+np.float32,0x3f477328,0xbe7f9b00,4
+np.float32,0x3f496dab,0xbe757f52,4
+np.float32,0x3f47662c,0xbe7fddac,4
+np.float32,0x3f48ddd8,0xbe785b80,4
+np.float32,0x3f481866,0xbe7c4bff,4
+np.float32,0x3f48b119,0xbe793fb6,4
+np.float32,0x3f48c7e8,0xbe78cb5c,4
+np.float32,0x3f4985f6,0xbe7503da,4
+np.float32,0x3f483fdf,0xbe7b8212,4
+np.float32,0x3f4b1c76,0xbe6cfa67,4
+np.float32,0x3f480b2e,0xbe7c8fa8,4
+np.float32,0x3f48745f,0xbe7a75bf,4
+np.float32,0x3f485bda,0xbe7af308,4
+np.float32,0x3f47a660,0xbe7e942c,4
+np.float32,0x3f47d4d5,0xbe7da600,4
+np.float32,0x3f4b0a26,0xbe6d56be,4
+np.float32,0x3f4a4883,0xbe712924,4
+np.float32,0x3f4769e7,0xbe7fca84,4
+np.float32,0x3f499702,0xbe74ad3f,4
+np.float32,0x3f494ab1,0xbe763131,4
+np.float32,0x3f476b69,0xbe7fc2c6,4
+np.float32,0x3f4884e8,0xbe7a214a,4
+np.float32,0x3f486945,0xbe7aae76,4
diff --git a/numpy/core/tests/data/umath-validation-set-sin b/numpy/core/tests/data/umath-validation-set-sin
new file mode 100644
index 000000000..a56273195
--- /dev/null
+++ b/numpy/core/tests/data/umath-validation-set-sin
@@ -0,0 +1,707 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0x004b4716,2
+np.float32,0x007b2490,0x007b2490,2
+np.float32,0x007c99fa,0x007c99fa,2
+np.float32,0x00734a0c,0x00734a0c,2
+np.float32,0x0070de24,0x0070de24,2
+np.float32,0x007fffff,0x007fffff,2
+np.float32,0x00000001,0x00000001,2
+## -ve denormals ##
+np.float32,0x80495d65,0x80495d65,2
+np.float32,0x806894f6,0x806894f6,2
+np.float32,0x80555a76,0x80555a76,2
+np.float32,0x804e1fb8,0x804e1fb8,2
+np.float32,0x80687de9,0x80687de9,2
+np.float32,0x807fffff,0x807fffff,2
+np.float32,0x80000001,0x80000001,2
+## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
+np.float32,0x00000000,0x00000000,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x00800000,0x00800000,2
+np.float32,0x7f7fffff,0xbf0599b3,2
+np.float32,0x80800000,0x80800000,2
+np.float32,0xff7fffff,0x3f0599b3,2
+## 1.00f ##
+np.float32,0x3f800000,0x3f576aa4,2
+np.float32,0x3f800001,0x3f576aa6,2
+np.float32,0x3f800002,0x3f576aa7,2
+np.float32,0xc090a8b0,0x3f7b4e48,2
+np.float32,0x41ce3184,0x3f192d43,2
+np.float32,0xc1d85848,0xbf7161cb,2
+np.float32,0x402b8820,0x3ee3f29f,2
+np.float32,0x42b4e454,0x3f1d0151,2
+np.float32,0x42a67a60,0x3f7ffa4c,2
+np.float32,0x41d92388,0x3f67beef,2
+np.float32,0x422dd66c,0xbeffb0c1,2
+np.float32,0xc28f5be6,0xbf0bae79,2
+np.float32,0x41ab2674,0x3f0ffe2b,2
+np.float32,0xd0102756,0x3f227e8a,2
+np.float32,0xcf99405e,0x3f73ad00,2
+np.float32,0xcfd83a12,0xbf7151a7,2
+np.float32,0x4fb54db0,0xbe46354b,2
+np.float32,0xcfcca29d,0xbe9345e6,2
+np.float32,0xceec2ac0,0x3e98dc89,2
+np.float32,0xcfdca97f,0xbf60b2b4,2
+np.float32,0xcfe92b0a,0xbf222705,2
+np.float32,0x5014b0eb,0x3f63e75c,2
+np.float32,0xcfa7ee96,0x3f62ada4,2
+np.float32,0x754c09a0,0xbf617056,2
+np.float32,0x77a731fb,0x3f44472b,2
+np.float32,0x76de2494,0xbe680739,2
+np.float32,0xf74920dc,0xbf193338,2
+np.float32,0x7707a312,0xbf6f51b1,2
+np.float32,0x75bf9790,0xbd0f1a47,2
+np.float32,0xf4ca7c40,0xbf7d45e7,2
+np.float32,0x77e91899,0x3f767181,2
+np.float32,0xf74c9820,0xbd685b75,2
+np.float32,0x7785ca29,0x3f78ee61,2
+np.float32,0x3f490fdb,0x3f3504f3,2
+np.float32,0xbf490fdb,0xbf3504f3,2
+np.float32,0x3fc90fdb,0x3f800000,2
+np.float32,0xbfc90fdb,0xbf800000,2
+np.float32,0x40490fdb,0xb3bbbd2e,2
+np.float32,0xc0490fdb,0x33bbbd2e,2
+np.float32,0x3fc90fdb,0x3f800000,2
+np.float32,0xbfc90fdb,0xbf800000,2
+np.float32,0x40490fdb,0xb3bbbd2e,2
+np.float32,0xc0490fdb,0x33bbbd2e,2
+np.float32,0x40c90fdb,0x343bbd2e,2
+np.float32,0xc0c90fdb,0xb43bbd2e,2
+np.float32,0x4016cbe4,0x3f3504f3,2
+np.float32,0xc016cbe4,0xbf3504f3,2
+np.float32,0x4096cbe4,0xbf800000,2
+np.float32,0xc096cbe4,0x3f800000,2
+np.float32,0x4116cbe4,0xb2ccde2e,2
+np.float32,0xc116cbe4,0x32ccde2e,2
+np.float32,0x40490fdb,0xb3bbbd2e,2
+np.float32,0xc0490fdb,0x33bbbd2e,2
+np.float32,0x40c90fdb,0x343bbd2e,2
+np.float32,0xc0c90fdb,0xb43bbd2e,2
+np.float32,0x41490fdb,0x34bbbd2e,2
+np.float32,0xc1490fdb,0xb4bbbd2e,2
+np.float32,0x407b53d2,0xbf3504f5,2
+np.float32,0xc07b53d2,0x3f3504f5,2
+np.float32,0x40fb53d2,0x3f800000,2
+np.float32,0xc0fb53d2,0xbf800000,2
+np.float32,0x417b53d2,0xb535563d,2
+np.float32,0xc17b53d2,0x3535563d,2
+np.float32,0x4096cbe4,0xbf800000,2
+np.float32,0xc096cbe4,0x3f800000,2
+np.float32,0x4116cbe4,0xb2ccde2e,2
+np.float32,0xc116cbe4,0x32ccde2e,2
+np.float32,0x4196cbe4,0x334cde2e,2
+np.float32,0xc196cbe4,0xb34cde2e,2
+np.float32,0x40afede0,0xbf3504ef,2
+np.float32,0xc0afede0,0x3f3504ef,2
+np.float32,0x412fede0,0xbf800000,2
+np.float32,0xc12fede0,0x3f800000,2
+np.float32,0x41afede0,0xb5b222c4,2
+np.float32,0xc1afede0,0x35b222c4,2
+np.float32,0x40c90fdb,0x343bbd2e,2
+np.float32,0xc0c90fdb,0xb43bbd2e,2
+np.float32,0x41490fdb,0x34bbbd2e,2
+np.float32,0xc1490fdb,0xb4bbbd2e,2
+np.float32,0x41c90fdb,0x353bbd2e,2
+np.float32,0xc1c90fdb,0xb53bbd2e,2
+np.float32,0x40e231d6,0x3f3504f3,2
+np.float32,0xc0e231d6,0xbf3504f3,2
+np.float32,0x416231d6,0x3f800000,2
+np.float32,0xc16231d6,0xbf800000,2
+np.float32,0x41e231d6,0xb399a6a2,2
+np.float32,0xc1e231d6,0x3399a6a2,2
+np.float32,0x40fb53d2,0x3f800000,2
+np.float32,0xc0fb53d2,0xbf800000,2
+np.float32,0x417b53d2,0xb535563d,2
+np.float32,0xc17b53d2,0x3535563d,2
+np.float32,0x41fb53d2,0x35b5563d,2
+np.float32,0xc1fb53d2,0xb5b5563d,2
+np.float32,0x410a3ae7,0x3f3504eb,2
+np.float32,0xc10a3ae7,0xbf3504eb,2
+np.float32,0x418a3ae7,0xbf800000,2
+np.float32,0xc18a3ae7,0x3f800000,2
+np.float32,0x420a3ae7,0xb6308908,2
+np.float32,0xc20a3ae7,0x36308908,2
+np.float32,0x4116cbe4,0xb2ccde2e,2
+np.float32,0xc116cbe4,0x32ccde2e,2
+np.float32,0x4196cbe4,0x334cde2e,2
+np.float32,0xc196cbe4,0xb34cde2e,2
+np.float32,0x4216cbe4,0x33ccde2e,2
+np.float32,0xc216cbe4,0xb3ccde2e,2
+np.float32,0x41235ce2,0xbf3504f7,2
+np.float32,0xc1235ce2,0x3f3504f7,2
+np.float32,0x41a35ce2,0x3f800000,2
+np.float32,0xc1a35ce2,0xbf800000,2
+np.float32,0x42235ce2,0xb5b889b6,2
+np.float32,0xc2235ce2,0x35b889b6,2
+np.float32,0x412fede0,0xbf800000,2
+np.float32,0xc12fede0,0x3f800000,2
+np.float32,0x41afede0,0xb5b222c4,2
+np.float32,0xc1afede0,0x35b222c4,2
+np.float32,0x422fede0,0x363222c4,2
+np.float32,0xc22fede0,0xb63222c4,2
+np.float32,0x413c7edd,0xbf3504f3,2
+np.float32,0xc13c7edd,0x3f3504f3,2
+np.float32,0x41bc7edd,0xbf800000,2
+np.float32,0xc1bc7edd,0x3f800000,2
+np.float32,0x423c7edd,0xb4000add,2
+np.float32,0xc23c7edd,0x34000add,2
+np.float32,0x41490fdb,0x34bbbd2e,2
+np.float32,0xc1490fdb,0xb4bbbd2e,2
+np.float32,0x41c90fdb,0x353bbd2e,2
+np.float32,0xc1c90fdb,0xb53bbd2e,2
+np.float32,0x42490fdb,0x35bbbd2e,2
+np.float32,0xc2490fdb,0xb5bbbd2e,2
+np.float32,0x4155a0d9,0x3f3504fb,2
+np.float32,0xc155a0d9,0xbf3504fb,2
+np.float32,0x41d5a0d9,0x3f800000,2
+np.float32,0xc1d5a0d9,0xbf800000,2
+np.float32,0x4255a0d9,0xb633bc81,2
+np.float32,0xc255a0d9,0x3633bc81,2
+np.float32,0x416231d6,0x3f800000,2
+np.float32,0xc16231d6,0xbf800000,2
+np.float32,0x41e231d6,0xb399a6a2,2
+np.float32,0xc1e231d6,0x3399a6a2,2
+np.float32,0x426231d6,0x3419a6a2,2
+np.float32,0xc26231d6,0xb419a6a2,2
+np.float32,0x416ec2d4,0x3f3504ef,2
+np.float32,0xc16ec2d4,0xbf3504ef,2
+np.float32,0x41eec2d4,0xbf800000,2
+np.float32,0xc1eec2d4,0x3f800000,2
+np.float32,0x426ec2d4,0xb5bef0a7,2
+np.float32,0xc26ec2d4,0x35bef0a7,2
+np.float32,0x417b53d2,0xb535563d,2
+np.float32,0xc17b53d2,0x3535563d,2
+np.float32,0x41fb53d2,0x35b5563d,2
+np.float32,0xc1fb53d2,0xb5b5563d,2
+np.float32,0x427b53d2,0x3635563d,2
+np.float32,0xc27b53d2,0xb635563d,2
+np.float32,0x4183f268,0xbf3504ff,2
+np.float32,0xc183f268,0x3f3504ff,2
+np.float32,0x4203f268,0x3f800000,2
+np.float32,0xc203f268,0xbf800000,2
+np.float32,0x4283f268,0xb6859a13,2
+np.float32,0xc283f268,0x36859a13,2
+np.float32,0x418a3ae7,0xbf800000,2
+np.float32,0xc18a3ae7,0x3f800000,2
+np.float32,0x420a3ae7,0xb6308908,2
+np.float32,0xc20a3ae7,0x36308908,2
+np.float32,0x428a3ae7,0x36b08908,2
+np.float32,0xc28a3ae7,0xb6b08908,2
+np.float32,0x41908365,0xbf3504f6,2
+np.float32,0xc1908365,0x3f3504f6,2
+np.float32,0x42108365,0xbf800000,2
+np.float32,0xc2108365,0x3f800000,2
+np.float32,0x42908365,0x3592200d,2
+np.float32,0xc2908365,0xb592200d,2
+np.float32,0x4196cbe4,0x334cde2e,2
+np.float32,0xc196cbe4,0xb34cde2e,2
+np.float32,0x4216cbe4,0x33ccde2e,2
+np.float32,0xc216cbe4,0xb3ccde2e,2
+np.float32,0x4296cbe4,0x344cde2e,2
+np.float32,0xc296cbe4,0xb44cde2e,2
+np.float32,0x419d1463,0x3f3504f8,2
+np.float32,0xc19d1463,0xbf3504f8,2
+np.float32,0x421d1463,0x3f800000,2
+np.float32,0xc21d1463,0xbf800000,2
+np.float32,0x429d1463,0xb5c55799,2
+np.float32,0xc29d1463,0x35c55799,2
+np.float32,0x41a35ce2,0x3f800000,2
+np.float32,0xc1a35ce2,0xbf800000,2
+np.float32,0x42235ce2,0xb5b889b6,2
+np.float32,0xc2235ce2,0x35b889b6,2
+np.float32,0x42a35ce2,0x363889b6,2
+np.float32,0xc2a35ce2,0xb63889b6,2
+np.float32,0x41a9a561,0x3f3504e7,2
+np.float32,0xc1a9a561,0xbf3504e7,2
+np.float32,0x4229a561,0xbf800000,2
+np.float32,0xc229a561,0x3f800000,2
+np.float32,0x42a9a561,0xb68733d0,2
+np.float32,0xc2a9a561,0x368733d0,2
+np.float32,0x41afede0,0xb5b222c4,2
+np.float32,0xc1afede0,0x35b222c4,2
+np.float32,0x422fede0,0x363222c4,2
+np.float32,0xc22fede0,0xb63222c4,2
+np.float32,0x42afede0,0x36b222c4,2
+np.float32,0xc2afede0,0xb6b222c4,2
+np.float32,0x41b6365e,0xbf3504f0,2
+np.float32,0xc1b6365e,0x3f3504f0,2
+np.float32,0x4236365e,0x3f800000,2
+np.float32,0xc236365e,0xbf800000,2
+np.float32,0x42b6365e,0x358bb91c,2
+np.float32,0xc2b6365e,0xb58bb91c,2
+np.float32,0x41bc7edd,0xbf800000,2
+np.float32,0xc1bc7edd,0x3f800000,2
+np.float32,0x423c7edd,0xb4000add,2
+np.float32,0xc23c7edd,0x34000add,2
+np.float32,0x42bc7edd,0x34800add,2
+np.float32,0xc2bc7edd,0xb4800add,2
+np.float32,0x41c2c75c,0xbf3504ef,2
+np.float32,0xc1c2c75c,0x3f3504ef,2
+np.float32,0x4242c75c,0xbf800000,2
+np.float32,0xc242c75c,0x3f800000,2
+np.float32,0x42c2c75c,0xb5cbbe8a,2
+np.float32,0xc2c2c75c,0x35cbbe8a,2
+np.float32,0x41c90fdb,0x353bbd2e,2
+np.float32,0xc1c90fdb,0xb53bbd2e,2
+np.float32,0x42490fdb,0x35bbbd2e,2
+np.float32,0xc2490fdb,0xb5bbbd2e,2
+np.float32,0x42c90fdb,0x363bbd2e,2
+np.float32,0xc2c90fdb,0xb63bbd2e,2
+np.float32,0x41cf585a,0x3f3504ff,2
+np.float32,0xc1cf585a,0xbf3504ff,2
+np.float32,0x424f585a,0x3f800000,2
+np.float32,0xc24f585a,0xbf800000,2
+np.float32,0x42cf585a,0xb688cd8c,2
+np.float32,0xc2cf585a,0x3688cd8c,2
+np.float32,0x41d5a0d9,0x3f800000,2
+np.float32,0xc1d5a0d9,0xbf800000,2
+np.float32,0x4255a0d9,0xb633bc81,2
+np.float32,0xc255a0d9,0x3633bc81,2
+np.float32,0x42d5a0d9,0x36b3bc81,2
+np.float32,0xc2d5a0d9,0xb6b3bc81,2
+np.float32,0x41dbe958,0x3f3504e0,2
+np.float32,0xc1dbe958,0xbf3504e0,2
+np.float32,0x425be958,0xbf800000,2
+np.float32,0xc25be958,0x3f800000,2
+np.float32,0x42dbe958,0xb6deab75,2
+np.float32,0xc2dbe958,0x36deab75,2
+np.float32,0x41e231d6,0xb399a6a2,2
+np.float32,0xc1e231d6,0x3399a6a2,2
+np.float32,0x426231d6,0x3419a6a2,2
+np.float32,0xc26231d6,0xb419a6a2,2
+np.float32,0x42e231d6,0x3499a6a2,2
+np.float32,0xc2e231d6,0xb499a6a2,2
+np.float32,0x41e87a55,0xbf3504f8,2
+np.float32,0xc1e87a55,0x3f3504f8,2
+np.float32,0x42687a55,0x3f800000,2
+np.float32,0xc2687a55,0xbf800000,2
+np.float32,0x42e87a55,0xb5d2257b,2
+np.float32,0xc2e87a55,0x35d2257b,2
+np.float32,0x41eec2d4,0xbf800000,2
+np.float32,0xc1eec2d4,0x3f800000,2
+np.float32,0x426ec2d4,0xb5bef0a7,2
+np.float32,0xc26ec2d4,0x35bef0a7,2
+np.float32,0x42eec2d4,0x363ef0a7,2
+np.float32,0xc2eec2d4,0xb63ef0a7,2
+np.float32,0x41f50b53,0xbf3504e7,2
+np.float32,0xc1f50b53,0x3f3504e7,2
+np.float32,0x42750b53,0xbf800000,2
+np.float32,0xc2750b53,0x3f800000,2
+np.float32,0x42f50b53,0xb68a6748,2
+np.float32,0xc2f50b53,0x368a6748,2
+np.float32,0x41fb53d2,0x35b5563d,2
+np.float32,0xc1fb53d2,0xb5b5563d,2
+np.float32,0x427b53d2,0x3635563d,2
+np.float32,0xc27b53d2,0xb635563d,2
+np.float32,0x42fb53d2,0x36b5563d,2
+np.float32,0xc2fb53d2,0xb6b5563d,2
+np.float32,0x4200ce28,0x3f3504f0,2
+np.float32,0xc200ce28,0xbf3504f0,2
+np.float32,0x4280ce28,0x3f800000,2
+np.float32,0xc280ce28,0xbf800000,2
+np.float32,0x4300ce28,0x357dd672,2
+np.float32,0xc300ce28,0xb57dd672,2
+np.float32,0x4203f268,0x3f800000,2
+np.float32,0xc203f268,0xbf800000,2
+np.float32,0x4283f268,0xb6859a13,2
+np.float32,0xc283f268,0x36859a13,2
+np.float32,0x4303f268,0x37059a13,2
+np.float32,0xc303f268,0xb7059a13,2
+np.float32,0x420716a7,0x3f3504ee,2
+np.float32,0xc20716a7,0xbf3504ee,2
+np.float32,0x428716a7,0xbf800000,2
+np.float32,0xc28716a7,0x3f800000,2
+np.float32,0x430716a7,0xb5d88c6d,2
+np.float32,0xc30716a7,0x35d88c6d,2
+np.float32,0x420a3ae7,0xb6308908,2
+np.float32,0xc20a3ae7,0x36308908,2
+np.float32,0x428a3ae7,0x36b08908,2
+np.float32,0xc28a3ae7,0xb6b08908,2
+np.float32,0x430a3ae7,0x37308908,2
+np.float32,0xc30a3ae7,0xb7308908,2
+np.float32,0x420d5f26,0xbf350500,2
+np.float32,0xc20d5f26,0x3f350500,2
+np.float32,0x428d5f26,0x3f800000,2
+np.float32,0xc28d5f26,0xbf800000,2
+np.float32,0x430d5f26,0xb68c0105,2
+np.float32,0xc30d5f26,0x368c0105,2
+np.float32,0x42108365,0xbf800000,2
+np.float32,0xc2108365,0x3f800000,2
+np.float32,0x42908365,0x3592200d,2
+np.float32,0xc2908365,0xb592200d,2
+np.float32,0x43108365,0xb612200d,2
+np.float32,0xc3108365,0x3612200d,2
+np.float32,0x4213a7a5,0xbf3504df,2
+np.float32,0xc213a7a5,0x3f3504df,2
+np.float32,0x4293a7a5,0xbf800000,2
+np.float32,0xc293a7a5,0x3f800000,2
+np.float32,0x4313a7a5,0xb6e1deee,2
+np.float32,0xc313a7a5,0x36e1deee,2
+np.float32,0x4216cbe4,0x33ccde2e,2
+np.float32,0xc216cbe4,0xb3ccde2e,2
+np.float32,0x4296cbe4,0x344cde2e,2
+np.float32,0xc296cbe4,0xb44cde2e,2
+np.float32,0x4316cbe4,0x34ccde2e,2
+np.float32,0xc316cbe4,0xb4ccde2e,2
+np.float32,0x4219f024,0x3f35050f,2
+np.float32,0xc219f024,0xbf35050f,2
+np.float32,0x4299f024,0x3f800000,2
+np.float32,0xc299f024,0xbf800000,2
+np.float32,0x4319f024,0xb71bde6c,2
+np.float32,0xc319f024,0x371bde6c,2
+np.float32,0x421d1463,0x3f800000,2
+np.float32,0xc21d1463,0xbf800000,2
+np.float32,0x429d1463,0xb5c55799,2
+np.float32,0xc29d1463,0x35c55799,2
+np.float32,0x431d1463,0x36455799,2
+np.float32,0xc31d1463,0xb6455799,2
+np.float32,0x422038a3,0x3f3504d0,2
+np.float32,0xc22038a3,0xbf3504d0,2
+np.float32,0x42a038a3,0xbf800000,2
+np.float32,0xc2a038a3,0x3f800000,2
+np.float32,0x432038a3,0xb746cd61,2
+np.float32,0xc32038a3,0x3746cd61,2
+np.float32,0x42235ce2,0xb5b889b6,2
+np.float32,0xc2235ce2,0x35b889b6,2
+np.float32,0x42a35ce2,0x363889b6,2
+np.float32,0xc2a35ce2,0xb63889b6,2
+np.float32,0x43235ce2,0x36b889b6,2
+np.float32,0xc3235ce2,0xb6b889b6,2
+np.float32,0x42268121,0xbf3504f1,2
+np.float32,0xc2268121,0x3f3504f1,2
+np.float32,0x42a68121,0x3f800000,2
+np.float32,0xc2a68121,0xbf800000,2
+np.float32,0x43268121,0x35643aac,2
+np.float32,0xc3268121,0xb5643aac,2
+np.float32,0x4229a561,0xbf800000,2
+np.float32,0xc229a561,0x3f800000,2
+np.float32,0x42a9a561,0xb68733d0,2
+np.float32,0xc2a9a561,0x368733d0,2
+np.float32,0x4329a561,0x370733d0,2
+np.float32,0xc329a561,0xb70733d0,2
+np.float32,0x422cc9a0,0xbf3504ee,2
+np.float32,0xc22cc9a0,0x3f3504ee,2
+np.float32,0x42acc9a0,0xbf800000,2
+np.float32,0xc2acc9a0,0x3f800000,2
+np.float32,0x432cc9a0,0xb5e55a50,2
+np.float32,0xc32cc9a0,0x35e55a50,2
+np.float32,0x422fede0,0x363222c4,2
+np.float32,0xc22fede0,0xb63222c4,2
+np.float32,0x42afede0,0x36b222c4,2
+np.float32,0xc2afede0,0xb6b222c4,2
+np.float32,0x432fede0,0x373222c4,2
+np.float32,0xc32fede0,0xb73222c4,2
+np.float32,0x4233121f,0x3f350500,2
+np.float32,0xc233121f,0xbf350500,2
+np.float32,0x42b3121f,0x3f800000,2
+np.float32,0xc2b3121f,0xbf800000,2
+np.float32,0x4333121f,0xb68f347d,2
+np.float32,0xc333121f,0x368f347d,2
+np.float32,0x4236365e,0x3f800000,2
+np.float32,0xc236365e,0xbf800000,2
+np.float32,0x42b6365e,0x358bb91c,2
+np.float32,0xc2b6365e,0xb58bb91c,2
+np.float32,0x4336365e,0xb60bb91c,2
+np.float32,0xc336365e,0x360bb91c,2
+np.float32,0x42395a9e,0x3f3504df,2
+np.float32,0xc2395a9e,0xbf3504df,2
+np.float32,0x42b95a9e,0xbf800000,2
+np.float32,0xc2b95a9e,0x3f800000,2
+np.float32,0x43395a9e,0xb6e51267,2
+np.float32,0xc3395a9e,0x36e51267,2
+np.float32,0x423c7edd,0xb4000add,2
+np.float32,0xc23c7edd,0x34000add,2
+np.float32,0x42bc7edd,0x34800add,2
+np.float32,0xc2bc7edd,0xb4800add,2
+np.float32,0x433c7edd,0x35000add,2
+np.float32,0xc33c7edd,0xb5000add,2
+np.float32,0x423fa31d,0xbf35050f,2
+np.float32,0xc23fa31d,0x3f35050f,2
+np.float32,0x42bfa31d,0x3f800000,2
+np.float32,0xc2bfa31d,0xbf800000,2
+np.float32,0x433fa31d,0xb71d7828,2
+np.float32,0xc33fa31d,0x371d7828,2
+np.float32,0x4242c75c,0xbf800000,2
+np.float32,0xc242c75c,0x3f800000,2
+np.float32,0x42c2c75c,0xb5cbbe8a,2
+np.float32,0xc2c2c75c,0x35cbbe8a,2
+np.float32,0x4342c75c,0x364bbe8a,2
+np.float32,0xc342c75c,0xb64bbe8a,2
+np.float32,0x4245eb9c,0xbf3504d0,2
+np.float32,0xc245eb9c,0x3f3504d0,2
+np.float32,0x42c5eb9c,0xbf800000,2
+np.float32,0xc2c5eb9c,0x3f800000,2
+np.float32,0x4345eb9c,0xb748671d,2
+np.float32,0xc345eb9c,0x3748671d,2
+np.float32,0x42490fdb,0x35bbbd2e,2
+np.float32,0xc2490fdb,0xb5bbbd2e,2
+np.float32,0x42c90fdb,0x363bbd2e,2
+np.float32,0xc2c90fdb,0xb63bbd2e,2
+np.float32,0x43490fdb,0x36bbbd2e,2
+np.float32,0xc3490fdb,0xb6bbbd2e,2
+np.float32,0x424c341a,0x3f3504f1,2
+np.float32,0xc24c341a,0xbf3504f1,2
+np.float32,0x42cc341a,0x3f800000,2
+np.float32,0xc2cc341a,0xbf800000,2
+np.float32,0x434c341a,0x354a9ee6,2
+np.float32,0xc34c341a,0xb54a9ee6,2
+np.float32,0x424f585a,0x3f800000,2
+np.float32,0xc24f585a,0xbf800000,2
+np.float32,0x42cf585a,0xb688cd8c,2
+np.float32,0xc2cf585a,0x3688cd8c,2
+np.float32,0x434f585a,0x3708cd8c,2
+np.float32,0xc34f585a,0xb708cd8c,2
+np.float32,0x42527c99,0x3f3504ee,2
+np.float32,0xc2527c99,0xbf3504ee,2
+np.float32,0x42d27c99,0xbf800000,2
+np.float32,0xc2d27c99,0x3f800000,2
+np.float32,0x43527c99,0xb5f22833,2
+np.float32,0xc3527c99,0x35f22833,2
+np.float32,0x4255a0d9,0xb633bc81,2
+np.float32,0xc255a0d9,0x3633bc81,2
+np.float32,0x42d5a0d9,0x36b3bc81,2
+np.float32,0xc2d5a0d9,0xb6b3bc81,2
+np.float32,0x4355a0d9,0x3733bc81,2
+np.float32,0xc355a0d9,0xb733bc81,2
+np.float32,0x4258c518,0xbf350500,2
+np.float32,0xc258c518,0x3f350500,2
+np.float32,0x42d8c518,0x3f800000,2
+np.float32,0xc2d8c518,0xbf800000,2
+np.float32,0x4358c518,0xb69267f6,2
+np.float32,0xc358c518,0x369267f6,2
+np.float32,0x425be958,0xbf800000,2
+np.float32,0xc25be958,0x3f800000,2
+np.float32,0x42dbe958,0xb6deab75,2
+np.float32,0xc2dbe958,0x36deab75,2
+np.float32,0x435be958,0x375eab75,2
+np.float32,0xc35be958,0xb75eab75,2
+np.float32,0x425f0d97,0xbf3504df,2
+np.float32,0xc25f0d97,0x3f3504df,2
+np.float32,0x42df0d97,0xbf800000,2
+np.float32,0xc2df0d97,0x3f800000,2
+np.float32,0x435f0d97,0xb6e845e0,2
+np.float32,0xc35f0d97,0x36e845e0,2
+np.float32,0x426231d6,0x3419a6a2,2
+np.float32,0xc26231d6,0xb419a6a2,2
+np.float32,0x42e231d6,0x3499a6a2,2
+np.float32,0xc2e231d6,0xb499a6a2,2
+np.float32,0x436231d6,0x3519a6a2,2
+np.float32,0xc36231d6,0xb519a6a2,2
+np.float32,0x42655616,0x3f35050f,2
+np.float32,0xc2655616,0xbf35050f,2
+np.float32,0x42e55616,0x3f800000,2
+np.float32,0xc2e55616,0xbf800000,2
+np.float32,0x43655616,0xb71f11e5,2
+np.float32,0xc3655616,0x371f11e5,2
+np.float32,0x42687a55,0x3f800000,2
+np.float32,0xc2687a55,0xbf800000,2
+np.float32,0x42e87a55,0xb5d2257b,2
+np.float32,0xc2e87a55,0x35d2257b,2
+np.float32,0x43687a55,0x3652257b,2
+np.float32,0xc3687a55,0xb652257b,2
+np.float32,0x426b9e95,0x3f3504cf,2
+np.float32,0xc26b9e95,0xbf3504cf,2
+np.float32,0x42eb9e95,0xbf800000,2
+np.float32,0xc2eb9e95,0x3f800000,2
+np.float32,0x436b9e95,0xb74a00d9,2
+np.float32,0xc36b9e95,0x374a00d9,2
+np.float32,0x426ec2d4,0xb5bef0a7,2
+np.float32,0xc26ec2d4,0x35bef0a7,2
+np.float32,0x42eec2d4,0x363ef0a7,2
+np.float32,0xc2eec2d4,0xb63ef0a7,2
+np.float32,0x436ec2d4,0x36bef0a7,2
+np.float32,0xc36ec2d4,0xb6bef0a7,2
+np.float32,0x4271e713,0xbf3504f1,2
+np.float32,0xc271e713,0x3f3504f1,2
+np.float32,0x42f1e713,0x3f800000,2
+np.float32,0xc2f1e713,0xbf800000,2
+np.float32,0x4371e713,0x35310321,2
+np.float32,0xc371e713,0xb5310321,2
+np.float32,0x42750b53,0xbf800000,2
+np.float32,0xc2750b53,0x3f800000,2
+np.float32,0x42f50b53,0xb68a6748,2
+np.float32,0xc2f50b53,0x368a6748,2
+np.float32,0x43750b53,0x370a6748,2
+np.float32,0xc3750b53,0xb70a6748,2
+np.float32,0x42782f92,0xbf3504ee,2
+np.float32,0xc2782f92,0x3f3504ee,2
+np.float32,0x42f82f92,0xbf800000,2
+np.float32,0xc2f82f92,0x3f800000,2
+np.float32,0x43782f92,0xb5fef616,2
+np.float32,0xc3782f92,0x35fef616,2
+np.float32,0x427b53d2,0x3635563d,2
+np.float32,0xc27b53d2,0xb635563d,2
+np.float32,0x42fb53d2,0x36b5563d,2
+np.float32,0xc2fb53d2,0xb6b5563d,2
+np.float32,0x437b53d2,0x3735563d,2
+np.float32,0xc37b53d2,0xb735563d,2
+np.float32,0x427e7811,0x3f350500,2
+np.float32,0xc27e7811,0xbf350500,2
+np.float32,0x42fe7811,0x3f800000,2
+np.float32,0xc2fe7811,0xbf800000,2
+np.float32,0x437e7811,0xb6959b6f,2
+np.float32,0xc37e7811,0x36959b6f,2
+np.float32,0x4280ce28,0x3f800000,2
+np.float32,0xc280ce28,0xbf800000,2
+np.float32,0x4300ce28,0x357dd672,2
+np.float32,0xc300ce28,0xb57dd672,2
+np.float32,0x4380ce28,0xb5fdd672,2
+np.float32,0xc380ce28,0x35fdd672,2
+np.float32,0x42826048,0x3f3504de,2
+np.float32,0xc2826048,0xbf3504de,2
+np.float32,0x43026048,0xbf800000,2
+np.float32,0xc3026048,0x3f800000,2
+np.float32,0x43826048,0xb6eb7958,2
+np.float32,0xc3826048,0x36eb7958,2
+np.float32,0x4283f268,0xb6859a13,2
+np.float32,0xc283f268,0x36859a13,2
+np.float32,0x4303f268,0x37059a13,2
+np.float32,0xc303f268,0xb7059a13,2
+np.float32,0x4383f268,0x37859a13,2
+np.float32,0xc383f268,0xb7859a13,2
+np.float32,0x42858487,0xbf3504e2,2
+np.float32,0xc2858487,0x3f3504e2,2
+np.float32,0x43058487,0x3f800000,2
+np.float32,0xc3058487,0xbf800000,2
+np.float32,0x43858487,0x36bea8be,2
+np.float32,0xc3858487,0xb6bea8be,2
+np.float32,0x428716a7,0xbf800000,2
+np.float32,0xc28716a7,0x3f800000,2
+np.float32,0x430716a7,0xb5d88c6d,2
+np.float32,0xc30716a7,0x35d88c6d,2
+np.float32,0x438716a7,0x36588c6d,2
+np.float32,0xc38716a7,0xb6588c6d,2
+np.float32,0x4288a8c7,0xbf3504cf,2
+np.float32,0xc288a8c7,0x3f3504cf,2
+np.float32,0x4308a8c7,0xbf800000,2
+np.float32,0xc308a8c7,0x3f800000,2
+np.float32,0x4388a8c7,0xb74b9a96,2
+np.float32,0xc388a8c7,0x374b9a96,2
+np.float32,0x428a3ae7,0x36b08908,2
+np.float32,0xc28a3ae7,0xb6b08908,2
+np.float32,0x430a3ae7,0x37308908,2
+np.float32,0xc30a3ae7,0xb7308908,2
+np.float32,0x438a3ae7,0x37b08908,2
+np.float32,0xc38a3ae7,0xb7b08908,2
+np.float32,0x428bcd06,0x3f3504f2,2
+np.float32,0xc28bcd06,0xbf3504f2,2
+np.float32,0x430bcd06,0x3f800000,2
+np.float32,0xc30bcd06,0xbf800000,2
+np.float32,0x438bcd06,0x3517675b,2
+np.float32,0xc38bcd06,0xb517675b,2
+np.float32,0x428d5f26,0x3f800000,2
+np.float32,0xc28d5f26,0xbf800000,2
+np.float32,0x430d5f26,0xb68c0105,2
+np.float32,0xc30d5f26,0x368c0105,2
+np.float32,0x438d5f26,0x370c0105,2
+np.float32,0xc38d5f26,0xb70c0105,2
+np.float32,0x428ef146,0x3f3504c0,2
+np.float32,0xc28ef146,0xbf3504c0,2
+np.float32,0x430ef146,0xbf800000,2
+np.float32,0xc30ef146,0x3f800000,2
+np.float32,0x438ef146,0xb790bc40,2
+np.float32,0xc38ef146,0x3790bc40,2
+np.float32,0x42908365,0x3592200d,2
+np.float32,0xc2908365,0xb592200d,2
+np.float32,0x43108365,0xb612200d,2
+np.float32,0xc3108365,0x3612200d,2
+np.float32,0x43908365,0xb692200d,2
+np.float32,0xc3908365,0x3692200d,2
+np.float32,0x42921585,0xbf350501,2
+np.float32,0xc2921585,0x3f350501,2
+np.float32,0x43121585,0x3f800000,2
+np.float32,0xc3121585,0xbf800000,2
+np.float32,0x43921585,0xb698cee8,2
+np.float32,0xc3921585,0x3698cee8,2
+np.float32,0x4293a7a5,0xbf800000,2
+np.float32,0xc293a7a5,0x3f800000,2
+np.float32,0x4313a7a5,0xb6e1deee,2
+np.float32,0xc313a7a5,0x36e1deee,2
+np.float32,0x4393a7a5,0x3761deee,2
+np.float32,0xc393a7a5,0xb761deee,2
+np.float32,0x429539c5,0xbf3504b1,2
+np.float32,0xc29539c5,0x3f3504b1,2
+np.float32,0x431539c5,0xbf800000,2
+np.float32,0xc31539c5,0x3f800000,2
+np.float32,0x439539c5,0xb7bbab34,2
+np.float32,0xc39539c5,0x37bbab34,2
+np.float32,0x4296cbe4,0x344cde2e,2
+np.float32,0xc296cbe4,0xb44cde2e,2
+np.float32,0x4316cbe4,0x34ccde2e,2
+np.float32,0xc316cbe4,0xb4ccde2e,2
+np.float32,0x4396cbe4,0x354cde2e,2
+np.float32,0xc396cbe4,0xb54cde2e,2
+np.float32,0x42985e04,0x3f350510,2
+np.float32,0xc2985e04,0xbf350510,2
+np.float32,0x43185e04,0x3f800000,2
+np.float32,0xc3185e04,0xbf800000,2
+np.float32,0x43985e04,0xb722455d,2
+np.float32,0xc3985e04,0x3722455d,2
+np.float32,0x4299f024,0x3f800000,2
+np.float32,0xc299f024,0xbf800000,2
+np.float32,0x4319f024,0xb71bde6c,2
+np.float32,0xc319f024,0x371bde6c,2
+np.float32,0x4399f024,0x379bde6c,2
+np.float32,0xc399f024,0xb79bde6c,2
+np.float32,0x429b8243,0x3f3504fc,2
+np.float32,0xc29b8243,0xbf3504fc,2
+np.float32,0x431b8243,0xbf800000,2
+np.float32,0xc31b8243,0x3f800000,2
+np.float32,0x439b8243,0x364b2eb8,2
+np.float32,0xc39b8243,0xb64b2eb8,2
+np.float32,0x435b2047,0xbf350525,2
+np.float32,0x42a038a2,0xbf800000,2
+np.float32,0x432038a2,0x3664ca7e,2
+np.float32,0x4345eb9b,0x365e638c,2
+np.float32,0x42c5eb9b,0xbf800000,2
+np.float32,0x42eb9e94,0xbf800000,2
+np.float32,0x4350ea79,0x3f800000,2
+np.float32,0x42dbe957,0x3585522a,2
+np.float32,0x425be957,0xbf800000,2
+np.float32,0x435be957,0xb605522a,2
+np.float32,0x487fe5ab,0xbf7ffffd,2
+np.float32,0x497fe5ab,0xbb14017d,2
+np.float32,0x49ffe5ab,0xbb940164,2
+np.float32,0x49ffeb37,0x3f7fff56,2
+np.float32,0x497ff0c3,0x3f7fffd6,2
+np.float32,0x49fff0c3,0x3b930487,2
+np.float32,0x49fff64f,0xbf7fff58,2
+np.float32,0x497ffbdb,0x3b1207c0,2
+np.float32,0x49fffbdb,0xbb9207a9,2
+np.float32,0x48fffbdb,0xbf7ffff6,2
+np.float32,0x4e736e56,0x397fa7f2,2
+np.float32,0x4d4da377,0xb57c64bc,2
+np.float32,0x4ece58c3,0xb80846c8,2
+np.float32,0x4ee0db9c,0x394c4786,2
+np.float32,0x4dee7002,0x381bce96,2
+np.float32,0x4ee86afc,0x3f800000,2
+np.float32,0x4dca4f3f,0xb8e25111,2
+np.float32,0x4ecb48af,0xbf800000,2
+np.float32,0x4e51e33f,0xb8a4fa6f,2
+np.float32,0x4ef5f421,0x387ca7df,2
+np.float32,0x476362a2,0xbd7ff911,2
+np.float32,0x464c99a4,0x3e7f4d41,2
+np.float32,0x4471f73d,0x3e7fe1b0,2
+np.float32,0x445a6752,0x3e7ef367,2
+np.float32,0x474fa400,0x3e7f9fcd,2
+np.float32,0x47c9e70e,0xbb4bba09,2
+np.float32,0x45c1e72f,0xbe7fc7af,2
+np.float32,0x4558c91d,0x3e7e9f31,2
+np.float32,0x43784f94,0xbdff6654,2
+np.float32,0x466e8500,0xbe7ea0a3,2
+np.float32,0x468e1c25,0x3e7e22fb,2
+np.float32,0x47d28adc,0xbe7d5e6b,2
+np.float32,0x44ea6cfc,0x3dff70c3,2
+np.float32,0x4605126c,0x3e7f89ef,2
+np.float32,0x4788b3c6,0xbb87d853,2
+np.float32,0x4531b042,0x3dffd163,2
+np.float32,0x47e46c29,0xbe7def2b,2
+np.float32,0x47c10e07,0xbdff63d4,2
+np.float32,0x43f1f71d,0x3dfff387,2
+np.float32,0x47c3e38c,0x3e7f0b2f,2
+np.float32,0x462c3fa5,0xbd7fe13d,2
+np.float32,0x441c5354,0xbdff76b4,2
+np.float32,0x44908b69,0x3e7dcf0d,2
+np.float32,0x478813ad,0xbe7e9d80,2
+np.float32,0x441c4351,0x3dff937b,2
diff --git a/numpy/core/tests/test__exceptions.py b/numpy/core/tests/test__exceptions.py
new file mode 100644
index 000000000..494b51f34
--- /dev/null
+++ b/numpy/core/tests/test__exceptions.py
@@ -0,0 +1,42 @@
+"""
+Tests of the ._exceptions module. Primarily for exercising the __str__ methods.
+"""
+import numpy as np
+
+_ArrayMemoryError = np.core._exceptions._ArrayMemoryError
+
+class TestArrayMemoryError:
+ def test_str(self):
+ e = _ArrayMemoryError((1023,), np.dtype(np.uint8))
+ str(e) # not crashing is enough
+
+ # testing these properties is easier than testing the full string repr
+ def test__size_to_string(self):
+ """ Test e._size_to_string """
+ f = _ArrayMemoryError._size_to_string
+ Ki = 1024
+ assert f(0) == '0 bytes'
+ assert f(1) == '1 bytes'
+ assert f(1023) == '1023 bytes'
+ assert f(Ki) == '1.00 KiB'
+ assert f(Ki+1) == '1.00 KiB'
+ assert f(10*Ki) == '10.0 KiB'
+ assert f(int(999.4*Ki)) == '999. KiB'
+ assert f(int(1023.4*Ki)) == '1023. KiB'
+ assert f(int(1023.5*Ki)) == '1.00 MiB'
+ assert f(Ki*Ki) == '1.00 MiB'
+
+ # 1023.9999 Mib should round to 1 GiB
+ assert f(int(Ki*Ki*Ki*0.9999)) == '1.00 GiB'
+ assert f(Ki*Ki*Ki*Ki*Ki*Ki) == '1.00 EiB'
+ # larger than sys.maxsize, adding larger prefices isn't going to help
+ # anyway.
+ assert f(Ki*Ki*Ki*Ki*Ki*Ki*123456) == '123456. EiB'
+
+ def test__total_size(self):
+ """ Test e._total_size """
+ e = _ArrayMemoryError((1,), np.dtype(np.uint8))
+ assert e._total_size == 1
+
+ e = _ArrayMemoryError((2, 4), np.dtype((np.uint64, 16)))
+ assert e._total_size == 1024
diff --git a/numpy/core/tests/test_arrayprint.py b/numpy/core/tests/test_arrayprint.py
index f2b8fdca7..702e68e76 100644
--- a/numpy/core/tests/test_arrayprint.py
+++ b/numpy/core/tests/test_arrayprint.py
@@ -262,11 +262,6 @@ class TestArray2String(object):
assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) ==
'[abcabc defdef]')
- # check for backcompat that using FloatFormat works and emits warning
- with assert_warns(DeprecationWarning):
- fmt = np.core.arrayprint.FloatFormat(x, 9, 'maxprec', False)
- assert_equal(np.array2string(x, formatter={'float_kind': fmt}),
- '[0. 1. 2.]')
def test_structure_format(self):
dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
@@ -847,9 +842,9 @@ class TestPrintOptions(object):
)
def test_bad_args(self):
- assert_raises(ValueError, np.set_printoptions, threshold='nan')
- assert_raises(ValueError, np.set_printoptions, threshold=u'1')
- assert_raises(ValueError, np.set_printoptions, threshold=b'1')
+ assert_raises(ValueError, np.set_printoptions, threshold=float('nan'))
+ assert_raises(TypeError, np.set_printoptions, threshold='1')
+ assert_raises(TypeError, np.set_printoptions, threshold=b'1')
def test_unicode_object_array():
import sys
diff --git a/numpy/core/tests/test_deprecations.py b/numpy/core/tests/test_deprecations.py
index 6d71fcbd6..b12b71940 100644
--- a/numpy/core/tests/test_deprecations.py
+++ b/numpy/core/tests/test_deprecations.py
@@ -10,12 +10,16 @@ import sys
import operator
import warnings
import pytest
+import shutil
+import tempfile
import numpy as np
from numpy.testing import (
- assert_raises, assert_warns, assert_
+ assert_raises, assert_warns, assert_, assert_array_equal
)
+from numpy.core._multiarray_tests import fromstring_null_term_c_api
+
try:
import pytz
_has_pytz = True
@@ -101,7 +105,7 @@ class _DeprecationTestCase(object):
(self.warning_cls.__name__, warning.category))
if num is not None and num_found != num:
msg = "%i warnings found but %i expected." % (len(self.log), num)
- lst = [str(w.category) for w in self.log]
+ lst = [str(w) for w in self.log]
raise AssertionError("\n".join([msg] + lst))
with warnings.catch_warnings():
@@ -149,16 +153,6 @@ class TestNonTupleNDIndexDeprecation(object):
a[[0, 1]]
-class TestRankDeprecation(_DeprecationTestCase):
- """Test that np.rank is deprecated. The function should simply be
- removed. The VisibleDeprecationWarning may become unnecessary.
- """
-
- def test(self):
- a = np.arange(10)
- assert_warns(np.VisibleDeprecationWarning, np.rank, a)
-
-
class TestComparisonDeprecations(_DeprecationTestCase):
"""This tests the deprecation, for non-element-wise comparison logic.
This used to mean that when an error occurred during element-wise comparison
@@ -452,6 +446,18 @@ class TestNPY_CHAR(_DeprecationTestCase):
assert_(npy_char_deprecation() == 'S1')
+class TestPyArray_AS1D(_DeprecationTestCase):
+ def test_npy_pyarrayas1d_deprecation(self):
+ from numpy.core._multiarray_tests import npy_pyarrayas1d_deprecation
+ assert_raises(NotImplementedError, npy_pyarrayas1d_deprecation)
+
+
+class TestPyArray_AS2D(_DeprecationTestCase):
+ def test_npy_pyarrayas2d_deprecation(self):
+ from numpy.core._multiarray_tests import npy_pyarrayas2d_deprecation
+ assert_raises(NotImplementedError, npy_pyarrayas2d_deprecation)
+
+
class Test_UPDATEIFCOPY(_DeprecationTestCase):
"""
v1.14 deprecates creating an array with the UPDATEIFCOPY flag, use
@@ -499,6 +505,12 @@ class TestBincount(_DeprecationTestCase):
self.assert_deprecated(lambda: np.bincount([1, 2, 3], minlength=None))
+class TestAlen(_DeprecationTestCase):
+ # 2019-08-02, 1.18.0
+ def test_alen(self):
+ self.assert_deprecated(lambda: np.alen(np.array([1, 2, 3])))
+
+
class TestGeneratorSum(_DeprecationTestCase):
# 2018-02-25, 1.15.0
def test_generator_sum(self):
@@ -518,11 +530,65 @@ class TestPositiveOnNonNumerical(_DeprecationTestCase):
def test_positive_on_non_number(self):
self.assert_deprecated(operator.pos, args=(np.array('foo'),))
+
class TestFromstring(_DeprecationTestCase):
# 2017-10-19, 1.14
def test_fromstring(self):
self.assert_deprecated(np.fromstring, args=('\x00'*80,))
+
+class TestFromStringAndFileInvalidData(_DeprecationTestCase):
+ # 2019-06-08, 1.17.0
+ # Tests should be moved to real tests when deprecation is done.
+ message = "string or file could not be read to its end"
+
+ @pytest.mark.parametrize("invalid_str", [",invalid_data", "invalid_sep"])
+ def test_deprecate_unparsable_data_file(self, invalid_str):
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
+
+ with tempfile.TemporaryFile(mode="w") as f:
+ x.tofile(f, sep=',', format='%.2f')
+ f.write(invalid_str)
+
+ f.seek(0)
+ self.assert_deprecated(lambda: np.fromfile(f, sep=","))
+ f.seek(0)
+ self.assert_deprecated(lambda: np.fromfile(f, sep=",", count=5))
+ # Should not raise:
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", DeprecationWarning)
+ f.seek(0)
+ res = np.fromfile(f, sep=",", count=4)
+ assert_array_equal(res, x)
+
+ @pytest.mark.parametrize("invalid_str", [",invalid_data", "invalid_sep"])
+ def test_deprecate_unparsable_string(self, invalid_str):
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
+ x_str = "1.51,2,3.51,4{}".format(invalid_str)
+
+ self.assert_deprecated(lambda: np.fromstring(x_str, sep=","))
+ self.assert_deprecated(lambda: np.fromstring(x_str, sep=",", count=5))
+
+ # The C-level API can use not fixed size, but 0 terminated strings,
+ # so test that as well:
+ bytestr = x_str.encode("ascii")
+ self.assert_deprecated(lambda: fromstring_null_term_c_api(bytestr))
+
+ with assert_warns(DeprecationWarning):
+ # this is slightly strange, in that fromstring leaves data
+ # potentially uninitialized (would be good to error when all is
+ # read, but count is larger then actual data maybe).
+ res = np.fromstring(x_str, sep=",", count=5)
+ assert_array_equal(res[:-1], x)
+
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", DeprecationWarning)
+
+ # Should not raise:
+ res = np.fromstring(x_str, sep=",", count=4)
+ assert_array_equal(res, x)
+
+
class Test_GetSet_NumericOps(_DeprecationTestCase):
# 2018-09-20, 1.16.0
def test_get_numeric_ops(self):
diff --git a/numpy/core/tests/test_dtype.py b/numpy/core/tests/test_dtype.py
index f60eab696..d2fbbae5b 100644
--- a/numpy/core/tests/test_dtype.py
+++ b/numpy/core/tests/test_dtype.py
@@ -419,6 +419,31 @@ class TestRecord(object):
assert_raises(ValueError, np.dtype,
{'formats': ['i4', 'i4'], 'f0': ('i4', 0), 'f1':('i4', 4)})
+ def test_fieldless_views(self):
+ a = np.zeros(2, dtype={'names':[], 'formats':[], 'offsets':[],
+ 'itemsize':8})
+ assert_raises(ValueError, a.view, np.dtype([]))
+
+ d = np.dtype((np.dtype([]), 10))
+ assert_equal(d.shape, (10,))
+ assert_equal(d.itemsize, 0)
+ assert_equal(d.base, np.dtype([]))
+
+ arr = np.fromiter((() for i in range(10)), [])
+ assert_equal(arr.dtype, np.dtype([]))
+ assert_raises(ValueError, np.frombuffer, b'', dtype=[])
+ assert_equal(np.frombuffer(b'', dtype=[], count=2),
+ np.empty(2, dtype=[]))
+
+ assert_raises(ValueError, np.dtype, ([], 'f8'))
+ assert_raises(ValueError, np.zeros(1, dtype='i4').view, [])
+
+ assert_equal(np.zeros(2, dtype=[]) == np.zeros(2, dtype=[]),
+ np.ones(2, dtype=bool))
+
+ assert_equal(np.zeros((1, 2), dtype=[]) == a,
+ np.ones((1, 2), dtype=bool))
+
class TestSubarray(object):
def test_single_subarray(self):
@@ -938,13 +963,6 @@ class TestDtypeAttributes(object):
new_dtype = np.dtype(dtype.descr)
assert_equal(new_dtype.itemsize, 16)
- @pytest.mark.parametrize('t', np.typeDict.values())
- def test_name_builtin(self, t):
- name = t.__name__
- if name.endswith('_'):
- name = name[:-1]
- assert_equal(np.dtype(t).name, name)
-
def test_name_dtype_subclass(self):
# Ticket #4357
class user_def_subcls(np.void):
diff --git a/numpy/core/tests/test_indexing.py b/numpy/core/tests/test_indexing.py
index f7485c3f7..70a5a246f 100644
--- a/numpy/core/tests/test_indexing.py
+++ b/numpy/core/tests/test_indexing.py
@@ -617,6 +617,19 @@ class TestSubclasses(object):
assert_array_equal(s_bool, a[a > 0])
assert_array_equal(s_bool.base, a[a > 0])
+ def test_fancy_on_read_only(self):
+ # Test that fancy indexing on read-only SubClass does not make a
+ # read-only copy (gh-14132)
+ class SubClass(np.ndarray):
+ pass
+
+ a = np.arange(5)
+ s = a.view(SubClass)
+ s.flags.writeable = False
+ s_fancy = s[[0, 1, 2]]
+ assert_(s_fancy.flags.writeable)
+
+
def test_finalize_gets_full_info(self):
# Array finalize should be called on the filled array.
class SubClass(np.ndarray):
diff --git a/numpy/core/tests/test_longdouble.py b/numpy/core/tests/test_longdouble.py
index 7fb542ee1..8e1c9d153 100644
--- a/numpy/core/tests/test_longdouble.py
+++ b/numpy/core/tests/test_longdouble.py
@@ -5,7 +5,8 @@ import pytest
import numpy as np
from numpy.testing import (
- assert_, assert_equal, assert_raises, assert_array_equal, temppath,
+ assert_, assert_equal, assert_raises, assert_warns, assert_array_equal,
+ temppath,
)
from numpy.core.tests._locales import CommaDecimalPointLocale
@@ -84,18 +85,21 @@ def test_fromstring_complex():
def test_fromstring_bogus():
- assert_equal(np.fromstring("1. 2. 3. flop 4.", dtype=float, sep=" "),
- np.array([1., 2., 3.]))
+ with assert_warns(DeprecationWarning):
+ assert_equal(np.fromstring("1. 2. 3. flop 4.", dtype=float, sep=" "),
+ np.array([1., 2., 3.]))
def test_fromstring_empty():
- assert_equal(np.fromstring("xxxxx", sep="x"),
- np.array([]))
+ with assert_warns(DeprecationWarning):
+ assert_equal(np.fromstring("xxxxx", sep="x"),
+ np.array([]))
def test_fromstring_missing():
- assert_equal(np.fromstring("1xx3x4x5x6", sep="x"),
- np.array([1]))
+ with assert_warns(DeprecationWarning):
+ assert_equal(np.fromstring("1xx3x4x5x6", sep="x"),
+ np.array([1]))
class TestFileBased(object):
@@ -108,7 +112,9 @@ class TestFileBased(object):
with temppath() as path:
with open(path, 'wt') as f:
f.write("1. 2. 3. flop 4.\n")
- res = np.fromfile(path, dtype=float, sep=" ")
+
+ with assert_warns(DeprecationWarning):
+ res = np.fromfile(path, dtype=float, sep=" ")
assert_equal(res, np.array([1., 2., 3.]))
@pytest.mark.skipif(string_to_longdouble_inaccurate,
@@ -199,12 +205,14 @@ class TestCommaDecimalPointLocale(CommaDecimalPointLocale):
assert_equal(a[0], f)
def test_fromstring_best_effort_float(self):
- assert_equal(np.fromstring("1,234", dtype=float, sep=" "),
- np.array([1.]))
+ with assert_warns(DeprecationWarning):
+ assert_equal(np.fromstring("1,234", dtype=float, sep=" "),
+ np.array([1.]))
def test_fromstring_best_effort(self):
- assert_equal(np.fromstring("1,234", dtype=np.longdouble, sep=" "),
- np.array([1.]))
+ with assert_warns(DeprecationWarning):
+ assert_equal(np.fromstring("1,234", dtype=np.longdouble, sep=" "),
+ np.array([1.]))
def test_fromstring_foreign(self):
s = "1.234"
@@ -217,8 +225,10 @@ class TestCommaDecimalPointLocale(CommaDecimalPointLocale):
assert_array_equal(a, b)
def test_fromstring_foreign_value(self):
- b = np.fromstring("1,234", dtype=np.longdouble, sep=" ")
- assert_array_equal(b[0], 1)
+ with assert_warns(DeprecationWarning):
+ b = np.fromstring("1,234", dtype=np.longdouble, sep=" ")
+ assert_array_equal(b[0], 1)
+
@pytest.mark.parametrize("int_val", [
# cases discussed in gh-10723
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index 53e538f7d..58572f268 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -44,7 +44,7 @@ from numpy.testing import (
assert_, assert_raises, assert_warns, assert_equal, assert_almost_equal,
assert_array_equal, assert_raises_regex, assert_array_almost_equal,
assert_allclose, IS_PYPY, HAS_REFCOUNT, assert_array_less, runstring,
- temppath, suppress_warnings, break_cycles, assert_raises_regex,
+ temppath, suppress_warnings, break_cycles,
)
from numpy.core.tests._locales import CommaDecimalPointLocale
@@ -497,9 +497,6 @@ class TestArrayConstruction(object):
assert_(np.ascontiguousarray(d).flags.c_contiguous)
assert_(np.asfortranarray(d).flags.f_contiguous)
- def test_ragged(self):
- assert_raises_regex(ValueError, 'ragged',
- np.array, [[1], [2, 3]], dtype=int)
class TestAssignment(object):
def test_assignment_broadcasting(self):
@@ -4590,18 +4587,26 @@ class TestTake(object):
assert_equal(y, np.array([1, 2, 3]))
class TestLexsort(object):
- def test_basic(self):
- a = [1, 2, 1, 3, 1, 5]
- b = [0, 4, 5, 6, 2, 3]
+ @pytest.mark.parametrize('dtype',[
+ np.uint8, np.uint16, np.uint32, np.uint64,
+ np.int8, np.int16, np.int32, np.int64,
+ np.float16, np.float32, np.float64
+ ])
+ def test_basic(self, dtype):
+ a = np.array([1, 2, 1, 3, 1, 5], dtype=dtype)
+ b = np.array([0, 4, 5, 6, 2, 3], dtype=dtype)
idx = np.lexsort((b, a))
expected_idx = np.array([0, 4, 2, 1, 3, 5])
assert_array_equal(idx, expected_idx)
+ assert_array_equal(a[idx], np.sort(a))
- x = np.vstack((b, a))
- idx = np.lexsort(x)
- assert_array_equal(idx, expected_idx)
+ def test_mixed(self):
+ a = np.array([1, 2, 1, 3, 1, 5])
+ b = np.array([0, 4, 5, 6, 2, 3], dtype='datetime64[D]')
- assert_array_equal(x[1][idx], np.sort(x[1]))
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([0, 4, 2, 1, 3, 5])
+ assert_array_equal(idx, expected_idx)
def test_datetime(self):
a = np.array([0,0,0], dtype='datetime64[D]')
@@ -4958,7 +4963,8 @@ class TestIO(object):
self._check_from(b'1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',')
def test_malformed(self):
- self._check_from(b'1.234 1,234', [1.234, 1.], sep=' ')
+ with assert_warns(DeprecationWarning):
+ self._check_from(b'1.234 1,234', [1.234, 1.], sep=' ')
def test_long_sep(self):
self._check_from(b'1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_')
@@ -6271,6 +6277,23 @@ class TestMatmul(MatmulCommon):
with assert_raises(TypeError):
b = np.matmul(a, a)
+ def test_matmul_bool(self):
+ # gh-14439
+ a = np.array([[1, 0],[1, 1]], dtype=bool)
+ assert np.max(a.view(np.uint8)) == 1
+ b = np.matmul(a, a)
+ # matmul with boolean output should always be 0, 1
+ assert np.max(b.view(np.uint8)) == 1
+
+ rg = np.random.default_rng(np.random.PCG64(43))
+ d = rg.integers(2, size=4*5, dtype=np.int8)
+ d = d.reshape(4, 5) > 0
+ out1 = np.matmul(d, d.reshape(5, 4))
+ out2 = np.dot(d, d.reshape(5, 4))
+ assert_equal(out1, out2)
+
+ c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool))
+ assert not np.any(c)
if sys.version_info[:2] >= (3, 5):
@@ -6405,20 +6428,22 @@ class TestInner(object):
class TestAlen(object):
def test_basic(self):
- m = np.array([1, 2, 3])
- assert_equal(np.alen(m), 3)
+ with pytest.warns(DeprecationWarning):
+ m = np.array([1, 2, 3])
+ assert_equal(np.alen(m), 3)
- m = np.array([[1, 2, 3], [4, 5, 7]])
- assert_equal(np.alen(m), 2)
+ m = np.array([[1, 2, 3], [4, 5, 7]])
+ assert_equal(np.alen(m), 2)
- m = [1, 2, 3]
- assert_equal(np.alen(m), 3)
+ m = [1, 2, 3]
+ assert_equal(np.alen(m), 3)
- m = [[1, 2, 3], [4, 5, 7]]
- assert_equal(np.alen(m), 2)
+ m = [[1, 2, 3], [4, 5, 7]]
+ assert_equal(np.alen(m), 2)
def test_singleton(self):
- assert_equal(np.alen(5), 1)
+ with pytest.warns(DeprecationWarning):
+ assert_equal(np.alen(5), 1)
class TestChoose(object):
@@ -8080,6 +8105,8 @@ class TestWritebackIfCopy(object):
arr_wb[...] = 100
assert_equal(arr, -100)
+ @pytest.mark.leaks_references(
+ reason="increments self in dealloc; ignore since deprecated path.")
def test_dealloc_warning(self):
with suppress_warnings() as sup:
sup.record(RuntimeWarning)
diff --git a/numpy/core/tests/test_numeric.py b/numpy/core/tests/test_numeric.py
index 3e85054b7..1358b45e9 100644
--- a/numpy/core/tests/test_numeric.py
+++ b/numpy/core/tests/test_numeric.py
@@ -1341,6 +1341,11 @@ class TestBinaryRepr(object):
exp = '1' + (width - 1) * '0'
assert_equal(np.binary_repr(num, width=width), exp)
+ def test_large_neg_int64(self):
+ # See gh-14289.
+ assert_equal(np.binary_repr(np.int64(-2**62), width=64),
+ '11' + '0'*62)
+
class TestBaseRepr(object):
def test_base3(self):
@@ -2578,6 +2583,30 @@ class TestConvolve(object):
class TestArgwhere(object):
+
+ @pytest.mark.parametrize('nd', [0, 1, 2])
+ def test_nd(self, nd):
+ # get an nd array with multiple elements in every dimension
+ x = np.empty((2,)*nd, bool)
+
+ # none
+ x[...] = False
+ assert_equal(np.argwhere(x).shape, (0, nd))
+
+ # only one
+ x[...] = False
+ x.flat[0] = True
+ assert_equal(np.argwhere(x).shape, (1, nd))
+
+ # all but one
+ x[...] = True
+ x.flat[0] = False
+ assert_equal(np.argwhere(x).shape, (x.size - 1, nd))
+
+ # all
+ x[...] = True
+ assert_equal(np.argwhere(x).shape, (x.size, nd))
+
def test_2D(self):
x = np.arange(6).reshape((2, 3))
assert_array_equal(np.argwhere(x > 1),
diff --git a/numpy/core/tests/test_numerictypes.py b/numpy/core/tests/test_numerictypes.py
index d0ff5578a..387740e35 100644
--- a/numpy/core/tests/test_numerictypes.py
+++ b/numpy/core/tests/test_numerictypes.py
@@ -498,3 +498,32 @@ class TestDocStrings(object):
assert_('int64' in np.int_.__doc__)
elif np.int64 is np.longlong:
assert_('int64' in np.longlong.__doc__)
+
+
+class TestScalarTypeNames:
+ # gh-9799
+
+ numeric_types = [
+ np.byte, np.short, np.intc, np.int_, np.longlong,
+ np.ubyte, np.ushort, np.uintc, np.uint, np.ulonglong,
+ np.half, np.single, np.double, np.longdouble,
+ np.csingle, np.cdouble, np.clongdouble,
+ ]
+
+ def test_names_are_unique(self):
+ # none of the above may be aliases for each other
+ assert len(set(self.numeric_types)) == len(self.numeric_types)
+
+ # names must be unique
+ names = [t.__name__ for t in self.numeric_types]
+ assert len(set(names)) == len(names)
+
+ @pytest.mark.parametrize('t', numeric_types)
+ def test_names_reflect_attributes(self, t):
+ """ Test that names correspond to where the type is under ``np.`` """
+ assert getattr(np, t.__name__) is t
+
+ @pytest.mark.parametrize('t', numeric_types)
+ def test_names_are_undersood_by_dtype(self, t):
+ """ Test the dtype constructor maps names back to the type """
+ assert np.dtype(t.__name__).type is t
diff --git a/numpy/core/tests/test_records.py b/numpy/core/tests/test_records.py
index 14413224e..c1b794145 100644
--- a/numpy/core/tests/test_records.py
+++ b/numpy/core/tests/test_records.py
@@ -444,6 +444,48 @@ class TestRecord(object):
]
arr = np.rec.fromarrays(arrays) # ValueError?
+ @pytest.mark.parametrize('nfields', [0, 1, 2])
+ def test_assign_dtype_attribute(self, nfields):
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)][:nfields])
+ data = np.zeros(3, dt).view(np.recarray)
+
+ # the original and resulting dtypes differ on whether they are records
+ assert data.dtype.type == np.record
+ assert dt.type != np.record
+
+ # ensure that the dtype remains a record even when assigned
+ data.dtype = dt
+ assert data.dtype.type == np.record
+
+ @pytest.mark.parametrize('nfields', [0, 1, 2])
+ def test_nested_fields_are_records(self, nfields):
+ """ Test that nested structured types are treated as records too """
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)][:nfields])
+ dt_outer = np.dtype([('inner', dt)])
+
+ data = np.zeros(3, dt_outer).view(np.recarray)
+ assert isinstance(data, np.recarray)
+ assert isinstance(data['inner'], np.recarray)
+
+ data0 = data[0]
+ assert isinstance(data0, np.record)
+ assert isinstance(data0['inner'], np.record)
+
+ def test_nested_dtype_padding(self):
+ """ test that trailing padding is preserved """
+ # construct a dtype with padding at the end
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)])
+ dt_padded_end = dt[['a', 'b']]
+ assert dt_padded_end.itemsize == dt.itemsize
+
+ dt_outer = np.dtype([('inner', dt_padded_end)])
+
+ data = np.zeros(3, dt_outer).view(np.recarray)
+ assert_equal(data['inner'].dtype, dt_padded_end)
+
+ data0 = data[0]
+ assert_equal(data0['inner'].dtype, dt_padded_end)
+
def test_find_duplicate():
l1 = [1, 2, 3, 4, 5, 6]
diff --git a/numpy/core/tests/test_regression.py b/numpy/core/tests/test_regression.py
index e564ae300..9dc231deb 100644
--- a/numpy/core/tests/test_regression.py
+++ b/numpy/core/tests/test_regression.py
@@ -436,6 +436,32 @@ class TestRegression(object):
assert_raises(KeyError, np.lexsort, BuggySequence())
+ def test_lexsort_zerolen_custom_strides(self):
+ # Ticket #14228
+ xs = np.array([], dtype='i8')
+ assert xs.strides == (8,)
+ assert np.lexsort((xs,)).shape[0] == 0 # Works
+
+ xs.strides = (16,)
+ assert np.lexsort((xs,)).shape[0] == 0 # Was: MemoryError
+
+ def test_lexsort_zerolen_custom_strides_2d(self):
+ xs = np.array([], dtype='i8')
+
+ xs.shape = (0, 2)
+ xs.strides = (16, 16)
+ assert np.lexsort((xs,), axis=0).shape[0] == 0
+
+ xs.shape = (2, 0)
+ xs.strides = (16, 16)
+ assert np.lexsort((xs,), axis=0).shape[0] == 2
+
+ def test_lexsort_zerolen_element(self):
+ dt = np.dtype([]) # a void dtype with no fields
+ xs = np.empty(4, dt)
+
+ assert np.lexsort((xs,)).shape[0] == xs.shape[0]
+
def test_pickle_py2_bytes_encoding(self):
# Check that arrays and scalars pickled on Py2 are
# unpickleable on Py3 using encoding='bytes'
@@ -468,7 +494,7 @@ class TestRegression(object):
result = pickle.loads(data, encoding='bytes')
assert_equal(result, original)
- if isinstance(result, np.ndarray) and result.dtype.names:
+ if isinstance(result, np.ndarray) and result.dtype.names is not None:
for name in result.dtype.names:
assert_(isinstance(name, str))
@@ -1513,7 +1539,8 @@ class TestRegression(object):
def test_fromstring_crash(self):
# Ticket #1345: the following should not cause a crash
- np.fromstring(b'aa, aa, 1.0', sep=',')
+ with assert_warns(DeprecationWarning):
+ np.fromstring(b'aa, aa, 1.0', sep=',')
def test_ticket_1539(self):
dtypes = [x for x in np.typeDict.values()
@@ -2474,3 +2501,13 @@ class TestRegression(object):
t = T()
#gh-13659, would raise in broadcasting [x=t for x in result]
np.array([t])
+
+ @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python')
+ @pytest.mark.skipif(sys.platform == 'win32' and sys.version_info[:2] < (3, 8),
+ reason='overflows on windows, fixed in bpo-16865')
+ def test_to_ctypes(self):
+ #gh-14214
+ arr = np.zeros((2 ** 31 + 1,), 'b')
+ assert arr.size * arr.itemsize > 2 ** 31
+ c_arr = np.ctypeslib.as_ctypes(arr)
+ assert_equal(c_arr._length_, arr.size)
diff --git a/numpy/core/tests/test_scalarmath.py b/numpy/core/tests/test_scalarmath.py
index ebba457e3..854df5590 100644
--- a/numpy/core/tests/test_scalarmath.py
+++ b/numpy/core/tests/test_scalarmath.py
@@ -664,3 +664,31 @@ class TestAbs(object):
def test_numpy_abs(self):
self._test_abs_func(np.abs)
+
+
+class TestBitShifts(object):
+
+ @pytest.mark.parametrize('type_code', np.typecodes['AllInteger'])
+ @pytest.mark.parametrize('op',
+ [operator.rshift, operator.lshift], ids=['>>', '<<'])
+ def test_shift_all_bits(self, type_code, op):
+ """ Shifts where the shift amount is the width of the type or wider """
+ # gh-2449
+ dt = np.dtype(type_code)
+ nbits = dt.itemsize * 8
+ for val in [5, -5]:
+ for shift in [nbits, nbits + 4]:
+ val_scl = dt.type(val)
+ shift_scl = dt.type(shift)
+ res_scl = op(val_scl, shift_scl)
+ if val_scl < 0 and op is operator.rshift:
+ # sign bit is preserved
+ assert_equal(res_scl, -1)
+ else:
+ assert_equal(res_scl, 0)
+
+ # Result on scalars should be the same as on arrays
+ val_arr = np.array([val]*32, dtype=dt)
+ shift_arr = np.array([shift]*32, dtype=dt)
+ res_arr = op(val_arr, shift_arr)
+ assert_equal(res_arr, res_scl)
diff --git a/numpy/core/tests/test_ufunc.py b/numpy/core/tests/test_ufunc.py
index 69fbc35e3..707c690dd 100644
--- a/numpy/core/tests/test_ufunc.py
+++ b/numpy/core/tests/test_ufunc.py
@@ -1933,4 +1933,17 @@ def test_ufunc_noncontiguous(ufunc):
warnings.filterwarnings("always")
res_c = ufunc(*args_c)
res_n = ufunc(*args_n)
- assert_equal(res_c, res_n)
+ if len(out) == 1:
+ res_c = (res_c,)
+ res_n = (res_n,)
+ for c_ar, n_ar in zip(res_c, res_n):
+ dt = c_ar.dtype
+ if np.issubdtype(dt, np.floating):
+ # for floating point results allow a small fuss in comparisons
+ # since different algorithms (libm vs. intrinsics) can be used
+ # for different input strides
+ res_eps = np.finfo(dt).eps
+ tol = 2*res_eps
+ assert_allclose(res_c, res_n, atol=tol, rtol=tol)
+ else:
+ assert_equal(c_ar, n_ar)
diff --git a/numpy/core/tests/test_umath.py b/numpy/core/tests/test_umath.py
index d2ce74282..ef48fed05 100644
--- a/numpy/core/tests/test_umath.py
+++ b/numpy/core/tests/test_umath.py
@@ -14,7 +14,7 @@ from numpy.testing import (
assert_, assert_equal, assert_raises, assert_raises_regex,
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
assert_array_max_ulp, assert_allclose, assert_no_warnings, suppress_warnings,
- _gen_alignment_data
+ _gen_alignment_data, assert_array_almost_equal_nulp
)
def on_powerpc():
@@ -678,20 +678,49 @@ class TestSpecialFloats(object):
assert_raises(FloatingPointError, np.log, np.float32(-np.inf))
assert_raises(FloatingPointError, np.log, np.float32(-1.0))
-class TestExpLogFloat32(object):
+ def test_sincos_values(self):
+ with np.errstate(all='ignore'):
+ x = [np.nan, np.nan, np.nan, np.nan]
+ y = [np.nan, -np.nan, np.inf, -np.inf]
+ for dt in ['f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_equal(np.sin(yf), xf)
+ assert_equal(np.cos(yf), xf)
+
+ with np.errstate(invalid='raise'):
+ assert_raises(FloatingPointError, np.sin, np.float32(-np.inf))
+ assert_raises(FloatingPointError, np.sin, np.float32(np.inf))
+ assert_raises(FloatingPointError, np.cos, np.float32(-np.inf))
+ assert_raises(FloatingPointError, np.cos, np.float32(np.inf))
+
+
+class TestSIMDFloat32(object):
def test_exp_float32(self):
np.random.seed(42)
x_f32 = np.float32(np.random.uniform(low=0.0,high=88.1,size=1000000))
x_f64 = np.float64(x_f32)
- assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=2.6)
+ assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=3)
def test_log_float32(self):
np.random.seed(42)
x_f32 = np.float32(np.random.uniform(low=0.0,high=1000,size=1000000))
x_f64 = np.float64(x_f32)
- assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=3.9)
+ assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=4)
+
+ def test_sincos_float32(self):
+ np.random.seed(42)
+ N = 1000000
+ M = np.int(N/20)
+ index = np.random.randint(low=0, high=N, size=M)
+ x_f32 = np.float32(np.random.uniform(low=-100.,high=100.,size=N))
+ # test coverage for elements > 117435.992f for which glibc is used
+ x_f32[index] = np.float32(10E+10*np.random.rand(M))
+ x_f64 = np.float64(x_f32)
+ assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2)
+ assert_array_max_ulp(np.cos(x_f32), np.float32(np.cos(x_f64)), maxulp=2)
- def test_strided_exp_log_float32(self):
+ def test_strided_float32(self):
np.random.seed(42)
strides = np.random.randint(low=-100, high=100, size=100)
sizes = np.random.randint(low=1, high=2000, size=100)
@@ -699,9 +728,13 @@ class TestExpLogFloat32(object):
x_f32 = np.float32(np.random.uniform(low=0.01,high=88.1,size=ii))
exp_true = np.exp(x_f32)
log_true = np.log(x_f32)
+ sin_true = np.sin(x_f32)
+ cos_true = np.cos(x_f32)
for jj in strides:
- assert_equal(np.exp(x_f32[::jj]), exp_true[::jj])
- assert_equal(np.log(x_f32[::jj]), log_true[::jj])
+ assert_array_almost_equal_nulp(np.exp(x_f32[::jj]), exp_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.log(x_f32[::jj]), log_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.sin(x_f32[::jj]), sin_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.cos(x_f32[::jj]), cos_true[::jj], nulp=2)
class TestLogAddExp(_FilterInvalids):
def test_logaddexp_values(self):
diff --git a/numpy/core/tests/test_umath_accuracy.py b/numpy/core/tests/test_umath_accuracy.py
new file mode 100644
index 000000000..0bab04df2
--- /dev/null
+++ b/numpy/core/tests/test_umath_accuracy.py
@@ -0,0 +1,54 @@
+import numpy as np
+import platform
+from os import path
+import sys
+import pytest
+from ctypes import *
+from numpy.testing import assert_array_max_ulp
+
+runtest = sys.platform.startswith('linux') and (platform.machine() == 'x86_64')
+platform_skip = pytest.mark.skipif(not runtest,
+ reason="""
+ stick to x86_64 and linux platforms.
+ test seems to fail on some of ARM and power
+ architectures.
+ """)
+
+# convert string to hex function taken from:
+# https://stackoverflow.com/questions/1592158/convert-hex-to-float #
+def convert(s):
+ i = int(s, 16) # convert from hex to a Python int
+ cp = pointer(c_int(i)) # make this into a c integer
+ fp = cast(cp, POINTER(c_float)) # cast the int pointer to a float pointer
+ return fp.contents.value # dereference the pointer, get the float
+
+str_to_float = np.vectorize(convert)
+files = ['umath-validation-set-exp',
+ 'umath-validation-set-log',
+ 'umath-validation-set-sin',
+ 'umath-validation-set-cos']
+
+class TestAccuracy(object):
+ @pytest.mark.xfail(reason="Fails for MacPython/numpy-wheels builds")
+ def test_validate_transcendentals(self):
+ with np.errstate(all='ignore'):
+ for filename in files:
+ data_dir = path.join(path.dirname(__file__), 'data')
+ filepath = path.join(data_dir, filename)
+ with open(filepath) as fid:
+ file_without_comments = (r for r in fid if not r[0] in ('$', '#'))
+ data = np.genfromtxt(file_without_comments,
+ dtype=('|S39','|S39','|S39',np.int),
+ names=('type','input','output','ulperr'),
+ delimiter=',',
+ skip_header=1)
+ npfunc = getattr(np, filename.split('-')[3])
+ for datatype in np.unique(data['type']):
+ data_subset = data[data['type'] == datatype]
+ inval = np.array(str_to_float(data_subset['input'].astype(str)), dtype=eval(datatype))
+ outval = np.array(str_to_float(data_subset['output'].astype(str)), dtype=eval(datatype))
+ perm = np.random.permutation(len(inval))
+ inval = inval[perm]
+ outval = outval[perm]
+ maxulperr = data_subset['ulperr'].max()
+ assert_array_max_ulp(npfunc(inval), outval, maxulperr)
diff --git a/numpy/ctypeslib.py b/numpy/ctypeslib.py
index 1f842d003..58f3ef9d3 100644
--- a/numpy/ctypeslib.py
+++ b/numpy/ctypeslib.py
@@ -92,11 +92,11 @@ else:
# Adapted from Albert Strasheim
def load_library(libname, loader_path):
"""
- It is possible to load a library using
+ It is possible to load a library using
>>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP
But there are cross-platform considerations, such as library file extensions,
- plus the fact Windows will just load the first library it finds with that name.
+ plus the fact Windows will just load the first library it finds with that name.
NumPy supplies the load_library function as a convenience.
Parameters
@@ -110,12 +110,12 @@ else:
Returns
-------
ctypes.cdll[libpath] : library object
- A ctypes library object
+ A ctypes library object
Raises
------
OSError
- If there is no library with the expected extension, or the
+ If there is no library with the expected extension, or the
library is defective and cannot be loaded.
"""
if ctypes.__version__ < '1.0.1':
@@ -321,7 +321,7 @@ def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
# produce a name for the new type
if dtype is None:
name = 'any'
- elif dtype.names:
+ elif dtype.names is not None:
name = str(id(dtype))
else:
name = dtype.str
@@ -535,7 +535,10 @@ if ctypes is not None:
if readonly:
raise TypeError("readonly arrays unsupported")
- dtype = _dtype((ai["typestr"], ai["shape"]))
- result = as_ctypes_type(dtype).from_address(addr)
+ # can't use `_dtype((ai["typestr"], ai["shape"]))` here, as it overflows
+ # dtype.itemsize (gh-14214)
+ ctype_scalar = as_ctypes_type(ai["typestr"])
+ result_type = _ctype_ndarray(ctype_scalar, ai["shape"])
+ result = result_type.from_address(addr)
result.__keep = obj
return result
diff --git a/numpy/distutils/__init__.py b/numpy/distutils/__init__.py
index 55514750e..8dbb63b28 100644
--- a/numpy/distutils/__init__.py
+++ b/numpy/distutils/__init__.py
@@ -1,12 +1,31 @@
+"""
+An enhanced distutils, providing support for Fortran compilers, for BLAS,
+LAPACK and other common libraries for numerical computing, and more.
+
+Public submodules are::
+
+ misc_util
+ system_info
+ cpu_info
+ log
+ exec_command
+
+For details, please see the *Packaging* and *NumPy Distutils User Guide*
+sections of the NumPy Reference Guide.
+
+For configuring the preference for and location of libraries like BLAS and
+LAPACK, and for setting include paths and similar build options, please see
+``site.cfg.example`` in the root of the NumPy repository or sdist.
+
+"""
+
from __future__ import division, absolute_import, print_function
-from .__version__ import version as __version__
# Must import local ccompiler ASAP in order to get
# customized CCompiler.spawn effective.
from . import ccompiler
from . import unixccompiler
-from .info import __doc__
from .npy_pkg_config import *
# If numpy is installed, add distutils.test()
@@ -28,7 +47,7 @@ def customized_fcompiler(plat=None, compiler=None):
c.customize()
return c
-def customized_ccompiler(plat=None, compiler=None):
- c = ccompiler.new_compiler(plat=plat, compiler=compiler)
+def customized_ccompiler(plat=None, compiler=None, verbose=1):
+ c = ccompiler.new_compiler(plat=plat, compiler=compiler, verbose=verbose)
c.customize('')
return c
diff --git a/numpy/distutils/__version__.py b/numpy/distutils/__version__.py
deleted file mode 100644
index 969decbba..000000000
--- a/numpy/distutils/__version__.py
+++ /dev/null
@@ -1,6 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-major = 0
-minor = 4
-micro = 0
-version = '%(major)d.%(minor)d.%(micro)d' % (locals())
diff --git a/numpy/distutils/ccompiler.py b/numpy/distutils/ccompiler.py
index 14451fa66..643879023 100644
--- a/numpy/distutils/ccompiler.py
+++ b/numpy/distutils/ccompiler.py
@@ -140,7 +140,10 @@ def CCompiler_spawn(self, cmd, display=None):
display = ' '.join(list(display))
log.info(display)
try:
- subprocess.check_output(cmd)
+ if self.verbose:
+ subprocess.check_output(cmd)
+ else:
+ subprocess.check_output(cmd, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as exc:
o = exc.output
s = exc.returncode
@@ -162,7 +165,8 @@ def CCompiler_spawn(self, cmd, display=None):
if is_sequence(cmd):
cmd = ' '.join(list(cmd))
- forward_bytes_to_stdout(o)
+ if self.verbose:
+ forward_bytes_to_stdout(o)
if re.search(b'Too many open files', o):
msg = '\nTry rerunning setup command until build succeeds.'
@@ -727,10 +731,12 @@ if sys.platform == 'win32':
_distutils_new_compiler = new_compiler
def new_compiler (plat=None,
compiler=None,
- verbose=0,
+ verbose=None,
dry_run=0,
force=0):
# Try first C compilers from numpy.distutils.
+ if verbose is None:
+ verbose = log.get_threshold() <= log.INFO
if plat is None:
plat = os.name
try:
@@ -763,6 +769,7 @@ def new_compiler (plat=None,
raise DistutilsModuleError(("can't compile C/C++ code: unable to find class '%s' " +
"in module '%s'") % (class_name, module_name))
compiler = klass(None, dry_run, force)
+ compiler.verbose = verbose
log.debug('new_compiler returns %s' % (klass))
return compiler
diff --git a/numpy/distutils/command/build.py b/numpy/distutils/command/build.py
index 3d7101582..5a9da1217 100644
--- a/numpy/distutils/command/build.py
+++ b/numpy/distutils/command/build.py
@@ -16,8 +16,8 @@ class build(old_build):
user_options = old_build.user_options + [
('fcompiler=', None,
"specify the Fortran compiler type"),
- ('parallel=', 'j',
- "number of parallel jobs"),
+ ('warn-error', None,
+ "turn all warnings into errors (-Werror)"),
]
help_options = old_build.help_options + [
@@ -28,17 +28,12 @@ class build(old_build):
def initialize_options(self):
old_build.initialize_options(self)
self.fcompiler = None
- self.parallel = None
+ self.warn_error = False
def finalize_options(self):
- if self.parallel:
- try:
- self.parallel = int(self.parallel)
- except ValueError:
- raise ValueError("--parallel/-j argument must be an integer")
build_scripts = self.build_scripts
old_build.finalize_options(self)
- plat_specifier = ".%s-%s" % (get_platform(), sys.version[0:3])
+ plat_specifier = ".{}-{}.{}".format(get_platform(), *sys.version_info[:2])
if build_scripts is None:
self.build_scripts = os.path.join(self.build_base,
'scripts' + plat_specifier)
diff --git a/numpy/distutils/command/build_clib.py b/numpy/distutils/command/build_clib.py
index 910493a77..13edf0717 100644
--- a/numpy/distutils/command/build_clib.py
+++ b/numpy/distutils/command/build_clib.py
@@ -33,15 +33,18 @@ class build_clib(old_build_clib):
('inplace', 'i', 'Build in-place'),
('parallel=', 'j',
"number of parallel jobs"),
+ ('warn-error', None,
+ "turn all warnings into errors (-Werror)"),
]
- boolean_options = old_build_clib.boolean_options + ['inplace']
+ boolean_options = old_build_clib.boolean_options + ['inplace', 'warn-error']
def initialize_options(self):
old_build_clib.initialize_options(self)
self.fcompiler = None
self.inplace = 0
self.parallel = None
+ self.warn_error = None
def finalize_options(self):
if self.parallel:
@@ -50,7 +53,10 @@ class build_clib(old_build_clib):
except ValueError:
raise ValueError("--parallel/-j argument must be an integer")
old_build_clib.finalize_options(self)
- self.set_undefined_options('build', ('parallel', 'parallel'))
+ self.set_undefined_options('build',
+ ('parallel', 'parallel'),
+ ('warn_error', 'warn_error'),
+ )
def have_f_sources(self):
for (lib_name, build_info) in self.libraries:
@@ -86,6 +92,10 @@ class build_clib(old_build_clib):
self.compiler.customize(self.distribution,
need_cxx=self.have_cxx_sources())
+ if self.warn_error:
+ self.compiler.compiler.append('-Werror')
+ self.compiler.compiler_so.append('-Werror')
+
libraries = self.libraries
self.libraries = None
self.compiler.customize_cmd(self)
diff --git a/numpy/distutils/command/build_ext.py b/numpy/distutils/command/build_ext.py
index ef54fb25e..cd9b1c6f1 100644
--- a/numpy/distutils/command/build_ext.py
+++ b/numpy/distutils/command/build_ext.py
@@ -33,6 +33,8 @@ class build_ext (old_build_ext):
"specify the Fortran compiler type"),
('parallel=', 'j',
"number of parallel jobs"),
+ ('warn-error', None,
+ "turn all warnings into errors (-Werror)"),
]
help_options = old_build_ext.help_options + [
@@ -40,10 +42,13 @@ class build_ext (old_build_ext):
show_fortran_compilers),
]
+ boolean_options = old_build_ext.boolean_options + ['warn-error']
+
def initialize_options(self):
old_build_ext.initialize_options(self)
self.fcompiler = None
self.parallel = None
+ self.warn_error = None
def finalize_options(self):
if self.parallel:
@@ -69,7 +74,10 @@ class build_ext (old_build_ext):
self.include_dirs.extend(incl_dirs)
old_build_ext.finalize_options(self)
- self.set_undefined_options('build', ('parallel', 'parallel'))
+ self.set_undefined_options('build',
+ ('parallel', 'parallel'),
+ ('warn_error', 'warn_error'),
+ )
def run(self):
if not self.extensions:
@@ -116,6 +124,11 @@ class build_ext (old_build_ext):
force=self.force)
self.compiler.customize(self.distribution)
self.compiler.customize_cmd(self)
+
+ if self.warn_error:
+ self.compiler.compiler.append('-Werror')
+ self.compiler.compiler_so.append('-Werror')
+
self.compiler.show_customization()
# Setup directory for storing generated extra DLL files on Windows
diff --git a/numpy/distutils/command/build_src.py b/numpy/distutils/command/build_src.py
index 41bb01da5..af8cec08a 100644
--- a/numpy/distutils/command/build_src.py
+++ b/numpy/distutils/command/build_src.py
@@ -53,9 +53,12 @@ class build_src(build_ext.build_ext):
('inplace', 'i',
"ignore build-lib and put compiled extensions into the source " +
"directory alongside your pure Python modules"),
+ ('verbose', 'v',
+ "change logging level from WARN to INFO which will show all " +
+ "compiler output")
]
- boolean_options = ['force', 'inplace']
+ boolean_options = ['force', 'inplace', 'verbose']
help_options = []
@@ -76,6 +79,7 @@ class build_src(build_ext.build_ext):
self.swig_opts = None
self.swig_cpp = None
self.swig = None
+ self.verbose = None
def finalize_options(self):
self.set_undefined_options('build',
@@ -90,7 +94,7 @@ class build_src(build_ext.build_ext):
self.data_files = self.distribution.data_files or []
if self.build_src is None:
- plat_specifier = ".%s-%s" % (get_platform(), sys.version[0:3])
+ plat_specifier = ".{}-{}.{}".format(get_platform(), *sys.version_info[:2])
self.build_src = os.path.join(self.build_base, 'src'+plat_specifier)
# py_modules_dict is used in build_py.find_package_modules
@@ -365,6 +369,13 @@ class build_src(build_ext.build_ext):
build_dir = os.path.join(*([self.build_src]
+name.split('.')[:-1]))
self.mkpath(build_dir)
+
+ if self.verbose:
+ new_level = log.INFO
+ else:
+ new_level = log.WARN
+ old_level = log.set_threshold(new_level)
+
for func in func_sources:
source = func(extension, build_dir)
if not source:
@@ -375,7 +386,7 @@ class build_src(build_ext.build_ext):
else:
log.info(" adding '%s' to sources." % (source,))
new_sources.append(source)
-
+ log.set_threshold(old_level)
return new_sources
def filter_py_files(self, sources):
diff --git a/numpy/distutils/fcompiler/environment.py b/numpy/distutils/fcompiler/environment.py
index 73a5e98e1..bb362d483 100644
--- a/numpy/distutils/fcompiler/environment.py
+++ b/numpy/distutils/fcompiler/environment.py
@@ -59,17 +59,13 @@ class EnvironmentConfig(object):
if envvar_contents is not None:
envvar_contents = convert(envvar_contents)
if var and append:
- if os.environ.get('NPY_DISTUTILS_APPEND_FLAGS', '0') == '1':
+ if os.environ.get('NPY_DISTUTILS_APPEND_FLAGS', '1') == '1':
var.extend(envvar_contents)
else:
+ # NPY_DISTUTILS_APPEND_FLAGS was explicitly set to 0
+ # to keep old (overwrite flags rather than append to
+ # them) behavior
var = envvar_contents
- if 'NPY_DISTUTILS_APPEND_FLAGS' not in os.environ.keys():
- msg = "{} is used as is, not appended ".format(envvar) + \
- "to flags already defined " + \
- "by numpy.distutils! Use NPY_DISTUTILS_APPEND_FLAGS=1 " + \
- "to obtain appending behavior instead (this " + \
- "behavior will become default in a future release)."
- warnings.warn(msg, UserWarning, stacklevel=3)
else:
var = envvar_contents
if confvar is not None and self._conf:
diff --git a/numpy/distutils/info.py b/numpy/distutils/info.py
deleted file mode 100644
index 2f5310665..000000000
--- a/numpy/distutils/info.py
+++ /dev/null
@@ -1,6 +0,0 @@
-"""
-Enhanced distutils with Fortran compilers support and more.
-"""
-from __future__ import division, absolute_import, print_function
-
-postpone_import = True
diff --git a/numpy/distutils/log.py b/numpy/distutils/log.py
index 37f9fe5dd..ff7de86b1 100644
--- a/numpy/distutils/log.py
+++ b/numpy/distutils/log.py
@@ -67,6 +67,8 @@ def set_threshold(level, force=False):
' %s to %s' % (prev_level, level))
return prev_level
+def get_threshold():
+ return _global_log.threshold
def set_verbosity(v, force=False):
prev_level = _global_log.threshold
diff --git a/numpy/distutils/misc_util.py b/numpy/distutils/misc_util.py
index 89171eede..7ba8ad862 100644
--- a/numpy/distutils/misc_util.py
+++ b/numpy/distutils/misc_util.py
@@ -859,7 +859,7 @@ class Configuration(object):
print(message)
def warn(self, message):
- sys.stderr.write('Warning: %s' % (message,))
+ sys.stderr.write('Warning: %s\n' % (message,))
def set_options(self, **options):
"""
@@ -1687,6 +1687,41 @@ class Configuration(object):
and will be installed as foo.ini in the 'lib' subpath.
+ When cross-compiling with numpy distutils, it might be necessary to
+ use modified npy-pkg-config files. Using the default/generated files
+ will link with the host libraries (i.e. libnpymath.a). For
+ cross-compilation you of-course need to link with target libraries,
+ while using the host Python installation.
+
+ You can copy out the numpy/core/lib/npy-pkg-config directory, add a
+ pkgdir value to the .ini files and set NPY_PKG_CONFIG_PATH environment
+ variable to point to the directory with the modified npy-pkg-config
+ files.
+
+ Example npymath.ini modified for cross-compilation::
+
+ [meta]
+ Name=npymath
+ Description=Portable, core math library implementing C99 standard
+ Version=0.1
+
+ [variables]
+ pkgname=numpy.core
+ pkgdir=/build/arm-linux-gnueabi/sysroot/usr/lib/python3.7/site-packages/numpy/core
+ prefix=${pkgdir}
+ libdir=${prefix}/lib
+ includedir=${prefix}/include
+
+ [default]
+ Libs=-L${libdir} -lnpymath
+ Cflags=-I${includedir}
+ Requires=mlib
+
+ [msvc]
+ Libs=/LIBPATH:${libdir} npymath.lib
+ Cflags=/INCLUDE:${includedir}
+ Requires=mlib
+
"""
if subst_dict is None:
subst_dict = {}
@@ -2092,9 +2127,22 @@ def get_numpy_include_dirs():
return include_dirs
def get_npy_pkg_dir():
- """Return the path where to find the npy-pkg-config directory."""
+ """Return the path where to find the npy-pkg-config directory.
+
+ If the NPY_PKG_CONFIG_PATH environment variable is set, the value of that
+ is returned. Otherwise, a path inside the location of the numpy module is
+ returned.
+
+ The NPY_PKG_CONFIG_PATH can be useful when cross-compiling, maintaining
+ customized npy-pkg-config .ini files for the cross-compilation
+ environment, and using them when cross-compiling.
+
+ """
# XXX: import here for bootstrapping reasons
import numpy
+ d = os.environ.get('NPY_PKG_CONFIG_PATH')
+ if d is not None:
+ return d
d = os.path.join(os.path.dirname(numpy.__file__),
'core', 'lib', 'npy-pkg-config')
return d
diff --git a/numpy/distutils/system_info.py b/numpy/distutils/system_info.py
index 2ff0ba7b3..5fd1003ab 100644
--- a/numpy/distutils/system_info.py
+++ b/numpy/distutils/system_info.py
@@ -146,7 +146,7 @@ else:
from distutils.errors import DistutilsError
from distutils.dist import Distribution
import distutils.sysconfig
-from distutils import log
+from numpy.distutils import log
from distutils.util import get_platform
from numpy.distutils.exec_command import (
@@ -456,7 +456,7 @@ class AliasedOptionError(DistutilsError):
class AtlasNotFoundError(NotFoundError):
"""
- Atlas (http://math-atlas.sourceforge.net/) libraries not found.
+ Atlas (http://github.com/math-atlas/math-atlas) libraries not found.
Directories to search for the libraries can be specified in the
numpy/distutils/site.cfg file (section [atlas]) or by setting
the ATLAS environment variable."""
@@ -550,7 +550,6 @@ class system_info(object):
dir_env_var = None
search_static_first = 0 # XXX: disabled by default, may disappear in
# future unless it is proved to be useful.
- verbosity = 1
saved_results = {}
notfounderror = NotFoundError
@@ -558,7 +557,6 @@ class system_info(object):
def __init__(self,
default_lib_dirs=default_lib_dirs,
default_include_dirs=default_include_dirs,
- verbosity=1,
):
self.__class__.info = {}
self.local_prefixes = []
@@ -704,7 +702,7 @@ class system_info(object):
log.info(' FOUND:')
res = self.saved_results.get(self.__class__.__name__)
- if self.verbosity > 0 and flag:
+ if log.get_threshold() <= log.INFO and flag:
for k, v in res.items():
v = str(v)
if k in ['sources', 'libraries'] and len(v) > 270:
@@ -914,7 +912,7 @@ class system_info(object):
"""Return a list of existing paths composed by all combinations
of items from the arguments.
"""
- return combine_paths(*args, **{'verbosity': self.verbosity})
+ return combine_paths(*args)
class fft_opt_info(system_info):
@@ -1531,12 +1529,12 @@ def get_atlas_version(**config):
try:
s, o = c.get_output(atlas_version_c_text,
libraries=libraries, library_dirs=library_dirs,
- use_tee=(system_info.verbosity > 0))
+ )
if s and re.search(r'undefined reference to `_gfortran', o, re.M):
s, o = c.get_output(atlas_version_c_text,
libraries=libraries + ['gfortran'],
library_dirs=library_dirs,
- use_tee=(system_info.verbosity > 0))
+ )
if not s:
warnings.warn(textwrap.dedent("""
*****************************************************
diff --git a/numpy/distutils/tests/test_fcompiler.py b/numpy/distutils/tests/test_fcompiler.py
index ba19a97ea..6d245fbd4 100644
--- a/numpy/distutils/tests/test_fcompiler.py
+++ b/numpy/distutils/tests/test_fcompiler.py
@@ -45,37 +45,3 @@ def test_fcompiler_flags(monkeypatch):
else:
assert_(new_flags == prev_flags + [new_flag])
-
-def test_fcompiler_flags_append_warning(monkeypatch):
- # Test to check that the warning for append behavior changing in future
- # is triggered. Need to use a real compiler instance so that we have
- # non-empty flags to start with (otherwise the "if var and append" check
- # will always be false).
- try:
- with suppress_warnings() as sup:
- sup.record()
- fc = numpy.distutils.fcompiler.new_fcompiler(compiler='gnu95')
- fc.customize()
- except numpy.distutils.fcompiler.CompilerNotFound:
- pytest.skip("gfortran not found, so can't execute this test")
-
- # Ensure NPY_DISTUTILS_APPEND_FLAGS not defined
- monkeypatch.delenv('NPY_DISTUTILS_APPEND_FLAGS', raising=False)
-
- for opt, envvar in customizable_flags:
- new_flag = '-dummy-{}-flag'.format(opt)
- with suppress_warnings() as sup:
- sup.record()
- prev_flags = getattr(fc.flag_vars, opt)
-
- monkeypatch.setenv(envvar, new_flag)
- with suppress_warnings() as sup:
- sup.record()
- new_flags = getattr(fc.flag_vars, opt)
- if prev_flags:
- # Check that warning was issued
- assert len(sup.log) == 1
-
- monkeypatch.delenv(envvar)
- assert_(new_flags == [new_flag])
-
diff --git a/numpy/doc/broadcasting.py b/numpy/doc/broadcasting.py
index f7bd2515b..cb548a0d0 100644
--- a/numpy/doc/broadcasting.py
+++ b/numpy/doc/broadcasting.py
@@ -61,8 +61,7 @@ dimensions are compatible when
If these conditions are not met, a
``ValueError: operands could not be broadcast together`` exception is
thrown, indicating that the arrays have incompatible shapes. The size of
-the resulting array is the maximum size along each dimension of the input
-arrays.
+the resulting array is the size that is not 1 along each axis of the inputs.
Arrays do not need to have the same *number* of dimensions. For example,
if you have a ``256x256x3`` array of RGB values, and you want to scale
diff --git a/numpy/doc/dispatch.py b/numpy/doc/dispatch.py
index 09a3e5134..c9029941b 100644
--- a/numpy/doc/dispatch.py
+++ b/numpy/doc/dispatch.py
@@ -72,7 +72,7 @@ The ``__array_ufunc__`` receives:
- ``inputs``, which could be a mixture of different types
- ``kwargs``, keyword arguments passed to the function
-For this example we will only handle the method ``'__call__``.
+For this example we will only handle the method ``__call__``.
>>> from numbers import Number
>>> class DiagonalArray:
@@ -218,12 +218,12 @@ For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that
calls ``numpy.sum(self)``, and the same for ``mean``.
>>> @implements(np.sum)
-... def sum(a):
+... def sum(arr):
... "Implementation of np.sum for DiagonalArray objects"
... return arr._i * arr._N
...
>>> @implements(np.mean)
-... def sum(a):
+... def mean(arr):
... "Implementation of np.mean for DiagonalArray objects"
... return arr._i / arr._N
...
diff --git a/numpy/doc/subclassing.py b/numpy/doc/subclassing.py
index 4b983893a..d0685328e 100644
--- a/numpy/doc/subclassing.py
+++ b/numpy/doc/subclassing.py
@@ -118,7 +118,8 @@ For example, consider the following Python code:
def __new__(cls, *args):
print('Cls in __new__:', cls)
print('Args in __new__:', args)
- return object.__new__(cls, *args)
+ # The `object` type __new__ method takes a single argument.
+ return object.__new__(cls)
def __init__(self, *args):
print('type(self) in __init__:', type(self))
diff --git a/numpy/f2py/cfuncs.py b/numpy/f2py/cfuncs.py
index d59b6301c..17f3861ca 100644
--- a/numpy/f2py/cfuncs.py
+++ b/numpy/f2py/cfuncs.py
@@ -542,7 +542,7 @@ cppmacros[
'ARRSIZE'] = '#define ARRSIZE(dims,rank) (_PyArray_multiply_list(dims,rank))'
cppmacros['OLDPYNUM'] = """\
#ifdef OLDPYNUM
-#error You need to install Numeric Python version 13 or higher. Get it from http:/sourceforge.net/project/?group_id=1369
+#error You need to install NumPy version 13 or higher. See https://scipy.org/install.html
#endif
"""
################# C functions ###############
diff --git a/numpy/f2py/info.py b/numpy/f2py/info.py
deleted file mode 100644
index c895c5de2..000000000
--- a/numpy/f2py/info.py
+++ /dev/null
@@ -1,6 +0,0 @@
-"""Fortran to Python Interface Generator.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-postpone_import = True
diff --git a/numpy/f2py/rules.py b/numpy/f2py/rules.py
index 6769f1b1f..1b41498ea 100644..100755
--- a/numpy/f2py/rules.py
+++ b/numpy/f2py/rules.py
@@ -202,7 +202,7 @@ PyMODINIT_FUNC PyInit_#modulename#(void) {
PyMODINIT_FUNC init#modulename#(void) {
#endif
\tint i;
-\tPyObject *m,*d, *s;
+\tPyObject *m,*d, *s, *tmp;
#if PY_VERSION_HEX >= 0x03000000
\tm = #modulename#_module = PyModule_Create(&moduledef);
#else
@@ -224,8 +224,11 @@ PyMODINIT_FUNC init#modulename#(void) {
\tPyDict_SetItemString(d, \"__doc__\", s);
\t#modulename#_error = PyErr_NewException (\"#modulename#.error\", NULL, NULL);
\tPy_DECREF(s);
-\tfor(i=0;f2py_routine_defs[i].name!=NULL;i++)
-\t\tPyDict_SetItemString(d, f2py_routine_defs[i].name,PyFortranObject_NewAsAttr(&f2py_routine_defs[i]));
+\tfor(i=0;f2py_routine_defs[i].name!=NULL;i++) {
+\t\ttmp = PyFortranObject_NewAsAttr(&f2py_routine_defs[i]);
+\t\tPyDict_SetItemString(d, f2py_routine_defs[i].name, tmp);
+\t\tPy_DECREF(tmp);
+\t}
#initf2pywraphooks#
#initf90modhooks#
#initcommonhooks#
diff --git a/numpy/f2py/setup.py b/numpy/f2py/setup.py
index c0c50ce54..a8c1401aa 100644
--- a/numpy/f2py/setup.py
+++ b/numpy/f2py/setup.py
@@ -3,7 +3,7 @@
setup.py for installing F2PY
Usage:
- python setup.py install
+ pip install .
Copyright 2001-2005 Pearu Peterson all rights reserved,
Pearu Peterson <pearu@cens.ioc.ee>
diff --git a/numpy/f2py/src/fortranobject.c b/numpy/f2py/src/fortranobject.c
index 4a981bf55..b55385b50 100644
--- a/numpy/f2py/src/fortranobject.c
+++ b/numpy/f2py/src/fortranobject.c
@@ -80,7 +80,10 @@ PyFortranObject_NewAsAttr(FortranDataDef* defs) { /* used for calling F90 module
PyFortranObject *fp = NULL;
fp = PyObject_New(PyFortranObject, &PyFortran_Type);
if (fp == NULL) return NULL;
- if ((fp->dict = PyDict_New())==NULL) return NULL;
+ if ((fp->dict = PyDict_New())==NULL) {
+ PyObject_Del(fp);
+ return NULL;
+ }
fp->len = 1;
fp->defs = defs;
return (PyObject *)fp;
@@ -91,7 +94,7 @@ PyFortranObject_NewAsAttr(FortranDataDef* defs) { /* used for calling F90 module
static void
fortran_dealloc(PyFortranObject *fp) {
Py_XDECREF(fp->dict);
- PyMem_Del(fp);
+ PyObject_Del(fp);
}
diff --git a/numpy/fft/README.md b/numpy/fft/README.md
index 7040a2e9b..f79188139 100644
--- a/numpy/fft/README.md
+++ b/numpy/fft/README.md
@@ -10,11 +10,6 @@ advantages:
- worst case complexity for transform sizes with large prime factors is
`N*log(N)`, because Bluestein's algorithm [3] is used for these cases.
-License
--------
-
-3-clause BSD (see LICENSE.md)
-
Some code details
-----------------
diff --git a/numpy/fft/__init__.py b/numpy/fft/__init__.py
index 64b35bc19..fe95d8b17 100644
--- a/numpy/fft/__init__.py
+++ b/numpy/fft/__init__.py
@@ -1,9 +1,191 @@
-from __future__ import division, absolute_import, print_function
+"""
+Discrete Fourier Transform (:mod:`numpy.fft`)
+=============================================
+
+.. currentmodule:: numpy.fft
+
+Standard FFTs
+-------------
+
+.. autosummary::
+ :toctree: generated/
+
+ fft Discrete Fourier transform.
+ ifft Inverse discrete Fourier transform.
+ fft2 Discrete Fourier transform in two dimensions.
+ ifft2 Inverse discrete Fourier transform in two dimensions.
+ fftn Discrete Fourier transform in N-dimensions.
+ ifftn Inverse discrete Fourier transform in N dimensions.
+
+Real FFTs
+---------
+
+.. autosummary::
+ :toctree: generated/
+
+ rfft Real discrete Fourier transform.
+ irfft Inverse real discrete Fourier transform.
+ rfft2 Real discrete Fourier transform in two dimensions.
+ irfft2 Inverse real discrete Fourier transform in two dimensions.
+ rfftn Real discrete Fourier transform in N dimensions.
+ irfftn Inverse real discrete Fourier transform in N dimensions.
+
+Hermitian FFTs
+--------------
+
+.. autosummary::
+ :toctree: generated/
+
+ hfft Hermitian discrete Fourier transform.
+ ihfft Inverse Hermitian discrete Fourier transform.
+
+Helper routines
+---------------
+
+.. autosummary::
+ :toctree: generated/
+
+ fftfreq Discrete Fourier Transform sample frequencies.
+ rfftfreq DFT sample frequencies (for usage with rfft, irfft).
+ fftshift Shift zero-frequency component to center of spectrum.
+ ifftshift Inverse of fftshift.
+
+
+Background information
+----------------------
+
+Fourier analysis is fundamentally a method for expressing a function as a
+sum of periodic components, and for recovering the function from those
+components. When both the function and its Fourier transform are
+replaced with discretized counterparts, it is called the discrete Fourier
+transform (DFT). The DFT has become a mainstay of numerical computing in
+part because of a very fast algorithm for computing it, called the Fast
+Fourier Transform (FFT), which was known to Gauss (1805) and was brought
+to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_
+provide an accessible introduction to Fourier analysis and its
+applications.
+
+Because the discrete Fourier transform separates its input into
+components that contribute at discrete frequencies, it has a great number
+of applications in digital signal processing, e.g., for filtering, and in
+this context the discretized input to the transform is customarily
+referred to as a *signal*, which exists in the *time domain*. The output
+is called a *spectrum* or *transform* and exists in the *frequency
+domain*.
+
+Implementation details
+----------------------
+
+There are many ways to define the DFT, varying in the sign of the
+exponent, normalization, etc. In this implementation, the DFT is defined
+as
+
+.. math::
+ A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\}
+ \\qquad k = 0,\\ldots,n-1.
+
+The DFT is in general defined for complex inputs and outputs, and a
+single-frequency component at linear frequency :math:`f` is
+represented by a complex exponential
+:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t`
+is the sampling interval.
-# To get sub-modules
-from .info import __doc__
+The values in the result follow so-called "standard" order: If ``A =
+fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of
+the signal), which is always purely real for real inputs. Then ``A[1:n/2]``
+contains the positive-frequency terms, and ``A[n/2+1:]`` contains the
+negative-frequency terms, in order of decreasingly negative frequency.
+For an even number of input points, ``A[n/2]`` represents both positive and
+negative Nyquist frequency, and is also purely real for real input. For
+an odd number of input points, ``A[(n-1)/2]`` contains the largest positive
+frequency, while ``A[(n+1)/2]`` contains the largest negative frequency.
+The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies
+of corresponding elements in the output. The routine
+``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the
+zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes
+that shift.
+
+When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)``
+is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum.
+The phase spectrum is obtained by ``np.angle(A)``.
+
+The inverse DFT is defined as
+
+.. math::
+ a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\}
+ \\qquad m = 0,\\ldots,n-1.
+
+It differs from the forward transform by the sign of the exponential
+argument and the default normalization by :math:`1/n`.
+
+Normalization
+-------------
+The default normalization has the direct transforms unscaled and the inverse
+transforms are scaled by :math:`1/n`. It is possible to obtain unitary
+transforms by setting the keyword argument ``norm`` to ``"ortho"`` (default is
+`None`) so that both direct and inverse transforms will be scaled by
+:math:`1/\\sqrt{n}`.
+
+Real and Hermitian transforms
+-----------------------------
+
+When the input is purely real, its transform is Hermitian, i.e., the
+component at frequency :math:`f_k` is the complex conjugate of the
+component at frequency :math:`-f_k`, which means that for real
+inputs there is no information in the negative frequency components that
+is not already available from the positive frequency components.
+The family of `rfft` functions is
+designed to operate on real inputs, and exploits this symmetry by
+computing only the positive frequency components, up to and including the
+Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex
+output points. The inverses of this family assumes the same symmetry of
+its input, and for an output of ``n`` points uses ``n/2+1`` input points.
+
+Correspondingly, when the spectrum is purely real, the signal is
+Hermitian. The `hfft` family of functions exploits this symmetry by
+using ``n/2+1`` complex points in the input (time) domain for ``n`` real
+points in the frequency domain.
+
+In higher dimensions, FFTs are used, e.g., for image analysis and
+filtering. The computational efficiency of the FFT means that it can
+also be a faster way to compute large convolutions, using the property
+that a convolution in the time domain is equivalent to a point-by-point
+multiplication in the frequency domain.
+
+Higher dimensions
+-----------------
+
+In two dimensions, the DFT is defined as
+
+.. math::
+ A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1}
+ a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\}
+ \\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1,
+
+which extends in the obvious way to higher dimensions, and the inverses
+in higher dimensions also extend in the same way.
+
+References
+----------
+
+.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
+ machine calculation of complex Fourier series," *Math. Comput.*
+ 19: 297-301.
+
+.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
+ 2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
+ 12-13. Cambridge Univ. Press, Cambridge, UK.
+
+Examples
+--------
+
+For examples, see the various functions.
+
+"""
+
+from __future__ import division, absolute_import, print_function
-from .pocketfft import *
+from ._pocketfft import *
from .helper import *
from numpy._pytesttester import PytestTester
diff --git a/numpy/fft/pocketfft.c b/numpy/fft/_pocketfft.c
index 9d1218e6b..d75b9983c 100644
--- a/numpy/fft/pocketfft.c
+++ b/numpy/fft/_pocketfft.c
@@ -2362,7 +2362,7 @@ static struct PyMethodDef methods[] = {
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
- "pocketfft_internal",
+ "_pocketfft_internal",
NULL,
-1,
methods,
@@ -2376,11 +2376,11 @@ static struct PyModuleDef moduledef = {
/* Initialization function for the module */
#if PY_MAJOR_VERSION >= 3
#define RETVAL(x) x
-PyMODINIT_FUNC PyInit_pocketfft_internal(void)
+PyMODINIT_FUNC PyInit__pocketfft_internal(void)
#else
#define RETVAL(x)
PyMODINIT_FUNC
-initpocketfft_internal(void)
+init_pocketfft_internal(void)
#endif
{
PyObject *m;
@@ -2389,7 +2389,7 @@ initpocketfft_internal(void)
#else
static const char module_documentation[] = "";
- m = Py_InitModule4("pocketfft_internal", methods,
+ m = Py_InitModule4("_pocketfft_internal", methods,
module_documentation,
(PyObject*)NULL,PYTHON_API_VERSION);
#endif
diff --git a/numpy/fft/pocketfft.py b/numpy/fft/_pocketfft.py
index b7f6f1434..50720cda4 100644
--- a/numpy/fft/pocketfft.py
+++ b/numpy/fft/_pocketfft.py
@@ -35,7 +35,7 @@ __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn',
import functools
from numpy.core import asarray, zeros, swapaxes, conjugate, take, sqrt
-from . import pocketfft_internal as pfi
+from . import _pocketfft_internal as pfi
from numpy.core.multiarray import normalize_axis_index
from numpy.core import overrides
@@ -44,7 +44,11 @@ array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy.fft')
-def _raw_fft(a, n, axis, is_real, is_forward, fct):
+# `inv_norm` is a float by which the result of the transform needs to be
+# divided. This replaces the original, more intuitive 'fct` parameter to avoid
+# divisions by zero (or alternatively additional checks) in the case of
+# zero-length axes during its computation.
+def _raw_fft(a, n, axis, is_real, is_forward, inv_norm):
axis = normalize_axis_index(axis, a.ndim)
if n is None:
n = a.shape[axis]
@@ -53,6 +57,8 @@ def _raw_fft(a, n, axis, is_real, is_forward, fct):
raise ValueError("Invalid number of FFT data points (%d) specified."
% n)
+ fct = 1/inv_norm
+
if a.shape[axis] != n:
s = list(a.shape)
if s[axis] > n:
@@ -176,10 +182,10 @@ def fft(a, n=None, axis=-1, norm=None):
a = asarray(a)
if n is None:
n = a.shape[axis]
- fct = 1
+ inv_norm = 1
if norm is not None and _unitary(norm):
- fct = 1 / sqrt(n)
- output = _raw_fft(a, n, axis, False, True, fct)
+ inv_norm = sqrt(n)
+ output = _raw_fft(a, n, axis, False, True, inv_norm)
return output
@@ -271,10 +277,11 @@ def ifft(a, n=None, axis=-1, norm=None):
a = asarray(a)
if n is None:
n = a.shape[axis]
- fct = 1/n
if norm is not None and _unitary(norm):
- fct = 1/sqrt(n)
- output = _raw_fft(a, n, axis, False, False, fct)
+ inv_norm = sqrt(max(n, 1))
+ else:
+ inv_norm = n
+ output = _raw_fft(a, n, axis, False, False, inv_norm)
return output
@@ -359,12 +366,12 @@ def rfft(a, n=None, axis=-1, norm=None):
"""
a = asarray(a)
- fct = 1
+ inv_norm = 1
if norm is not None and _unitary(norm):
if n is None:
n = a.shape[axis]
- fct = 1/sqrt(n)
- output = _raw_fft(a, n, axis, True, True, fct)
+ inv_norm = sqrt(n)
+ output = _raw_fft(a, n, axis, True, True, inv_norm)
return output
@@ -461,10 +468,10 @@ def irfft(a, n=None, axis=-1, norm=None):
a = asarray(a)
if n is None:
n = (a.shape[axis] - 1) * 2
- fct = 1/n
+ inv_norm = n
if norm is not None and _unitary(norm):
- fct = 1/sqrt(n)
- output = _raw_fft(a, n, axis, True, False, fct)
+ inv_norm = sqrt(n)
+ output = _raw_fft(a, n, axis, True, False, inv_norm)
return output
diff --git a/numpy/fft/info.py b/numpy/fft/info.py
deleted file mode 100644
index cb6526b44..000000000
--- a/numpy/fft/info.py
+++ /dev/null
@@ -1,187 +0,0 @@
-"""
-Discrete Fourier Transform (:mod:`numpy.fft`)
-=============================================
-
-.. currentmodule:: numpy.fft
-
-Standard FFTs
--------------
-
-.. autosummary::
- :toctree: generated/
-
- fft Discrete Fourier transform.
- ifft Inverse discrete Fourier transform.
- fft2 Discrete Fourier transform in two dimensions.
- ifft2 Inverse discrete Fourier transform in two dimensions.
- fftn Discrete Fourier transform in N-dimensions.
- ifftn Inverse discrete Fourier transform in N dimensions.
-
-Real FFTs
----------
-
-.. autosummary::
- :toctree: generated/
-
- rfft Real discrete Fourier transform.
- irfft Inverse real discrete Fourier transform.
- rfft2 Real discrete Fourier transform in two dimensions.
- irfft2 Inverse real discrete Fourier transform in two dimensions.
- rfftn Real discrete Fourier transform in N dimensions.
- irfftn Inverse real discrete Fourier transform in N dimensions.
-
-Hermitian FFTs
---------------
-
-.. autosummary::
- :toctree: generated/
-
- hfft Hermitian discrete Fourier transform.
- ihfft Inverse Hermitian discrete Fourier transform.
-
-Helper routines
----------------
-
-.. autosummary::
- :toctree: generated/
-
- fftfreq Discrete Fourier Transform sample frequencies.
- rfftfreq DFT sample frequencies (for usage with rfft, irfft).
- fftshift Shift zero-frequency component to center of spectrum.
- ifftshift Inverse of fftshift.
-
-
-Background information
-----------------------
-
-Fourier analysis is fundamentally a method for expressing a function as a
-sum of periodic components, and for recovering the function from those
-components. When both the function and its Fourier transform are
-replaced with discretized counterparts, it is called the discrete Fourier
-transform (DFT). The DFT has become a mainstay of numerical computing in
-part because of a very fast algorithm for computing it, called the Fast
-Fourier Transform (FFT), which was known to Gauss (1805) and was brought
-to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_
-provide an accessible introduction to Fourier analysis and its
-applications.
-
-Because the discrete Fourier transform separates its input into
-components that contribute at discrete frequencies, it has a great number
-of applications in digital signal processing, e.g., for filtering, and in
-this context the discretized input to the transform is customarily
-referred to as a *signal*, which exists in the *time domain*. The output
-is called a *spectrum* or *transform* and exists in the *frequency
-domain*.
-
-Implementation details
-----------------------
-
-There are many ways to define the DFT, varying in the sign of the
-exponent, normalization, etc. In this implementation, the DFT is defined
-as
-
-.. math::
- A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\}
- \\qquad k = 0,\\ldots,n-1.
-
-The DFT is in general defined for complex inputs and outputs, and a
-single-frequency component at linear frequency :math:`f` is
-represented by a complex exponential
-:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t`
-is the sampling interval.
-
-The values in the result follow so-called "standard" order: If ``A =
-fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of
-the signal), which is always purely real for real inputs. Then ``A[1:n/2]``
-contains the positive-frequency terms, and ``A[n/2+1:]`` contains the
-negative-frequency terms, in order of decreasingly negative frequency.
-For an even number of input points, ``A[n/2]`` represents both positive and
-negative Nyquist frequency, and is also purely real for real input. For
-an odd number of input points, ``A[(n-1)/2]`` contains the largest positive
-frequency, while ``A[(n+1)/2]`` contains the largest negative frequency.
-The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies
-of corresponding elements in the output. The routine
-``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the
-zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes
-that shift.
-
-When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)``
-is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum.
-The phase spectrum is obtained by ``np.angle(A)``.
-
-The inverse DFT is defined as
-
-.. math::
- a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\}
- \\qquad m = 0,\\ldots,n-1.
-
-It differs from the forward transform by the sign of the exponential
-argument and the default normalization by :math:`1/n`.
-
-Normalization
--------------
-The default normalization has the direct transforms unscaled and the inverse
-transforms are scaled by :math:`1/n`. It is possible to obtain unitary
-transforms by setting the keyword argument ``norm`` to ``"ortho"`` (default is
-`None`) so that both direct and inverse transforms will be scaled by
-:math:`1/\\sqrt{n}`.
-
-Real and Hermitian transforms
------------------------------
-
-When the input is purely real, its transform is Hermitian, i.e., the
-component at frequency :math:`f_k` is the complex conjugate of the
-component at frequency :math:`-f_k`, which means that for real
-inputs there is no information in the negative frequency components that
-is not already available from the positive frequency components.
-The family of `rfft` functions is
-designed to operate on real inputs, and exploits this symmetry by
-computing only the positive frequency components, up to and including the
-Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex
-output points. The inverses of this family assumes the same symmetry of
-its input, and for an output of ``n`` points uses ``n/2+1`` input points.
-
-Correspondingly, when the spectrum is purely real, the signal is
-Hermitian. The `hfft` family of functions exploits this symmetry by
-using ``n/2+1`` complex points in the input (time) domain for ``n`` real
-points in the frequency domain.
-
-In higher dimensions, FFTs are used, e.g., for image analysis and
-filtering. The computational efficiency of the FFT means that it can
-also be a faster way to compute large convolutions, using the property
-that a convolution in the time domain is equivalent to a point-by-point
-multiplication in the frequency domain.
-
-Higher dimensions
------------------
-
-In two dimensions, the DFT is defined as
-
-.. math::
- A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1}
- a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\}
- \\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1,
-
-which extends in the obvious way to higher dimensions, and the inverses
-in higher dimensions also extend in the same way.
-
-References
-----------
-
-.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
- machine calculation of complex Fourier series," *Math. Comput.*
- 19: 297-301.
-
-.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
- 2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
- 12-13. Cambridge Univ. Press, Cambridge, UK.
-
-Examples
---------
-
-For examples, see the various functions.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-depends = ['core']
diff --git a/numpy/fft/setup.py b/numpy/fft/setup.py
index 6c3548b65..8c3a31557 100644
--- a/numpy/fft/setup.py
+++ b/numpy/fft/setup.py
@@ -8,8 +8,8 @@ def configuration(parent_package='',top_path=None):
config.add_data_dir('tests')
# Configure pocketfft_internal
- config.add_extension('pocketfft_internal',
- sources=['pocketfft.c']
+ config.add_extension('_pocketfft_internal',
+ sources=['_pocketfft.c']
)
return config
diff --git a/numpy/fft/tests/test_pocketfft.py b/numpy/fft/tests/test_pocketfft.py
index db185cb21..453e964fa 100644
--- a/numpy/fft/tests/test_pocketfft.py
+++ b/numpy/fft/tests/test_pocketfft.py
@@ -4,7 +4,7 @@ import numpy as np
import pytest
from numpy.random import random
from numpy.testing import (
- assert_array_almost_equal, assert_array_equal, assert_raises,
+ assert_array_equal, assert_raises, assert_allclose
)
import threading
import sys
@@ -34,109 +34,115 @@ class TestFFT1D(object):
x = random(maxlen) + 1j*random(maxlen)
xr = random(maxlen)
for i in range(1,maxlen):
- assert_array_almost_equal(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
- decimal=12)
- assert_array_almost_equal(np.fft.irfft(np.fft.rfft(xr[0:i]),i),
- xr[0:i], decimal=12)
+ assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
+ atol=1e-12)
+ assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]),i),
+ xr[0:i], atol=1e-12)
def test_fft(self):
x = random(30) + 1j*random(30)
- assert_array_almost_equal(fft1(x), np.fft.fft(x))
- assert_array_almost_equal(fft1(x) / np.sqrt(30),
- np.fft.fft(x, norm="ortho"))
+ assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
+ assert_allclose(fft1(x) / np.sqrt(30),
+ np.fft.fft(x, norm="ortho"), atol=1e-6)
- def test_ifft(self):
+ @pytest.mark.parametrize('norm', (None, 'ortho'))
+ def test_ifft(self, norm):
x = random(30) + 1j*random(30)
- assert_array_almost_equal(x, np.fft.ifft(np.fft.fft(x)))
- assert_array_almost_equal(
- x, np.fft.ifft(np.fft.fft(x, norm="ortho"), norm="ortho"))
+ assert_allclose(
+ x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
+ atol=1e-6)
+ # Ensure we get the correct error message
+ with pytest.raises(ValueError,
+ match='Invalid number of FFT data points'):
+ np.fft.ifft([], norm=norm)
def test_fft2(self):
x = random((30, 20)) + 1j*random((30, 20))
- assert_array_almost_equal(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
- np.fft.fft2(x))
- assert_array_almost_equal(np.fft.fft2(x) / np.sqrt(30 * 20),
- np.fft.fft2(x, norm="ortho"))
+ assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
+ np.fft.fft2(x), atol=1e-6)
+ assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
+ np.fft.fft2(x, norm="ortho"), atol=1e-6)
def test_ifft2(self):
x = random((30, 20)) + 1j*random((30, 20))
- assert_array_almost_equal(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
- np.fft.ifft2(x))
- assert_array_almost_equal(np.fft.ifft2(x) * np.sqrt(30 * 20),
- np.fft.ifft2(x, norm="ortho"))
+ assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
+ np.fft.ifft2(x), atol=1e-6)
+ assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
+ np.fft.ifft2(x, norm="ortho"), atol=1e-6)
def test_fftn(self):
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
- assert_array_almost_equal(
+ assert_allclose(
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
- np.fft.fftn(x))
- assert_array_almost_equal(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
- np.fft.fftn(x, norm="ortho"))
+ np.fft.fftn(x), atol=1e-6)
+ assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
+ np.fft.fftn(x, norm="ortho"), atol=1e-6)
def test_ifftn(self):
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
- assert_array_almost_equal(
+ assert_allclose(
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
- np.fft.ifftn(x))
- assert_array_almost_equal(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
- np.fft.ifftn(x, norm="ortho"))
+ np.fft.ifftn(x), atol=1e-6)
+ assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
+ np.fft.ifftn(x, norm="ortho"), atol=1e-6)
def test_rfft(self):
x = random(30)
for n in [x.size, 2*x.size]:
for norm in [None, 'ortho']:
- assert_array_almost_equal(
+ assert_allclose(
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
- np.fft.rfft(x, n=n, norm=norm))
- assert_array_almost_equal(np.fft.rfft(x, n=n) / np.sqrt(n),
- np.fft.rfft(x, n=n, norm="ortho"))
+ np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
+ assert_allclose(
+ np.fft.rfft(x, n=n) / np.sqrt(n),
+ np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
def test_irfft(self):
x = random(30)
- assert_array_almost_equal(x, np.fft.irfft(np.fft.rfft(x)))
- assert_array_almost_equal(
- x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"))
+ assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
+ assert_allclose(
+ x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6)
def test_rfft2(self):
x = random((30, 20))
- assert_array_almost_equal(np.fft.fft2(x)[:, :11], np.fft.rfft2(x))
- assert_array_almost_equal(np.fft.rfft2(x) / np.sqrt(30 * 20),
- np.fft.rfft2(x, norm="ortho"))
+ assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
+ assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
+ np.fft.rfft2(x, norm="ortho"), atol=1e-6)
def test_irfft2(self):
x = random((30, 20))
- assert_array_almost_equal(x, np.fft.irfft2(np.fft.rfft2(x)))
- assert_array_almost_equal(
- x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"))
+ assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
+ assert_allclose(
+ x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6)
def test_rfftn(self):
x = random((30, 20, 10))
- assert_array_almost_equal(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x))
- assert_array_almost_equal(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
- np.fft.rfftn(x, norm="ortho"))
+ assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
+ assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
+ np.fft.rfftn(x, norm="ortho"), atol=1e-6)
def test_irfftn(self):
x = random((30, 20, 10))
- assert_array_almost_equal(x, np.fft.irfftn(np.fft.rfftn(x)))
- assert_array_almost_equal(
- x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"))
+ assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
+ assert_allclose(
+ x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6)
def test_hfft(self):
x = random(14) + 1j*random(14)
x_herm = np.concatenate((random(1), x, random(1)))
x = np.concatenate((x_herm, x[::-1].conj()))
- assert_array_almost_equal(np.fft.fft(x), np.fft.hfft(x_herm))
- assert_array_almost_equal(np.fft.hfft(x_herm) / np.sqrt(30),
- np.fft.hfft(x_herm, norm="ortho"))
+ assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
+ assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
+ np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
def test_ihttf(self):
x = random(14) + 1j*random(14)
x_herm = np.concatenate((random(1), x, random(1)))
x = np.concatenate((x_herm, x[::-1].conj()))
- assert_array_almost_equal(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)))
- assert_array_almost_equal(
+ assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
+ assert_allclose(
x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"),
- norm="ortho"))
+ norm="ortho"), atol=1e-6)
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
np.fft.rfftn, np.fft.irfftn])
@@ -146,7 +152,7 @@ class TestFFT1D(object):
for a in axes:
op_tr = op(np.transpose(x, a))
tr_op = np.transpose(op(x, axes=a), a)
- assert_array_almost_equal(op_tr, tr_op)
+ assert_allclose(op_tr, tr_op, atol=1e-6)
def test_all_1d_norm_preserving(self):
# verify that round-trip transforms are norm-preserving
@@ -164,8 +170,8 @@ class TestFFT1D(object):
for norm in [None, 'ortho']:
tmp = forw(x, n=n, norm=norm)
tmp = back(tmp, n=n, norm=norm)
- assert_array_almost_equal(x_norm,
- np.linalg.norm(tmp))
+ assert_allclose(x_norm,
+ np.linalg.norm(tmp), atol=1e-6)
@pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
np.longdouble])
@@ -173,8 +179,8 @@ class TestFFT1D(object):
# make sure that all input precisions are accepted and internally
# converted to 64bit
x = random(30).astype(dtype)
- assert_array_almost_equal(np.fft.ifft(np.fft.fft(x)), x)
- assert_array_almost_equal(np.fft.irfft(np.fft.rfft(x)), x)
+ assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
+ assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
@pytest.mark.parametrize(
@@ -190,6 +196,8 @@ def test_fft_with_order(dtype, order, fft):
# non contiguous arrays
rng = np.random.RandomState(42)
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
+ # See discussion in pull/14178
+ _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
if order == 'F':
Y = np.asfortranarray(X)
else:
@@ -201,7 +209,7 @@ def test_fft_with_order(dtype, order, fft):
for axis in range(3):
X_res = fft(X, axis=axis)
Y_res = fft(Y, axis=axis)
- assert_array_almost_equal(X_res, Y_res)
+ assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
elif fft.__name__.endswith(('fft2', 'fftn')):
axes = [(0, 1), (1, 2), (0, 2)]
if fft.__name__.endswith('fftn'):
@@ -209,9 +217,9 @@ def test_fft_with_order(dtype, order, fft):
for ax in axes:
X_res = fft(X, axes=ax)
Y_res = fft(Y, axes=ax)
- assert_array_almost_equal(X_res, Y_res)
+ assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
else:
- raise ValueError
+ raise ValueError()
class TestFFTThreadSafe(object):
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py
index c1757150e..2db12d9a4 100644
--- a/numpy/lib/__init__.py
+++ b/numpy/lib/__init__.py
@@ -1,14 +1,31 @@
+"""
+**Note:** almost all functions in the ``numpy.lib`` namespace
+are also present in the main ``numpy`` namespace. Please use the
+functions as ``np.<funcname>`` where possible.
+
+``numpy.lib`` is mostly a space for implementing functions that don't
+belong in core or in another NumPy submodule with a clear purpose
+(e.g. ``random``, ``fft``, ``linalg``, ``ma``).
+
+Most contains basic functions that are used by several submodules and are
+useful to have in the main name-space.
+
+"""
from __future__ import division, absolute_import, print_function
import math
-from .info import __doc__
from numpy.version import version as __version__
+# Public submodules
+# Note: recfunctions and (maybe) format are public too, but not imported
+from . import mixins
+from . import scimath as emath
+
+# Private submodules
from .type_check import *
from .index_tricks import *
from .function_base import *
-from .mixins import *
from .nanfunctions import *
from .shape_base import *
from .stride_tricks import *
@@ -16,9 +33,7 @@ from .twodim_base import *
from .ufunclike import *
from .histograms import *
-from . import scimath as emath
from .polynomial import *
-#import convertcode
from .utils import *
from .arraysetops import *
from .npyio import *
@@ -28,11 +43,10 @@ from .arraypad import *
from ._version import *
from numpy.core._multiarray_umath import tracemalloc_domain
-__all__ = ['emath', 'math', 'tracemalloc_domain']
+__all__ = ['emath', 'math', 'tracemalloc_domain', 'Arrayterator']
__all__ += type_check.__all__
__all__ += index_tricks.__all__
__all__ += function_base.__all__
-__all__ += mixins.__all__
__all__ += shape_base.__all__
__all__ += stride_tricks.__all__
__all__ += twodim_base.__all__
diff --git a/numpy/lib/_iotools.py b/numpy/lib/_iotools.py
index 0ebd39b8c..c392929fd 100644
--- a/numpy/lib/_iotools.py
+++ b/numpy/lib/_iotools.py
@@ -121,7 +121,7 @@ def has_nested_fields(ndtype):
"""
for name in ndtype.names or ():
- if ndtype[name].names:
+ if ndtype[name].names is not None:
return True
return False
@@ -931,28 +931,27 @@ def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs):
names = validate(names, nbfields=nbfields, defaultfmt=defaultfmt)
ndtype = np.dtype(dict(formats=ndtype, names=names))
else:
- nbtypes = len(ndtype)
# Explicit names
if names is not None:
validate = NameValidator(**validationargs)
if isinstance(names, basestring):
names = names.split(",")
# Simple dtype: repeat to match the nb of names
- if nbtypes == 0:
+ if ndtype.names is None:
formats = tuple([ndtype.type] * len(names))
names = validate(names, defaultfmt=defaultfmt)
ndtype = np.dtype(list(zip(names, formats)))
# Structured dtype: just validate the names as needed
else:
- ndtype.names = validate(names, nbfields=nbtypes,
+ ndtype.names = validate(names, nbfields=len(ndtype.names),
defaultfmt=defaultfmt)
# No implicit names
- elif (nbtypes > 0):
+ elif ndtype.names is not None:
validate = NameValidator(**validationargs)
# Default initial names : should we change the format ?
- if ((ndtype.names == tuple("f%i" % i for i in range(nbtypes))) and
+ if ((ndtype.names == tuple("f%i" % i for i in range(len(ndtype.names)))) and
(defaultfmt != "f%i")):
- ndtype.names = validate([''] * nbtypes, defaultfmt=defaultfmt)
+ ndtype.names = validate([''] * len(ndtype.names), defaultfmt=defaultfmt)
# Explicit initial names : just validate
else:
ndtype.names = validate(ndtype.names, defaultfmt=defaultfmt)
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
index f08d425d6..33e64708d 100644
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -17,66 +17,6 @@ __all__ = ['pad']
# Private utility functions.
-def _linear_ramp(ndim, axis, start, stop, size, reverse=False):
- """
- Create a linear ramp of `size` in `axis` with `ndim`.
-
- This algorithm behaves like a vectorized version of `numpy.linspace`.
- The resulting linear ramp is broadcastable to any array that matches the
- ramp in `shape[axis]` and `ndim`.
-
- Parameters
- ----------
- ndim : int
- Number of dimensions of the resulting array. All dimensions except
- the one specified by `axis` will have the size 1.
- axis : int
- The dimension that contains the linear ramp of `size`.
- start : int or ndarray
- The starting value(s) of the linear ramp. If given as an array, its
- size must match `size`.
- stop : int or ndarray
- The stop value(s) (not included!) of the linear ramp. If given as an
- array, its size must match `size`.
- size : int
- The number of elements in the linear ramp. If this argument is 0 the
- dimensions of `ramp` will all be of length 1 except for the one given
- by `axis` which will be 0.
- reverse : bool
- If False, increment in a positive fashion, otherwise decrement.
-
- Returns
- -------
- ramp : ndarray
- Output array of dtype np.float64 that in- or decrements along the given
- `axis`.
-
- Examples
- --------
- >>> _linear_ramp(ndim=2, axis=0, start=np.arange(3), stop=10, size=2)
- array([[0. , 1. , 2. ],
- [5. , 5.5, 6. ]])
- >>> _linear_ramp(ndim=3, axis=0, start=2, stop=0, size=0)
- array([], shape=(0, 1, 1), dtype=float64)
- """
- # Create initial ramp
- ramp = np.arange(size, dtype=np.float64)
- if reverse:
- ramp = ramp[::-1]
-
- # Make sure, that ramp is broadcastable
- init_shape = (1,) * axis + (size,) + (1,) * (ndim - axis - 1)
- ramp = ramp.reshape(init_shape)
-
- if size != 0:
- # And scale to given start and stop values
- gain = (stop - start) / float(size)
- ramp = ramp * gain
- ramp += start
-
- return ramp
-
-
def _round_if_needed(arr, dtype):
"""
Rounds arr inplace if destination dtype is integer.
@@ -269,17 +209,25 @@ def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
"""
edge_pair = _get_edges(padded, axis, width_pair)
- left_ramp = _linear_ramp(
- padded.ndim, axis, start=end_value_pair[0], stop=edge_pair[0],
- size=width_pair[0], reverse=False
+ left_ramp = np.linspace(
+ start=end_value_pair[0],
+ stop=edge_pair[0].squeeze(axis), # Dimensions is replaced by linspace
+ num=width_pair[0],
+ endpoint=False,
+ dtype=padded.dtype,
+ axis=axis,
)
- _round_if_needed(left_ramp, padded.dtype)
- right_ramp = _linear_ramp(
- padded.ndim, axis, start=end_value_pair[1], stop=edge_pair[1],
- size=width_pair[1], reverse=True
+ right_ramp = np.linspace(
+ start=end_value_pair[1],
+ stop=edge_pair[1].squeeze(axis), # Dimension is replaced by linspace
+ num=width_pair[1],
+ endpoint=False,
+ dtype=padded.dtype,
+ axis=axis,
)
- _round_if_needed(right_ramp, padded.dtype)
+ # Reverse linear space in appropriate dimension
+ right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)]
return left_ramp, right_ramp
@@ -323,6 +271,12 @@ def _get_stats(padded, axis, width_pair, length_pair, stat_func):
if right_length is None or max_length < right_length:
right_length = max_length
+ if (left_length == 0 or right_length == 0) \
+ and stat_func in {np.amax, np.amin}:
+ # amax and amin can't operate on an emtpy array,
+ # raise a more descriptive warning here instead of the default one
+ raise ValueError("stat_length of 0 yields no value for padding")
+
# Calculate statistic for the left side
left_slice = _slice_at_axis(
slice(left_index, left_index + left_length), axis)
@@ -340,6 +294,7 @@ def _get_stats(padded, axis, width_pair, length_pair, stat_func):
right_chunk = padded[right_slice]
right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
_round_if_needed(right_stat, padded.dtype)
+
return left_stat, right_stat
@@ -835,7 +790,7 @@ def pad(array, pad_width, mode='constant', **kwargs):
raise ValueError("unsupported keyword arguments for mode '{}': {}"
.format(mode, unsupported_kwargs))
- stat_functions = {"maximum": np.max, "minimum": np.min,
+ stat_functions = {"maximum": np.amax, "minimum": np.amin,
"mean": np.mean, "median": np.median}
# Create array with final shape and original values
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index b53d8c03f..2309f7e42 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -213,6 +213,7 @@ def unique(ar, return_index=False, return_inverse=False,
-----
When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the array
+ (move the axis to the first dimension to keep the order of the other axes)
and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the
effect that we end up with a 1-D array of structured types that can be
@@ -264,7 +265,7 @@ def unique(ar, return_index=False, return_inverse=False,
# axis was specified and not None
try:
- ar = np.swapaxes(ar, axis, 0)
+ ar = np.moveaxis(ar, axis, 0)
except np.AxisError:
# this removes the "axis1" or "axis2" prefix from the error message
raise np.AxisError(axis, ar.ndim)
@@ -285,7 +286,7 @@ def unique(ar, return_index=False, return_inverse=False,
def reshape_uniq(uniq):
uniq = uniq.view(orig_dtype)
uniq = uniq.reshape(-1, *orig_shape[1:])
- uniq = np.swapaxes(uniq, 0, axis)
+ uniq = np.moveaxis(uniq, 0, axis)
return uniq
output = _unique1d(consolidated, return_index,
@@ -383,6 +384,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
To return the indices of the values common to the input arrays
along with the intersected values:
+
>>> x = np.array([1, 1, 2, 3, 4])
>>> y = np.array([2, 1, 4, 6])
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py
index 216687475..d72384e99 100644
--- a/numpy/lib/financial.py
+++ b/numpy/lib/financial.py
@@ -715,8 +715,6 @@ def irr(values):
>>> round(np.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886
- (Compare with the Example given for numpy.lib.financial.npv)
-
"""
# `np.roots` call is why this function does not support Decimal type.
#
@@ -763,6 +761,15 @@ def npv(rate, values):
The NPV of the input cash flow series `values` at the discount
`rate`.
+ Warnings
+ --------
+ ``npv`` considers a series of cashflows starting in the present (t = 0).
+ NPV can also be defined with a series of future cashflows, paid at the
+ end, rather than the start, of each period. If future cashflows are used,
+ the first cashflow `values[0]` must be zeroed and added to the net
+ present value of the future cashflows. This is demonstrated in the
+ examples.
+
Notes
-----
Returns the result of: [G]_
@@ -776,10 +783,24 @@ def npv(rate, values):
Examples
--------
- >>> np.npv(0.281,[-100, 39, 59, 55, 20])
- -0.0084785916384548798 # may vary
-
- (Compare with the Example given for numpy.lib.financial.irr)
+ Consider a potential project with an initial investment of $40 000 and
+ projected cashflows of $5 000, $8 000, $12 000 and $30 000 at the end of
+ each period discounted at a rate of 8% per period. To find the project's
+ net present value:
+
+ >>> rate, cashflows = 0.08, [-40_000, 5_000, 8_000, 12_000, 30_000]
+ >>> np.npv(rate, cashflows).round(5)
+ 3065.22267
+
+ It may be preferable to split the projected cashflow into an initial
+ investment and expected future cashflows. In this case, the value of
+ the initial cashflow is zero and the initial investment is later added
+ to the future cashflows net present value:
+
+ >>> initial_cashflow = cashflows[0]
+ >>> cashflows[0] = 0
+ >>> np.round(np.npv(rate, cashflows) + initial_cashflow, 5)
+ 3065.22267
"""
values = np.asarray(values)
diff --git a/numpy/lib/format.py b/numpy/lib/format.py
index 3bf818812..1ecd72815 100644
--- a/numpy/lib/format.py
+++ b/numpy/lib/format.py
@@ -173,6 +173,9 @@ from numpy.compat import (
)
+__all__ = []
+
+
MAGIC_PREFIX = b'\x93NUMPY'
MAGIC_LEN = len(MAGIC_PREFIX) + 2
ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 9d380e67d..ebf918012 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -316,14 +316,17 @@ def average(a, axis=None, weights=None, returned=False):
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given axis) or of the same shape as `a`.
If `weights=None`, then all data in `a` are assumed to have a
- weight equal to one.
+ weight equal to one. The 1-D calculation is::
+
+ avg = sum(a * weights) / sum(weights)
+
+ The only constraint on `weights` is that `sum(weights)` must not be 0.
returned : bool, optional
Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`)
is returned, otherwise only the average is returned.
If `weights=None`, `sum_of_weights` is equivalent to the number of
elements over which the average is taken.
-
Returns
-------
retval, [sum_of_weights] : array_type or double
@@ -679,11 +682,7 @@ def select(condlist, choicelist, default=0):
# Now that the dtype is known, handle the deprecated select([], []) case
if len(condlist) == 0:
- # 2014-02-24, 1.9
- warnings.warn("select with an empty condition list is not possible"
- "and will be deprecated",
- DeprecationWarning, stacklevel=3)
- return np.asarray(default)[()]
+ raise ValueError("select with an empty condition list is not possible")
choicelist = [np.asarray(choice) for choice in choicelist]
choicelist.append(np.asarray(default))
@@ -699,25 +698,11 @@ def select(condlist, choicelist, default=0):
choicelist = np.broadcast_arrays(*choicelist)
# If cond array is not an ndarray in boolean format or scalar bool, abort.
- deprecated_ints = False
for i in range(len(condlist)):
cond = condlist[i]
if cond.dtype.type is not np.bool_:
- if np.issubdtype(cond.dtype, np.integer):
- # A previous implementation accepted int ndarrays accidentally.
- # Supported here deliberately, but deprecated.
- condlist[i] = condlist[i].astype(bool)
- deprecated_ints = True
- else:
- raise ValueError(
- 'invalid entry {} in condlist: should be boolean ndarray'.format(i))
-
- if deprecated_ints:
- # 2014-02-24, 1.9
- msg = "select condlists containing integer ndarrays is deprecated " \
- "and will be removed in the future. Use `.astype(bool)` to " \
- "convert to bools."
- warnings.warn(msg, DeprecationWarning, stacklevel=3)
+ raise TypeError(
+ 'invalid entry {} in condlist: should be boolean ndarray'.format(i))
if choicelist[0].ndim == 0:
# This may be common, so avoid the call.
@@ -1164,11 +1149,13 @@ def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue):
The axis along which the difference is taken, default is the
last axis.
prepend, append : array_like, optional
- Values to prepend or append to "a" along axis prior to
+ Values to prepend or append to `a` along axis prior to
performing the difference. Scalar values are expanded to
arrays with length 1 in the direction of axis and the shape
of the input array in along all other axes. Otherwise the
- dimension and shape must match "a" except along axis.
+ dimension and shape must match `a` except along axis.
+
+ .. versionadded:: 1.16.0
Returns
-------
diff --git a/numpy/lib/info.py b/numpy/lib/info.py
deleted file mode 100644
index 8815a52f0..000000000
--- a/numpy/lib/info.py
+++ /dev/null
@@ -1,160 +0,0 @@
-"""
-Basic functions used by several sub-packages and
-useful to have in the main name-space.
-
-Type Handling
--------------
-================ ===================
-iscomplexobj Test for complex object, scalar result
-isrealobj Test for real object, scalar result
-iscomplex Test for complex elements, array result
-isreal Test for real elements, array result
-imag Imaginary part
-real Real part
-real_if_close Turns complex number with tiny imaginary part to real
-isneginf Tests for negative infinity, array result
-isposinf Tests for positive infinity, array result
-isnan Tests for nans, array result
-isinf Tests for infinity, array result
-isfinite Tests for finite numbers, array result
-isscalar True if argument is a scalar
-nan_to_num Replaces NaN's with 0 and infinities with large numbers
-cast Dictionary of functions to force cast to each type
-common_type Determine the minimum common type code for a group
- of arrays
-mintypecode Return minimal allowed common typecode.
-================ ===================
-
-Index Tricks
-------------
-================ ===================
-mgrid Method which allows easy construction of N-d
- 'mesh-grids'
-``r_`` Append and construct arrays: turns slice objects into
- ranges and concatenates them, for 2d arrays appends rows.
-index_exp Konrad Hinsen's index_expression class instance which
- can be useful for building complicated slicing syntax.
-================ ===================
-
-Useful Functions
-----------------
-================ ===================
-select Extension of where to multiple conditions and choices
-extract Extract 1d array from flattened array according to mask
-insert Insert 1d array of values into Nd array according to mask
-linspace Evenly spaced samples in linear space
-logspace Evenly spaced samples in logarithmic space
-fix Round x to nearest integer towards zero
-mod Modulo mod(x,y) = x % y except keeps sign of y
-amax Array maximum along axis
-amin Array minimum along axis
-ptp Array max-min along axis
-cumsum Cumulative sum along axis
-prod Product of elements along axis
-cumprod Cumluative product along axis
-diff Discrete differences along axis
-angle Returns angle of complex argument
-unwrap Unwrap phase along given axis (1-d algorithm)
-sort_complex Sort a complex-array (based on real, then imaginary)
-trim_zeros Trim the leading and trailing zeros from 1D array.
-vectorize A class that wraps a Python function taking scalar
- arguments into a generalized function which can handle
- arrays of arguments using the broadcast rules of
- numerix Python.
-================ ===================
-
-Shape Manipulation
-------------------
-================ ===================
-squeeze Return a with length-one dimensions removed.
-atleast_1d Force arrays to be >= 1D
-atleast_2d Force arrays to be >= 2D
-atleast_3d Force arrays to be >= 3D
-vstack Stack arrays vertically (row on row)
-hstack Stack arrays horizontally (column on column)
-column_stack Stack 1D arrays as columns into 2D array
-dstack Stack arrays depthwise (along third dimension)
-stack Stack arrays along a new axis
-split Divide array into a list of sub-arrays
-hsplit Split into columns
-vsplit Split into rows
-dsplit Split along third dimension
-================ ===================
-
-Matrix (2D Array) Manipulations
--------------------------------
-================ ===================
-fliplr 2D array with columns flipped
-flipud 2D array with rows flipped
-rot90 Rotate a 2D array a multiple of 90 degrees
-eye Return a 2D array with ones down a given diagonal
-diag Construct a 2D array from a vector, or return a given
- diagonal from a 2D array.
-mat Construct a Matrix
-bmat Build a Matrix from blocks
-================ ===================
-
-Polynomials
------------
-================ ===================
-poly1d A one-dimensional polynomial class
-poly Return polynomial coefficients from roots
-roots Find roots of polynomial given coefficients
-polyint Integrate polynomial
-polyder Differentiate polynomial
-polyadd Add polynomials
-polysub Subtract polynomials
-polymul Multiply polynomials
-polydiv Divide polynomials
-polyval Evaluate polynomial at given argument
-================ ===================
-
-Iterators
----------
-================ ===================
-Arrayterator A buffered iterator for big arrays.
-================ ===================
-
-Import Tricks
--------------
-================ ===================
-ppimport Postpone module import until trying to use it
-ppimport_attr Postpone module import until trying to use its attribute
-ppresolve Import postponed module and return it.
-================ ===================
-
-Machine Arithmetics
--------------------
-================ ===================
-machar_single Single precision floating point arithmetic parameters
-machar_double Double precision floating point arithmetic parameters
-================ ===================
-
-Threading Tricks
-----------------
-================ ===================
-ParallelExec Execute commands in parallel thread.
-================ ===================
-
-Array Set Operations
------------------------
-Set operations for numeric arrays based on sort() function.
-
-================ ===================
-unique Unique elements of an array.
-isin Test whether each element of an ND array is present
- anywhere within a second array.
-ediff1d Array difference (auxiliary function).
-intersect1d Intersection of 1D arrays with unique elements.
-setxor1d Set exclusive-or of 1D arrays with unique elements.
-in1d Test whether elements in a 1D array are also present in
- another array.
-union1d Union of 1D arrays with unique elements.
-setdiff1d Set difference of 1D arrays with unique elements.
-================ ===================
-
-"""
-from __future__ import division, absolute_import, print_function
-
-depends = ['core', 'testing']
-global_symbols = ['*']
diff --git a/numpy/lib/mixins.py b/numpy/lib/mixins.py
index 52ad45b68..f974a7724 100644
--- a/numpy/lib/mixins.py
+++ b/numpy/lib/mixins.py
@@ -5,8 +5,8 @@ import sys
from numpy.core import umath as um
-# Nothing should be exposed in the top-level NumPy module.
-__all__ = []
+
+__all__ = ['NDArrayOperatorsMixin']
def _disables_array_ufunc(obj):
diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py
index 9a03d0b39..6cffab6ac 100644
--- a/numpy/lib/nanfunctions.py
+++ b/numpy/lib/nanfunctions.py
@@ -1443,7 +1443,7 @@ def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
the variance of the flattened array.
dtype : data-type, optional
Type to use in computing the variance. For arrays of integer type
- the default is `float32`; for arrays of float types it is the same as
+ the default is `float64`; for arrays of float types it is the same as
the array type.
out : ndarray, optional
Alternate output array in which to place the result. It must have
diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py
index b9dc444f8..e57a6dd47 100644
--- a/numpy/lib/npyio.py
+++ b/numpy/lib/npyio.py
@@ -506,7 +506,9 @@ def save(file, arr, allow_pickle=True, fix_imports=True):
Notes
-----
For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`.
-
+
+ Any data saved to the file is appended to the end of the file.
+
Examples
--------
>>> from tempfile import TemporaryFile
@@ -519,6 +521,15 @@ def save(file, arr, allow_pickle=True, fix_imports=True):
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+
+ >>> with open('test.npy', 'wb') as f:
+ ... np.save(f, np.array([1, 2]))
+ ... np.save(f, np.array([1, 3]))
+ >>> with open('test.npy', 'rb') as f:
+ ... a = np.load(f)
+ ... b = np.load(f)
+ >>> print(a, b)
+ # [1 2] [1 3]
"""
own_fid = False
if hasattr(file, 'write'):
@@ -1776,12 +1787,13 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
replace_space=replace_space)
# Skip the first `skip_header` rows
- for i in range(skip_header):
- next(fhd)
-
- # Keep on until we find the first valid values
- first_values = None
try:
+ for i in range(skip_header):
+ next(fhd)
+
+ # Keep on until we find the first valid values
+ first_values = None
+
while not first_values:
first_line = _decode_line(next(fhd), encoding)
if (names is True) and (comments is not None):
@@ -2168,7 +2180,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
outputmask = np.array(masks, dtype=mdtype)
else:
# Overwrite the initial dtype names if needed
- if names and dtype.names:
+ if names and dtype.names is not None:
dtype.names = names
# Case 1. We have a structured type
if len(dtype_flat) > 1:
@@ -2218,7 +2230,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
#
output = np.array(data, dtype)
if usemask:
- if dtype.names:
+ if dtype.names is not None:
mdtype = [(_, bool) for _ in dtype.names]
else:
mdtype = bool
diff --git a/numpy/lib/recfunctions.py b/numpy/lib/recfunctions.py
index 6e257bb3f..927161ddb 100644
--- a/numpy/lib/recfunctions.py
+++ b/numpy/lib/recfunctions.py
@@ -72,7 +72,7 @@ def recursive_fill_fields(input, output):
current = input[field]
except ValueError:
continue
- if current.dtype.names:
+ if current.dtype.names is not None:
recursive_fill_fields(current, output[field])
else:
output[field][:len(current)] = current
@@ -139,11 +139,11 @@ def get_names(adtype):
names = adtype.names
for name in names:
current = adtype[name]
- if current.names:
+ if current.names is not None:
listnames.append((name, tuple(get_names(current))))
else:
listnames.append(name)
- return tuple(listnames) or None
+ return tuple(listnames)
def get_names_flat(adtype):
@@ -176,9 +176,9 @@ def get_names_flat(adtype):
for name in names:
listnames.append(name)
current = adtype[name]
- if current.names:
+ if current.names is not None:
listnames.extend(get_names_flat(current))
- return tuple(listnames) or None
+ return tuple(listnames)
def flatten_descr(ndtype):
@@ -200,7 +200,7 @@ def flatten_descr(ndtype):
descr = []
for field in names:
(typ, _) = ndtype.fields[field]
- if typ.names:
+ if typ.names is not None:
descr.extend(flatten_descr(typ))
else:
descr.append((field, typ))
@@ -215,8 +215,8 @@ def _zip_dtype(seqarrays, flatten=False):
else:
for a in seqarrays:
current = a.dtype
- if current.names and len(current.names) <= 1:
- # special case - dtypes of 0 or 1 field are flattened
+ if current.names is not None and len(current.names) == 1:
+ # special case - dtypes of 1 field are flattened
newdtype.extend(_get_fieldspec(current))
else:
newdtype.append(('', current))
@@ -268,7 +268,7 @@ def get_fieldstructure(adtype, lastname=None, parents=None,):
names = adtype.names
for name in names:
current = adtype[name]
- if current.names:
+ if current.names is not None:
if lastname:
parents[name] = [lastname, ]
else:
@@ -281,7 +281,7 @@ def get_fieldstructure(adtype, lastname=None, parents=None,):
elif lastname:
lastparent = [lastname, ]
parents[name] = lastparent or []
- return parents or None
+ return parents
def _izip_fields_flat(iterable):
@@ -435,7 +435,7 @@ def merge_arrays(seqarrays, fill_value=-1, flatten=False,
if isinstance(seqarrays, (ndarray, np.void)):
seqdtype = seqarrays.dtype
# Make sure we have named fields
- if not seqdtype.names:
+ if seqdtype.names is None:
seqdtype = np.dtype([('', seqdtype)])
if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype:
# Minimal processing needed: just make sure everythng's a-ok
@@ -527,6 +527,10 @@ def drop_fields(base, drop_names, usemask=True, asrecarray=False):
Nested fields are supported.
+ ..versionchanged: 1.18.0
+ `drop_fields` returns an array with 0 fields if all fields are dropped,
+ rather than returning ``None`` as it did previously.
+
Parameters
----------
base : array
@@ -566,7 +570,7 @@ def drop_fields(base, drop_names, usemask=True, asrecarray=False):
current = ndtype[name]
if name in drop_names:
continue
- if current.names:
+ if current.names is not None:
descr = _drop_descr(current, drop_names)
if descr:
newdtype.append((name, descr))
@@ -575,8 +579,6 @@ def drop_fields(base, drop_names, usemask=True, asrecarray=False):
return newdtype
newdtype = _drop_descr(base.dtype, drop_names)
- if not newdtype:
- return None
output = np.empty(base.shape, dtype=newdtype)
output = recursive_fill_fields(base, output)
@@ -653,7 +655,7 @@ def rename_fields(base, namemapper):
for name in ndtype.names:
newname = namemapper.get(name, name)
current = ndtype[name]
- if current.names:
+ if current.names is not None:
newdtype.append(
(newname, _recursive_rename_fields(current, namemapper))
)
@@ -874,16 +876,35 @@ def _get_fields_and_offsets(dt, offset=0):
scalar fields in the dtype "dt", including nested fields, in left
to right order.
"""
+
+ # counts up elements in subarrays, including nested subarrays, and returns
+ # base dtype and count
+ def count_elem(dt):
+ count = 1
+ while dt.shape != ():
+ for size in dt.shape:
+ count *= size
+ dt = dt.base
+ return dt, count
+
fields = []
for name in dt.names:
field = dt.fields[name]
- if field[0].names is None:
- count = 1
- for size in field[0].shape:
- count *= size
- fields.append((field[0], count, field[1] + offset))
+ f_dt, f_offset = field[0], field[1]
+ f_dt, n = count_elem(f_dt)
+
+ if f_dt.names is None:
+ fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset))
else:
- fields.extend(_get_fields_and_offsets(field[0], field[1] + offset))
+ subfields = _get_fields_and_offsets(f_dt, f_offset + offset)
+ size = f_dt.itemsize
+
+ for i in range(n):
+ if i == 0:
+ # optimization: avoid list comprehension if no subarray
+ fields.extend(subfields)
+ else:
+ fields.extend([(d, c, o + i*size) for d, c, o in subfields])
return fields
@@ -948,6 +969,12 @@ def structured_to_unstructured(arr, dtype=None, copy=False, casting='unsafe'):
fields = _get_fields_and_offsets(arr.dtype)
n_fields = len(fields)
+ if n_fields == 0 and dtype is None:
+ raise ValueError("arr has no fields. Unable to guess dtype")
+ elif n_fields == 0:
+ # too many bugs elsewhere for this to work now
+ raise NotImplementedError("arr with no fields is not supported")
+
dts, counts, offsets = zip(*fields)
names = ['f{}'.format(n) for n in range(n_fields)]
@@ -1039,6 +1066,9 @@ def unstructured_to_structured(arr, dtype=None, names=None, align=False,
if arr.shape == ():
raise ValueError('arr must have at least one dimension')
n_elem = arr.shape[-1]
+ if n_elem == 0:
+ # too many bugs elsewhere for this to work now
+ raise NotImplementedError("last axis with size 0 is not supported")
if dtype is None:
if names is None:
@@ -1051,7 +1081,11 @@ def unstructured_to_structured(arr, dtype=None, names=None, align=False,
raise ValueError("don't supply both dtype and names")
# sanity check of the input dtype
fields = _get_fields_and_offsets(dtype)
- dts, counts, offsets = zip(*fields)
+ if len(fields) == 0:
+ dts, counts, offsets = [], [], []
+ else:
+ dts, counts, offsets = zip(*fields)
+
if n_elem != sum(counts):
raise ValueError('The length of the last dimension of arr must '
'be equal to the number of fields in dtype')
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index a5d0040aa..92d52109e 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -782,7 +782,7 @@ def _split_dispatcher(ary, indices_or_sections, axis=None):
@array_function_dispatch(_split_dispatcher)
def split(ary, indices_or_sections, axis=0):
"""
- Split an array into multiple sub-arrays.
+ Split an array into multiple sub-arrays as views into `ary`.
Parameters
----------
@@ -809,7 +809,7 @@ def split(ary, indices_or_sections, axis=0):
Returns
-------
sub-arrays : list of ndarrays
- A list of sub-arrays.
+ A list of sub-arrays as views into `ary`.
Raises
------
@@ -854,8 +854,7 @@ def split(ary, indices_or_sections, axis=0):
if N % sections:
raise ValueError(
'array split does not result in an equal division')
- res = array_split(ary, indices_or_sections, axis)
- return res
+ return array_split(ary, indices_or_sections, axis)
def _hvdsplit_dispatcher(ary, indices_or_sections):
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
index b7630cdcd..65593dd29 100644
--- a/numpy/lib/tests/test_arraypad.py
+++ b/numpy/lib/tests/test_arraypad.py
@@ -2,7 +2,6 @@
"""
from __future__ import division, absolute_import, print_function
-from itertools import chain
import pytest
@@ -11,6 +10,12 @@ from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from numpy.lib.arraypad import _as_pairs
+_numeric_dtypes = (
+ np.sctypes["uint"]
+ + np.sctypes["int"]
+ + np.sctypes["float"]
+ + np.sctypes["complex"]
+)
_all_modes = {
'constant': {'constant_values': 0},
'edge': {},
@@ -469,6 +474,29 @@ class TestStatistic(object):
)
assert_array_equal(a, b)
+ @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning")
+ @pytest.mark.filterwarnings(
+ "ignore:invalid value encountered in (true_divide|double_scalars):"
+ "RuntimeWarning"
+ )
+ @pytest.mark.parametrize("mode", ["mean", "median"])
+ def test_zero_stat_length_valid(self, mode):
+ arr = np.pad([1., 2.], (1, 2), mode, stat_length=0)
+ expected = np.array([np.nan, 1., 2., np.nan, np.nan])
+ assert_equal(arr, expected)
+
+ @pytest.mark.parametrize("mode", ["minimum", "maximum"])
+ def test_zero_stat_length_invalid(self, mode):
+ match = "stat_length of 0 yields no value for padding"
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 0, mode, stat_length=0)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 0, mode, stat_length=(1, 0))
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 1, mode, stat_length=0)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1., 2.], 1, mode, stat_length=(1, 0))
+
class TestConstant(object):
def test_check_constant(self):
@@ -715,6 +743,24 @@ class TestLinearRamp(object):
assert_equal(a[0, :], 0.)
assert_equal(a[-1, :], 0.)
+ @pytest.mark.parametrize("dtype", _numeric_dtypes)
+ def test_negative_difference(self, dtype):
+ """
+ Check correct behavior of unsigned dtypes if there is a negative
+ difference between the edge to pad and `end_values`. Check both cases
+ to be independent of implementation. Test behavior for all other dtypes
+ in case dtype casting interferes with complex dtypes. See gh-14191.
+ """
+ x = np.array([3], dtype=dtype)
+ result = np.pad(x, 3, mode="linear_ramp", end_values=0)
+ expected = np.array([0, 1, 2, 3, 2, 1, 0], dtype=dtype)
+ assert_equal(result, expected)
+
+ x = np.array([0], dtype=dtype)
+ result = np.pad(x, 3, mode="linear_ramp", end_values=3)
+ expected = np.array([3, 2, 1, 0, 1, 2, 3], dtype=dtype)
+ assert_equal(result, expected)
+
class TestReflect(object):
def test_check_simple(self):
@@ -1307,13 +1353,7 @@ def test_memory_layout_persistence(mode):
assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"]
-@pytest.mark.parametrize("dtype", chain(
- # Skip "other" dtypes as they are not supported by all modes
- np.sctypes["int"],
- np.sctypes["uint"],
- np.sctypes["float"],
- np.sctypes["complex"]
-))
+@pytest.mark.parametrize("dtype", _numeric_dtypes)
@pytest.mark.parametrize("mode", _all_modes.keys())
def test_dtype_persistence(dtype, mode):
arr = np.zeros((3, 2, 1), dtype=dtype)
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index dd8a38248..fd21a7f76 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -600,8 +600,11 @@ class TestUnique(object):
assert_array_equal(unique(data, axis=1), result.astype(dtype), msg)
msg = 'Unique with 3d array and axis=2 failed'
- data3d = np.dstack([data] * 3)
- result = data3d[..., :1]
+ data3d = np.array([[[1, 1],
+ [1, 0]],
+ [[0, 1],
+ [0, 0]]]).astype(dtype)
+ result = np.take(data3d, [1, 0], axis=2)
assert_array_equal(unique(data3d, axis=2), result, msg)
uniq, idx, inv, cnt = unique(data, axis=0, return_index=True,
diff --git a/numpy/lib/tests/test_financial.py b/numpy/lib/tests/test_financial.py
index 524915041..21088765f 100644
--- a/numpy/lib/tests/test_financial.py
+++ b/numpy/lib/tests/test_financial.py
@@ -9,6 +9,12 @@ from numpy.testing import (
class TestFinancial(object):
+ def test_npv_irr_congruence(self):
+ # IRR is defined as the rate required for the present value of a
+ # a series of cashflows to be zero i.e. NPV(IRR(x), x) = 0
+ cashflows = np.array([-40000, 5000, 8000, 12000, 30000])
+ assert_allclose(np.npv(np.irr(cashflows), cashflows), 0, atol=1e-10, rtol=0)
+
def test_rate(self):
assert_almost_equal(
np.rate(10, 0, -3500, 10000),
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index eae52c002..1eae8ccfb 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -423,27 +423,17 @@ class TestSelect(object):
assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0])
def test_deprecated_empty(self):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always")
- assert_equal(select([], [], 3j), 3j)
-
- with warnings.catch_warnings():
- warnings.simplefilter("always")
- assert_warns(DeprecationWarning, select, [], [])
- warnings.simplefilter("error")
- assert_raises(DeprecationWarning, select, [], [])
+ assert_raises(ValueError, select, [], [], 3j)
+ assert_raises(ValueError, select, [], [])
def test_non_bool_deprecation(self):
choices = self.choices
conditions = self.conditions[:]
- with warnings.catch_warnings():
- warnings.filterwarnings("always")
- conditions[0] = conditions[0].astype(np.int_)
- assert_warns(DeprecationWarning, select, conditions, choices)
- conditions[0] = conditions[0].astype(np.uint8)
- assert_warns(DeprecationWarning, select, conditions, choices)
- warnings.filterwarnings("error")
- assert_raises(DeprecationWarning, select, conditions, choices)
+ conditions[0] = conditions[0].astype(np.int_)
+ assert_raises(TypeError, select, conditions, choices)
+ conditions[0] = conditions[0].astype(np.uint8)
+ assert_raises(TypeError, select, conditions, choices)
+ assert_raises(TypeError, select, conditions, choices)
def test_many_arguments(self):
# This used to be limited by NPY_MAXARGS == 32
diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py
index a5cdda074..dbe445c2c 100644
--- a/numpy/lib/tests/test_index_tricks.py
+++ b/numpy/lib/tests/test_index_tricks.py
@@ -175,6 +175,24 @@ class TestRavelUnravelIndex(object):
assert_raises_regex(
ValueError, "out of bounds", np.unravel_index, [1], ())
+ @pytest.mark.parametrize("mode", ["clip", "wrap", "raise"])
+ def test_empty_array_ravel(self, mode):
+ res = np.ravel_multi_index(
+ np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode)
+ assert(res.shape == (0,))
+
+ with assert_raises(ValueError):
+ np.ravel_multi_index(
+ np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode)
+
+ def test_empty_array_unravel(self):
+ res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0))
+ # res is a tuple of three empty arrays
+ assert(len(res) == 3)
+ assert(all(a.shape == (0,) for a in res))
+
+ with assert_raises(ValueError):
+ np.unravel_index([1], (2, 1, 0))
class TestGrid(object):
def test_basic(self):
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py
index 78f9f85f3..6ee17c830 100644
--- a/numpy/lib/tests/test_io.py
+++ b/numpy/lib/tests/test_io.py
@@ -1565,6 +1565,13 @@ M 33 21.99
test = np.genfromtxt(TextIO(data), delimiter=";",
dtype=ndtype, converters=converters)
+ # nested but empty fields also aren't supported
+ ndtype = [('idx', int), ('code', object), ('nest', [])]
+ with assert_raises_regex(NotImplementedError,
+ 'Nested fields.* not supported.*'):
+ test = np.genfromtxt(TextIO(data), delimiter=";",
+ dtype=ndtype, converters=converters)
+
def test_userconverters_with_explicit_dtype(self):
# Test user_converters w/ explicit (standard) dtype
data = TextIO('skip,skip,2001-01-01,1.0,skip')
@@ -1681,6 +1688,10 @@ M 33 21.99
test = np.genfromtxt(data)
assert_equal(test, np.array([]))
+ # when skip_header > 0
+ test = np.genfromtxt(data, skip_header=1)
+ assert_equal(test, np.array([]))
+
def test_fancy_dtype_alt(self):
# Check that a nested dtype isn't MIA
data = TextIO('1,2,3.0\n4,5,6.0\n')
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index 0126ccaf8..fa5f4dec2 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -91,8 +91,10 @@ class TestRecFunctions(object):
control = np.array([(1,), (4,)], dtype=[('a', int)])
assert_equal(test, control)
+ # dropping all fields results in an array with no fields
test = drop_fields(a, ['a', 'b'])
- assert_(test is None)
+ control = np.array([(), ()], dtype=[])
+ assert_equal(test, control)
def test_rename_fields(self):
# Test rename fields
@@ -115,6 +117,14 @@ class TestRecFunctions(object):
test = get_names(ndtype)
assert_equal(test, ('a', ('b', ('ba', 'bb'))))
+ ndtype = np.dtype([('a', int), ('b', [])])
+ test = get_names(ndtype)
+ assert_equal(test, ('a', ('b', ())))
+
+ ndtype = np.dtype([])
+ test = get_names(ndtype)
+ assert_equal(test, ())
+
def test_get_names_flat(self):
# Test get_names_flat
ndtype = np.dtype([('A', '|S3'), ('B', float)])
@@ -125,6 +135,14 @@ class TestRecFunctions(object):
test = get_names_flat(ndtype)
assert_equal(test, ('a', 'b', 'ba', 'bb'))
+ ndtype = np.dtype([('a', int), ('b', [])])
+ test = get_names_flat(ndtype)
+ assert_equal(test, ('a', 'b'))
+
+ ndtype = np.dtype([])
+ test = get_names_flat(ndtype)
+ assert_equal(test, ())
+
def test_get_fieldstructure(self):
# Test get_fieldstructure
@@ -147,6 +165,11 @@ class TestRecFunctions(object):
'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
assert_equal(test, control)
+ # 0 fields
+ ndtype = np.dtype([])
+ test = get_fieldstructure(ndtype)
+ assert_equal(test, {})
+
def test_find_duplicates(self):
# Test find_duplicates
a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
@@ -248,7 +271,8 @@ class TestRecFunctions(object):
# including uniform fields with subarrays unpacked
d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]),
(8, [9, 10], [[11, 12], [13, 14]])],
- dtype=[('x0', 'i4'), ('x1', ('i4', 2)), ('x2', ('i4', (2, 2)))])
+ dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
+ ('x2', ('i4', (2, 2)))])
dd = structured_to_unstructured(d)
ddd = unstructured_to_structured(dd, d.dtype)
assert_(dd.base is d)
@@ -262,6 +286,40 @@ class TestRecFunctions(object):
assert_equal(res, np.zeros((10, 6), dtype=int))
+ # test nested combinations of subarrays and structured arrays, gh-13333
+ def subarray(dt, shape):
+ return np.dtype((dt, shape))
+
+ def structured(*dts):
+ return np.dtype([('x{}'.format(i), dt) for i, dt in enumerate(dts)])
+
+ def inspect(dt, dtype=None):
+ arr = np.zeros((), dt)
+ ret = structured_to_unstructured(arr, dtype=dtype)
+ backarr = unstructured_to_structured(ret, dt)
+ return ret.shape, ret.dtype, backarr.dtype
+
+ dt = structured(subarray(structured(np.int32, np.int32), 3))
+ assert_equal(inspect(dt), ((6,), np.int32, dt))
+
+ dt = structured(subarray(subarray(np.int32, 2), 2))
+ assert_equal(inspect(dt), ((4,), np.int32, dt))
+
+ dt = structured(np.int32)
+ assert_equal(inspect(dt), ((1,), np.int32, dt))
+
+ dt = structured(np.int32, subarray(subarray(np.int32, 2), 2))
+ assert_equal(inspect(dt), ((5,), np.int32, dt))
+
+ dt = structured()
+ assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt))
+
+ # these currently don't work, but we may make it work in the future
+ assert_raises(NotImplementedError, structured_to_unstructured,
+ np.zeros(3, dt), dtype=np.int32)
+ assert_raises(NotImplementedError, unstructured_to_structured,
+ np.zeros((3,0), dtype=np.int32))
+
def test_field_assignment_by_name(self):
a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
newdt = [('b', 'f4'), ('c', 'u1')]
@@ -322,8 +380,8 @@ class TestMergeArrays(object):
z = np.array(
[('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
w = np.array(
- [(1, (2, 3.0)), (4, (5, 6.0))],
- dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
+ [(1, (2, 3.0, ())), (4, (5, 6.0, ()))],
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int), ('bc', [])])])
self.data = (w, x, y, z)
def test_solo(self):
@@ -394,8 +452,8 @@ class TestMergeArrays(object):
test = merge_arrays((x, w), flatten=False)
controldtype = [('f0', int),
('f1', [('a', int),
- ('b', [('ba', float), ('bb', int)])])]
- control = np.array([(1., (1, (2, 3.0))), (2, (4, (5, 6.0)))],
+ ('b', [('ba', float), ('bb', int), ('bc', [])])])]
+ control = np.array([(1., (1, (2, 3.0, ()))), (2, (4, (5, 6.0, ())))],
dtype=controldtype)
assert_equal(test, control)
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index f3dc6c8e1..f45392188 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -368,7 +368,7 @@ def tri(N, M=None, k=0, dtype=float):
-------
tri : ndarray of shape (N, M)
Array with its lower triangle filled with ones and zero elsewhere;
- in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise.
+ in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise.
Examples
--------
diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py
index ac4b03a6c..586824743 100644
--- a/numpy/lib/type_check.py
+++ b/numpy/lib/type_check.py
@@ -395,19 +395,27 @@ def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
in-place (False). The in-place operation only occurs if
casting to an array does not require a copy.
Default is True.
+
+ .. versionadded:: 1.13
nan : int, float, optional
Value to be used to fill NaN values. If no value is passed
then NaN values will be replaced with 0.0.
+
+ .. versionadded:: 1.17
posinf : int, float, optional
Value to be used to fill positive infinity values. If no value is
passed then positive infinity values will be replaced with a very
large number.
+
+ .. versionadded:: 1.17
neginf : int, float, optional
Value to be used to fill negative infinity values. If no value is
passed then negative infinity values will be replaced with a very
small (or negative) number.
+
+ .. versionadded:: 1.17
- .. versionadded:: 1.13
+
Returns
-------
diff --git a/numpy/lib/utils.py b/numpy/lib/utils.py
index c7dbcc5f9..3c71d2a7c 100644
--- a/numpy/lib/utils.py
+++ b/numpy/lib/utils.py
@@ -788,13 +788,8 @@ def lookfor(what, module=None, import_modules=True, regenerate=False,
if kind in ('module', 'object'):
# don't show modules or objects
continue
- ok = True
doc = docstring.lower()
- for w in whats:
- if w not in doc:
- ok = False
- break
- if ok:
+ if all(w in doc for w in whats):
found.append(name)
# Relevance sort
@@ -1003,93 +998,6 @@ def _getmembers(item):
if hasattr(item, x)]
return members
-#-----------------------------------------------------------------------------
-
-# The following SafeEval class and company are adapted from Michael Spencer's
-# ASPN Python Cookbook recipe: https://code.activestate.com/recipes/364469/
-#
-# Accordingly it is mostly Copyright 2006 by Michael Spencer.
-# The recipe, like most of the other ASPN Python Cookbook recipes was made
-# available under the Python license.
-# https://en.wikipedia.org/wiki/Python_License
-
-# It has been modified to:
-# * handle unary -/+
-# * support True/False/None
-# * raise SyntaxError instead of a custom exception.
-
-class SafeEval(object):
- """
- Object to evaluate constant string expressions.
-
- This includes strings with lists, dicts and tuples using the abstract
- syntax tree created by ``compiler.parse``.
-
- .. deprecated:: 1.10.0
-
- See Also
- --------
- safe_eval
-
- """
- def __init__(self):
- # 2014-10-15, 1.10
- warnings.warn("SafeEval is deprecated in 1.10 and will be removed.",
- DeprecationWarning, stacklevel=2)
-
- def visit(self, node):
- cls = node.__class__
- meth = getattr(self, 'visit' + cls.__name__, self.default)
- return meth(node)
-
- def default(self, node):
- raise SyntaxError("Unsupported source construct: %s"
- % node.__class__)
-
- def visitExpression(self, node):
- return self.visit(node.body)
-
- def visitNum(self, node):
- return node.n
-
- def visitStr(self, node):
- return node.s
-
- def visitBytes(self, node):
- return node.s
-
- def visitDict(self, node,**kw):
- return dict([(self.visit(k), self.visit(v))
- for k, v in zip(node.keys, node.values)])
-
- def visitTuple(self, node):
- return tuple([self.visit(i) for i in node.elts])
-
- def visitList(self, node):
- return [self.visit(i) for i in node.elts]
-
- def visitUnaryOp(self, node):
- import ast
- if isinstance(node.op, ast.UAdd):
- return +self.visit(node.operand)
- elif isinstance(node.op, ast.USub):
- return -self.visit(node.operand)
- else:
- raise SyntaxError("Unknown unary op: %r" % node.op)
-
- def visitName(self, node):
- if node.id == 'False':
- return False
- elif node.id == 'True':
- return True
- elif node.id == 'None':
- return None
- else:
- raise SyntaxError("Unknown name: %s" % node.id)
-
- def visitNameConstant(self, node):
- return node.value
-
def safe_eval(source):
"""
diff --git a/numpy/linalg/__init__.py b/numpy/linalg/__init__.py
index 4b696c883..55560815d 100644
--- a/numpy/linalg/__init__.py
+++ b/numpy/linalg/__init__.py
@@ -1,53 +1,77 @@
"""
-Core Linear Algebra Tools
-=========================
-
-=============== ==========================================================
-Linear algebra basics
-==========================================================================
-norm Vector or matrix norm
-inv Inverse of a square matrix
-solve Solve a linear system of equations
-det Determinant of a square matrix
-slogdet Logarithm of the determinant of a square matrix
-lstsq Solve linear least-squares problem
-pinv Pseudo-inverse (Moore-Penrose) calculated using a singular
- value decomposition
-matrix_power Integer power of a square matrix
-matrix_rank Calculate matrix rank using an SVD-based method
-=============== ==========================================================
-
-=============== ==========================================================
-Eigenvalues and decompositions
-==========================================================================
-eig Eigenvalues and vectors of a square matrix
-eigh Eigenvalues and eigenvectors of a Hermitian matrix
-eigvals Eigenvalues of a square matrix
-eigvalsh Eigenvalues of a Hermitian matrix
-qr QR decomposition of a matrix
-svd Singular value decomposition of a matrix
-cholesky Cholesky decomposition of a matrix
-=============== ==========================================================
-
-=============== ==========================================================
-Tensor operations
-==========================================================================
-tensorsolve Solve a linear tensor equation
-tensorinv Calculate an inverse of a tensor
-=============== ==========================================================
-
-=============== ==========================================================
+``numpy.linalg``
+================
+
+The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
+low level implementations of standard linear algebra algorithms. Those
+libraries may be provided by NumPy itself using C versions of a subset of their
+reference implementations but, when possible, highly optimized libraries that
+take advantage of specialized processor functionality are preferred. Examples
+of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
+are multithreaded and processor dependent, environmental variables and external
+packages such as threadpoolctl may be needed to control the number of threads
+or specify the processor architecture.
+
+- OpenBLAS: https://www.openblas.net/
+- threadpoolctl: https://github.com/joblib/threadpoolctl
+
+Please note that the most-used linear algebra functions in NumPy are present in
+the main ``numpy`` namespace rather than in ``numpy.linalg``. There are:
+``dot``, ``vdot``, ``inner``, ``outer``, ``matmul``, ``tensordot``, ``einsum``,
+``einsum_path`` and ``kron``.
+
+Functions present in numpy.linalg are listed below.
+
+
+Matrix and vector products
+--------------------------
+
+ multi_dot
+ matrix_power
+
+Decompositions
+--------------
+
+ cholesky
+ qr
+ svd
+
+Matrix eigenvalues
+------------------
+
+ eig
+ eigh
+ eigvals
+ eigvalsh
+
+Norms and other numbers
+-----------------------
+
+ norm
+ cond
+ det
+ matrix_rank
+ slogdet
+
+Solving equations and inverting matrices
+----------------------------------------
+
+ solve
+ tensorsolve
+ lstsq
+ inv
+ pinv
+ tensorinv
+
Exceptions
-==========================================================================
-LinAlgError Indicates a failed linear algebra operation
-=============== ==========================================================
+----------
+
+ LinAlgError
"""
from __future__ import division, absolute_import, print_function
# To get sub-modules
-from .info import __doc__
-
from .linalg import *
from numpy._pytesttester import PytestTester
diff --git a/numpy/linalg/info.py b/numpy/linalg/info.py
deleted file mode 100644
index 646ecda04..000000000
--- a/numpy/linalg/info.py
+++ /dev/null
@@ -1,37 +0,0 @@
-"""\
-Core Linear Algebra Tools
--------------------------
-Linear algebra basics:
-
-- norm Vector or matrix norm
-- inv Inverse of a square matrix
-- solve Solve a linear system of equations
-- det Determinant of a square matrix
-- lstsq Solve linear least-squares problem
-- pinv Pseudo-inverse (Moore-Penrose) calculated using a singular
- value decomposition
-- matrix_power Integer power of a square matrix
-
-Eigenvalues and decompositions:
-
-- eig Eigenvalues and vectors of a square matrix
-- eigh Eigenvalues and eigenvectors of a Hermitian matrix
-- eigvals Eigenvalues of a square matrix
-- eigvalsh Eigenvalues of a Hermitian matrix
-- qr QR decomposition of a matrix
-- svd Singular value decomposition of a matrix
-- cholesky Cholesky decomposition of a matrix
-
-Tensor operations:
-
-- tensorsolve Solve a linear tensor equation
-- tensorinv Calculate an inverse of a tensor
-
-Exceptions:
-
-- LinAlgError Indicates a failed linear algebra operation
-
-"""
-from __future__ import division, absolute_import, print_function
-
-depends = ['core']
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 325d35c19..816a200eb 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -778,15 +778,13 @@ def qr(a, mode='reduced'):
----------
a : array_like, shape (M, N)
Matrix to be factored.
- mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional
+ mode : {'reduced', 'complete', 'r', 'raw'}, optional
If K = min(M, N), then
* 'reduced' : returns q, r with dimensions (M, K), (K, N) (default)
* 'complete' : returns q, r with dimensions (M, M), (M, N)
* 'r' : returns r only with dimensions (K, N)
* 'raw' : returns h, tau with dimensions (N, M), (K,)
- * 'full' : alias of 'reduced', deprecated
- * 'economic' : returns h from 'raw', deprecated.
The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
see the notes for more information. The default is 'reduced', and to
@@ -848,12 +846,8 @@ def qr(a, mode='reduced'):
>>> np.allclose(a, np.dot(q, r)) # a does equal qr
True
>>> r2 = np.linalg.qr(a, mode='r')
- >>> r3 = np.linalg.qr(a, mode='economic')
>>> np.allclose(r, r2) # mode='r' returns the same r as mode='full'
True
- >>> # But only triu parts are guaranteed equal when mode='economic'
- >>> np.allclose(r, np.triu(r3[:6,:6], k=0))
- True
Example illustrating a common use of `qr`: solving of least squares
problems
@@ -1487,6 +1481,12 @@ def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
compute_uv : bool, optional
Whether or not to compute `u` and `vh` in addition to `s`. True
by default.
+ hermitian : bool, optional
+ If True, `a` is assumed to be Hermitian (symmetric if real-valued),
+ enabling a more efficient method for finding singular values.
+ Defaults to False.
+
+ .. versionadded:: 1.17.0
Returns
-------
@@ -1504,12 +1504,6 @@ def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
size as those of the input `a`. The size of the last two dimensions
depends on the value of `full_matrices`. Only returned when
`compute_uv` is True.
- hermitian : bool, optional
- If True, `a` is assumed to be Hermitian (symmetric if real-valued),
- enabling a more efficient method for finding singular values.
- Defaults to False.
-
- .. versionadded:: 1.17.0
Raises
------
diff --git a/numpy/linalg/umath_linalg.c.src b/numpy/linalg/umath_linalg.c.src
index 9fc68a7aa..ee103c327 100644
--- a/numpy/linalg/umath_linalg.c.src
+++ b/numpy/linalg/umath_linalg.c.src
@@ -2522,8 +2522,6 @@ init_@lapack_func@(GESDD_PARAMS_t *params,
params->VT = vt;
params->RWORK = NULL;
params->IWORK = iwork;
- params->M = m;
- params->N = n;
params->LDA = ld;
params->LDU = ld;
params->LDVT = vt_column_count;
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index f221b319a..bb3788c9a 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -59,14 +59,14 @@ __all__ = [
'choose', 'clip', 'common_fill_value', 'compress', 'compressed',
'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh',
'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal',
- 'diff', 'divide', 'dump', 'dumps', 'empty', 'empty_like', 'equal', 'exp',
+ 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp',
'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask',
'flatten_structured_array', 'floor', 'floor_divide', 'fmod',
'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask',
'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot',
'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA',
'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift',
- 'less', 'less_equal', 'load', 'loads', 'log', 'log10', 'log2',
+ 'less', 'less_equal', 'log', 'log10', 'log2',
'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask',
'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
'masked_array', 'masked_equal', 'masked_greater',
@@ -77,7 +77,7 @@ __all__ = [
'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value',
'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero',
'not_equal', 'ones', 'outer', 'outerproduct', 'power', 'prod',
- 'product', 'ptp', 'put', 'putmask', 'rank', 'ravel', 'remainder',
+ 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder',
'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_',
'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask',
'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum',
@@ -4455,7 +4455,7 @@ class MaskedArray(ndarray):
if m is nomask:
# compare to _count_reduce_items in _methods.py
- if self.shape is ():
+ if self.shape == ():
if axis not in (None, 0):
raise np.AxisError(axis=axis, ndim=self.ndim)
return 1
@@ -5887,7 +5887,6 @@ class MaskedArray(ndarray):
return out[()]
# Array methods
- clip = _arraymethod('clip', onmask=False)
copy = _arraymethod('copy')
diagonal = _arraymethod('diagonal')
flatten = _arraymethod('flatten')
@@ -7099,23 +7098,6 @@ def resize(x, new_shape):
return result
-def rank(obj):
- """
- maskedarray version of the numpy function.
-
- .. note::
- Deprecated since 1.10.0
-
- """
- # 2015-04-12, 1.10.0
- warnings.warn(
- "`rank` is deprecated; use the `ndim` function instead. ",
- np.VisibleDeprecationWarning, stacklevel=2)
- return np.ndim(getdata(obj))
-
-rank.__doc__ = np.rank.__doc__
-
-
def ndim(obj):
"""
maskedarray version of the numpy function.
@@ -7904,93 +7886,6 @@ def _pickle_warn(method):
stacklevel=3)
-def dump(a, F):
- """
- Pickle a masked array to a file.
-
- This is a wrapper around ``cPickle.dump``.
-
- Parameters
- ----------
- a : MaskedArray
- The array to be pickled.
- F : str or file-like object
- The file to pickle `a` to. If a string, the full path to the file.
-
- """
- _pickle_warn('dump')
- if not hasattr(F, 'readline'):
- with open(F, 'w') as F:
- pickle.dump(a, F)
- else:
- pickle.dump(a, F)
-
-
-def dumps(a):
- """
- Return a string corresponding to the pickling of a masked array.
-
- This is a wrapper around ``cPickle.dumps``.
-
- Parameters
- ----------
- a : MaskedArray
- The array for which the string representation of the pickle is
- returned.
-
- """
- _pickle_warn('dumps')
- return pickle.dumps(a)
-
-
-def load(F):
- """
- Wrapper around ``cPickle.load`` which accepts either a file-like object
- or a filename.
-
- Parameters
- ----------
- F : str or file
- The file or file name to load.
-
- See Also
- --------
- dump : Pickle an array
-
- Notes
- -----
- This is different from `numpy.load`, which does not use cPickle but loads
- the NumPy binary .npy format.
-
- """
- _pickle_warn('load')
- if not hasattr(F, 'readline'):
- with open(F, 'r') as F:
- return pickle.load(F)
- else:
- return pickle.load(F)
-
-
-def loads(strg):
- """
- Load a pickle from the current string.
-
- The result of ``cPickle.loads(strg)`` is returned.
-
- Parameters
- ----------
- strg : str
- The string to load.
-
- See Also
- --------
- dumps : Return a string corresponding to the pickling of a masked array.
-
- """
- _pickle_warn('loads')
- return pickle.loads(strg)
-
-
def fromfile(file, dtype=float, count=-1, sep=''):
raise NotImplementedError(
"fromfile() not yet implemented for a MaskedArray.")
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 639b3dd1f..de1aa3af8 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -549,8 +549,11 @@ def average(a, axis=None, weights=None, returned=False):
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given axis) or of the same shape as `a`.
If ``weights=None``, then all data in `a` are assumed to have a
- weight equal to one. If `weights` is complex, the imaginary parts
- are ignored.
+ weight equal to one. The 1-D calculation is::
+
+ avg = sum(a * weights) / sum(weights)
+
+ The only constraint on `weights` is that `sum(weights)` must not be 0.
returned : bool, optional
Flag indicating whether a tuple ``(result, sum of weights)``
should be returned as output (True), or just the result (False).
diff --git a/numpy/ma/mrecords.py b/numpy/ma/mrecords.py
index 931a7e8b9..826fb0f64 100644
--- a/numpy/ma/mrecords.py
+++ b/numpy/ma/mrecords.py
@@ -208,7 +208,7 @@ class MaskedRecords(MaskedArray, object):
_localdict = ndarray.__getattribute__(self, '__dict__')
_data = ndarray.view(self, _localdict['_baseclass'])
obj = _data.getfield(*res)
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
raise NotImplementedError("MaskedRecords is currently limited to"
"simple records.")
# Get some special attributes
diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py
index 9fe550ef8..b72ce56aa 100644
--- a/numpy/ma/tests/test_core.py
+++ b/numpy/ma/tests/test_core.py
@@ -3035,6 +3035,13 @@ class TestMaskedArrayMethods(object):
assert_equal(clipped._data, x.clip(2, 8))
assert_equal(clipped._data, mx._data.clip(2, 8))
+ def test_clip_out(self):
+ # gh-14140
+ a = np.arange(10)
+ m = np.ma.MaskedArray(a, mask=[0, 1] * 5)
+ m.clip(0, 5, out=m)
+ assert_equal(m.mask, [0, 1] * 5)
+
def test_compress(self):
# test compress
a = masked_array([1., 2., 3., 4., 5.], fill_value=9999)
diff --git a/numpy/ma/version.py b/numpy/ma/version.py
deleted file mode 100644
index a2c5c42a8..000000000
--- a/numpy/ma/version.py
+++ /dev/null
@@ -1,14 +0,0 @@
-"""Version number
-
-"""
-from __future__ import division, absolute_import, print_function
-
-version = '1.00'
-release = False
-
-if not release:
- from . import core
- from . import extras
- revision = [core.__revision__.split(':')[-1][:-1].strip(),
- extras.__revision__.split(':')[-1][:-1].strip(),]
- version += '.dev%04i' % max([int(rev) for rev in revision])
diff --git a/numpy/matlib.py b/numpy/matlib.py
index 9e115943a..604ef470b 100644
--- a/numpy/matlib.py
+++ b/numpy/matlib.py
@@ -2,7 +2,7 @@ from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.matrixlib.defmatrix import matrix, asmatrix
-# need * as we're copying the numpy namespace
+# need * as we're copying the numpy namespace (FIXME: this makes little sense)
from numpy import *
__version__ = np.__version__
diff --git a/numpy/polynomial/polyutils.py b/numpy/polynomial/polyutils.py
index a9059f522..35b24d1ab 100644
--- a/numpy/polynomial/polyutils.py
+++ b/numpy/polynomial/polyutils.py
@@ -426,10 +426,7 @@ def _vander2d(vander_f, x, y, deg):
x, y, deg :
See the ``<type>vander2d`` functions for more detail
"""
- degx, degy = [
- _deprecate_as_int(d, "degrees")
- for d in deg
- ]
+ degx, degy = deg
x, y = np.array((x, y), copy=False) + 0.0
vx = vander_f(x, degx)
@@ -449,10 +446,7 @@ def _vander3d(vander_f, x, y, z, deg):
x, y, z, deg :
See the ``<type>vander3d`` functions for more detail
"""
- degx, degy, degz = [
- _deprecate_as_int(d, "degrees")
- for d in deg
- ]
+ degx, degy, degz = deg
x, y, z = np.array((x, y, z), copy=False) + 0.0
vx = vander_f(x, degx)
diff --git a/numpy/random/__init__.py b/numpy/random/__init__.py
index 2d495d67e..f7c248451 100644
--- a/numpy/random/__init__.py
+++ b/numpy/random/__init__.py
@@ -177,7 +177,11 @@ __all__ = [
'zipf',
]
-from . import mtrand
+# add these for module-freeze analysis (like PyInstaller)
+from . import _pickle
+from . import common
+from . import bounded_integers
+
from .mtrand import *
from .generator import Generator, default_rng
from .bit_generator import SeedSequence
diff --git a/numpy/random/_pickle.py b/numpy/random/_pickle.py
index d20a91ced..3b58f21e8 100644
--- a/numpy/random/_pickle.py
+++ b/numpy/random/_pickle.py
@@ -13,7 +13,7 @@ BitGenerators = {'MT19937': MT19937,
}
-def __generator_ctor(bit_generator_name='mt19937'):
+def __generator_ctor(bit_generator_name='MT19937'):
"""
Pickling helper function that returns a Generator object
@@ -36,7 +36,7 @@ def __generator_ctor(bit_generator_name='mt19937'):
return Generator(bit_generator())
-def __bit_generator_ctor(bit_generator_name='mt19937'):
+def __bit_generator_ctor(bit_generator_name='MT19937'):
"""
Pickling helper function that returns a bit generator object
@@ -59,7 +59,7 @@ def __bit_generator_ctor(bit_generator_name='mt19937'):
return bit_generator()
-def __randomstate_ctor(bit_generator_name='mt19937'):
+def __randomstate_ctor(bit_generator_name='MT19937'):
"""
Pickling helper function that returns a legacy RandomState-like object
diff --git a/numpy/random/bit_generator.pxd b/numpy/random/bit_generator.pxd
index 79fe69275..984033f17 100644
--- a/numpy/random/bit_generator.pxd
+++ b/numpy/random/bit_generator.pxd
@@ -1,5 +1,5 @@
-from .common cimport bitgen_t
+from .common cimport bitgen_t, uint32_t
cimport numpy as np
cdef class BitGenerator():
@@ -14,9 +14,9 @@ cdef class BitGenerator():
cdef class SeedSequence():
cdef readonly object entropy
cdef readonly tuple spawn_key
- cdef readonly int pool_size
+ cdef readonly uint32_t pool_size
cdef readonly object pool
- cdef readonly int n_children_spawned
+ cdef readonly uint32_t n_children_spawned
cdef mix_entropy(self, np.ndarray[np.npy_uint32, ndim=1] mixer,
np.ndarray[np.npy_uint32, ndim=1] entropy_array)
diff --git a/numpy/random/bit_generator.pyx b/numpy/random/bit_generator.pyx
index 6694e5e4d..eb608af6c 100644
--- a/numpy/random/bit_generator.pyx
+++ b/numpy/random/bit_generator.pyx
@@ -116,7 +116,7 @@ def _coerce_to_uint32_array(x):
Examples
--------
>>> import numpy as np
- >>> from np.random.bit_generator import _coerce_to_uint32_array
+ >>> from numpy.random.bit_generator import _coerce_to_uint32_array
>>> _coerce_to_uint32_array(12345)
array([12345], dtype=uint32)
>>> _coerce_to_uint32_array('12345')
@@ -458,6 +458,8 @@ cdef class SeedSequence():
-------
seqs : list of `SeedSequence` s
"""
+ cdef uint32_t i
+
seqs = []
for i in range(self.n_children_spawned,
self.n_children_spawned + n_children):
diff --git a/numpy/random/common.pxd b/numpy/random/common.pxd
index 2f7baa06e..ac0a94bb0 100644
--- a/numpy/random/common.pxd
+++ b/numpy/random/common.pxd
@@ -5,7 +5,7 @@ from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t,
uintptr_t)
from libc.math cimport sqrt
-cdef extern from "numpy/random/bitgen.h":
+cdef extern from "src/bitgen.h":
struct bitgen:
void *state
uint64_t (*next_uint64)(void *st) nogil
diff --git a/numpy/random/common.pyx b/numpy/random/common.pyx
index 6ad5f5b21..74cd5f033 100644
--- a/numpy/random/common.pyx
+++ b/numpy/random/common.pyx
@@ -227,7 +227,7 @@ cdef check_output(object out, object dtype, object size):
raise ValueError('Supplied output array is not contiguous, writable or aligned.')
if out_array.dtype != dtype:
raise TypeError('Supplied output array has the wrong type. '
- 'Expected {0}, got {0}'.format(dtype, out_array.dtype))
+ 'Expected {0}, got {1}'.format(np.dtype(dtype), out_array.dtype))
if size is not None:
try:
tup_size = tuple(size)
diff --git a/numpy/random/entropy.pyx b/numpy/random/entropy.pyx
deleted file mode 100644
index 95bf7c177..000000000
--- a/numpy/random/entropy.pyx
+++ /dev/null
@@ -1,155 +0,0 @@
-cimport numpy as np
-import numpy as np
-
-from libc.stdint cimport uint32_t, uint64_t
-
-__all__ = ['random_entropy', 'seed_by_array']
-
-np.import_array()
-
-cdef extern from "src/splitmix64/splitmix64.h":
- cdef uint64_t splitmix64_next(uint64_t *state) nogil
-
-cdef extern from "src/entropy/entropy.h":
- cdef bint entropy_getbytes(void* dest, size_t size)
- cdef bint entropy_fallback_getbytes(void *dest, size_t size)
-
-cdef Py_ssize_t compute_numel(size):
- cdef Py_ssize_t i, n = 1
- if isinstance(size, tuple):
- for i in range(len(size)):
- n *= size[i]
- else:
- n = size
- return n
-
-
-def seed_by_array(object seed, Py_ssize_t n):
- """
- Transforms a seed array into an initial state
-
- Parameters
- ----------
- seed: ndarray, 1d, uint64
- Array to use. If seed is a scalar, promote to array.
- n : int
- Number of 64-bit unsigned integers required
-
- Notes
- -----
- Uses splitmix64 to perform the transformation
- """
- cdef uint64_t seed_copy = 0
- cdef uint64_t[::1] seed_array
- cdef uint64_t[::1] initial_state
- cdef Py_ssize_t seed_size, iter_bound
- cdef int i, loc = 0
-
- if hasattr(seed, 'squeeze'):
- seed = seed.squeeze()
- arr = np.asarray(seed)
- if arr.shape == ():
- err_msg = 'Scalar seeds must be integers between 0 and 2**64 - 1'
- if not np.isreal(arr):
- raise TypeError(err_msg)
- int_seed = int(seed)
- if int_seed != seed:
- raise TypeError(err_msg)
- if int_seed < 0 or int_seed > 2**64 - 1:
- raise ValueError(err_msg)
- seed_array = np.array([int_seed], dtype=np.uint64)
- elif issubclass(arr.dtype.type, np.inexact):
- raise TypeError('seed array must be integers')
- else:
- err_msg = "Seed values must be integers between 0 and 2**64 - 1"
- obj = np.asarray(seed).astype(np.object)
- if obj.ndim != 1:
- raise ValueError('Array-valued seeds must be 1-dimensional')
- if not np.isreal(obj).all():
- raise TypeError(err_msg)
- if ((obj > int(2**64 - 1)) | (obj < 0)).any():
- raise ValueError(err_msg)
- try:
- obj_int = obj.astype(np.uint64, casting='unsafe')
- except ValueError:
- raise ValueError(err_msg)
- if not (obj == obj_int).all():
- raise TypeError(err_msg)
- seed_array = obj_int
-
- seed_size = seed_array.shape[0]
- iter_bound = n if n > seed_size else seed_size
-
- initial_state = <np.ndarray>np.empty(n, dtype=np.uint64)
- for i in range(iter_bound):
- if i < seed_size:
- seed_copy ^= seed_array[i]
- initial_state[loc] = splitmix64_next(&seed_copy)
- loc += 1
- if loc == n:
- loc = 0
-
- return np.array(initial_state)
-
-
-def random_entropy(size=None, source='system'):
- """
- random_entropy(size=None, source='system')
-
- Read entropy from the system cryptographic provider
-
- Parameters
- ----------
- size : int or tuple of ints, optional
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- source : str {'system', 'fallback'}
- Source of entropy. 'system' uses system cryptographic pool.
- 'fallback' uses a hash of the time and process id.
-
- Returns
- -------
- entropy : scalar or array
- Entropy bits in 32-bit unsigned integers. A scalar is returned if size
- is `None`.
-
- Notes
- -----
- On Unix-like machines, reads from ``/dev/urandom``. On Windows machines
- reads from the RSA algorithm provided by the cryptographic service
- provider.
-
- This function reads from the system entropy pool and so samples are
- not reproducible. In particular, it does *NOT* make use of a
- BitGenerator, and so ``seed`` and setting ``state`` have no
- effect.
-
- Raises RuntimeError if the command fails.
- """
- cdef bint success = True
- cdef Py_ssize_t n = 0
- cdef uint32_t random = 0
- cdef uint32_t [:] randoms
-
- if source not in ('system', 'fallback'):
- raise ValueError('Unknown value in source.')
-
- if size is None:
- if source == 'system':
- success = entropy_getbytes(<void *>&random, 4)
- else:
- success = entropy_fallback_getbytes(<void *>&random, 4)
- else:
- n = compute_numel(size)
- randoms = np.zeros(n, dtype=np.uint32)
- if source == 'system':
- success = entropy_getbytes(<void *>(&randoms[0]), 4 * n)
- else:
- success = entropy_fallback_getbytes(<void *>(&randoms[0]), 4 * n)
- if not success:
- raise RuntimeError('Unable to read from system cryptographic provider')
-
- if n == 0:
- return random
- return np.asarray(randoms).reshape(size)
diff --git a/numpy/random/generator.pyx b/numpy/random/generator.pyx
index c7432d8c1..37ac57c06 100644
--- a/numpy/random/generator.pyx
+++ b/numpy/random/generator.pyx
@@ -4,6 +4,7 @@ import operator
import warnings
import numpy as np
+from numpy.core.multiarray import normalize_axis_index
from .bounded_integers import _integers_types
from .pcg64 import PCG64
@@ -3783,20 +3784,21 @@ cdef class Generator:
return diric
# Shuffling and permutations:
- def shuffle(self, object x):
+ def shuffle(self, object x, axis=0):
"""
shuffle(x)
Modify a sequence in-place by shuffling its contents.
- This function only shuffles the array along the first axis of a
- multi-dimensional array. The order of sub-arrays is changed but
- their contents remains the same.
+ The order of sub-arrays is changed but their contents remains the same.
Parameters
----------
x : array_like
The array or list to be shuffled.
+ axis : int, optional
+ The axis which `x` is shuffled along. Default is 0.
+ It is only supported on `ndarray` objects.
Returns
-------
@@ -3810,8 +3812,6 @@ cdef class Generator:
>>> arr
[1 7 5 2 9 4 3 6 0 8] # random
- Multi-dimensional arrays are only shuffled along the first axis:
-
>>> arr = np.arange(9).reshape((3, 3))
>>> rng.shuffle(arr)
>>> arr
@@ -3819,17 +3819,25 @@ cdef class Generator:
[6, 7, 8],
[0, 1, 2]])
+ >>> arr = np.arange(9).reshape((3, 3))
+ >>> rng.shuffle(arr, axis=1)
+ >>> arr
+ array([[2, 0, 1], # random
+ [5, 3, 4],
+ [8, 6, 7]])
"""
cdef:
np.npy_intp i, j, n = len(x), stride, itemsize
char* x_ptr
char* buf_ptr
+ axis = normalize_axis_index(axis, np.ndim(x))
+
if type(x) is np.ndarray and x.ndim == 1 and x.size:
# Fast, statically typed path: shuffle the underlying buffer.
# Only for non-empty, 1d objects of class ndarray (subclasses such
# as MaskedArrays may not support this approach).
- x_ptr = <char*><size_t>x.ctypes.data
+ x_ptr = <char*><size_t>np.PyArray_DATA(x)
stride = x.strides[0]
itemsize = x.dtype.itemsize
# As the array x could contain python objects we use a buffer
@@ -3837,7 +3845,7 @@ cdef class Generator:
# within the buffer and erroneously decrementing it's refcount
# when the function exits.
buf = np.empty(itemsize, dtype=np.int8) # GC'd at function exit
- buf_ptr = <char*><size_t>buf.ctypes.data
+ buf_ptr = <char*><size_t>np.PyArray_DATA(buf)
with self.lock:
# We trick gcc into providing a specialized implementation for
# the most common case, yielding a ~33% performance improvement.
@@ -3847,6 +3855,7 @@ cdef class Generator:
else:
self._shuffle_raw(n, 1, itemsize, stride, x_ptr, buf_ptr)
elif isinstance(x, np.ndarray) and x.ndim and x.size:
+ x = np.swapaxes(x, 0, axis)
buf = np.empty_like(x[0, ...])
with self.lock:
for i in reversed(range(1, n)):
@@ -3859,6 +3868,9 @@ cdef class Generator:
x[i] = buf
else:
# Untyped path.
+ if axis != 0:
+ raise NotImplementedError("Axis argument is only supported "
+ "on ndarray objects")
with self.lock:
for i in reversed(range(1, n)):
j = random_interval(&self._bitgen, i)
@@ -3914,21 +3926,20 @@ cdef class Generator:
data[j] = data[i]
data[i] = temp
- def permutation(self, object x):
+ def permutation(self, object x, axis=0):
"""
permutation(x)
Randomly permute a sequence, or return a permuted range.
- If `x` is a multi-dimensional array, it is only shuffled along its
- first index.
-
Parameters
----------
x : int or array_like
If `x` is an integer, randomly permute ``np.arange(x)``.
If `x` is an array, make a copy and shuffle the elements
randomly.
+ axis : int, optional
+ The axis which `x` is shuffled along. Default is 0.
Returns
-------
@@ -3950,6 +3961,17 @@ cdef class Generator:
[0, 1, 2],
[3, 4, 5]])
+ >>> rng.permutation("abc")
+ Traceback (most recent call last):
+ ...
+ numpy.AxisError: x must be an integer or at least 1-dimensional
+
+ >>> arr = np.arange(9).reshape((3, 3))
+ >>> rng.permutation(arr, axis=1)
+ array([[0, 2, 1], # random
+ [3, 5, 4],
+ [6, 8, 7]])
+
"""
if isinstance(x, (int, np.integer)):
arr = np.arange(x)
@@ -3958,6 +3980,8 @@ cdef class Generator:
arr = np.asarray(x)
+ axis = normalize_axis_index(axis, arr.ndim)
+
# shuffle has fast-path for 1-d
if arr.ndim == 1:
# Return a copy if same memory
@@ -3967,9 +3991,11 @@ cdef class Generator:
return arr
# Shuffle index array, dtype to ensure fast path
- idx = np.arange(arr.shape[0], dtype=np.intp)
+ idx = np.arange(arr.shape[axis], dtype=np.intp)
self.shuffle(idx)
- return arr[idx]
+ slices = [slice(None)]*arr.ndim
+ slices[axis] = idx
+ return arr[tuple(slices)]
def default_rng(seed=None):
diff --git a/numpy/random/info.py b/numpy/random/info.py
deleted file mode 100644
index b9fd7f26a..000000000
--- a/numpy/random/info.py
+++ /dev/null
@@ -1,5 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-from .. import __doc__
-
-depends = ['core']
diff --git a/numpy/random/legacy_distributions.pxd b/numpy/random/legacy_distributions.pxd
index 7ba058054..c681388db 100644
--- a/numpy/random/legacy_distributions.pxd
+++ b/numpy/random/legacy_distributions.pxd
@@ -34,6 +34,8 @@ cdef extern from "legacy-distributions.h":
double nonc) nogil
double legacy_wald(aug_bitgen_t *aug_state, double mean, double scale) nogil
double legacy_lognormal(aug_bitgen_t *aug_state, double mean, double sigma) nogil
+ int64_t legacy_random_binomial(bitgen_t *bitgen_state, double p,
+ int64_t n, binomial_t *binomial) nogil
int64_t legacy_negative_binomial(aug_bitgen_t *aug_state, double n, double p) nogil
int64_t legacy_random_hypergeometric(bitgen_t *bitgen_state, int64_t good, int64_t bad, int64_t sample) nogil
int64_t legacy_random_logseries(bitgen_t *bitgen_state, double p) nogil
diff --git a/numpy/random/mt19937.pyx b/numpy/random/mt19937.pyx
index 49c3622f5..7d0f6cd22 100644
--- a/numpy/random/mt19937.pyx
+++ b/numpy/random/mt19937.pyx
@@ -5,7 +5,6 @@ cimport numpy as np
from .common cimport *
from .bit_generator cimport BitGenerator, SeedSequence
-from .entropy import random_entropy
__all__ = ['MT19937']
@@ -156,7 +155,8 @@ cdef class MT19937(BitGenerator):
Random seed initializing the pseudo-random number generator.
Can be an integer in [0, 2**32-1], array of integers in
[0, 2**32-1], a `SeedSequence, or ``None``. If `seed`
- is ``None``, then sample entropy for a seed.
+ is ``None``, then fresh, unpredictable entropy will be pulled from
+ the OS.
Raises
------
@@ -167,7 +167,8 @@ cdef class MT19937(BitGenerator):
with self.lock:
try:
if seed is None:
- val = random_entropy(RK_STATE_LEN)
+ seed = SeedSequence()
+ val = seed.generate_state(RK_STATE_LEN)
# MSB is 1; assuring non-zero initial array
self.rng_state.key[0] = 0x80000000UL
for i in range(1, RK_STATE_LEN):
diff --git a/numpy/random/mtrand.pyx b/numpy/random/mtrand.pyx
index 46b6b3388..c469a4645 100644
--- a/numpy/random/mtrand.pyx
+++ b/numpy/random/mtrand.pyx
@@ -83,8 +83,8 @@ cdef class RandomState:
See Also
--------
Generator
- mt19937.MT19937
- Bit_Generators
+ MT19937
+ :ref:`bit_generator`
"""
cdef public object _bit_generator
@@ -3086,7 +3086,9 @@ cdef class RandomState:
for i in range(cnt):
_dp = (<double*>np.PyArray_MultiIter_DATA(it, 1))[0]
_in = (<long*>np.PyArray_MultiIter_DATA(it, 2))[0]
- (<long*>np.PyArray_MultiIter_DATA(it, 0))[0] = random_binomial(&self._bitgen, _dp, _in, &self._binomial)
+ (<long*>np.PyArray_MultiIter_DATA(it, 0))[0] = \
+ legacy_random_binomial(&self._bitgen, _dp, _in,
+ &self._binomial)
np.PyArray_MultiIter_NEXT(it)
@@ -3099,7 +3101,8 @@ cdef class RandomState:
if size is None:
with self.lock:
- return random_binomial(&self._bitgen, _dp, _in, &self._binomial)
+ return <long>legacy_random_binomial(&self._bitgen, _dp, _in,
+ &self._binomial)
randoms = <np.ndarray>np.empty(size, int)
cnt = np.PyArray_SIZE(randoms)
@@ -3107,8 +3110,8 @@ cdef class RandomState:
with self.lock, nogil:
for i in range(cnt):
- randoms_data[i] = random_binomial(&self._bitgen, _dp, _in,
- &self._binomial)
+ randoms_data[i] = legacy_random_binomial(&self._bitgen, _dp, _in,
+ &self._binomial)
return randoms
@@ -3517,7 +3520,7 @@ cdef class RandomState:
# Convert to int64, if necessary, to use int64 infrastructure
ongood = ongood.astype(np.int64)
onbad = onbad.astype(np.int64)
- onbad = onbad.astype(np.int64)
+ onsample = onsample.astype(np.int64)
out = discrete_broadcast_iii(&legacy_random_hypergeometric,&self._bitgen, size, self.lock,
ongood, 'ngood', CONS_NON_NEGATIVE,
onbad, 'nbad', CONS_NON_NEGATIVE,
@@ -4070,7 +4073,7 @@ cdef class RandomState:
# Fast, statically typed path: shuffle the underlying buffer.
# Only for non-empty, 1d objects of class ndarray (subclasses such
# as MaskedArrays may not support this approach).
- x_ptr = <char*><size_t>x.ctypes.data
+ x_ptr = <char*><size_t>np.PyArray_DATA(x)
stride = x.strides[0]
itemsize = x.dtype.itemsize
# As the array x could contain python objects we use a buffer
@@ -4078,7 +4081,7 @@ cdef class RandomState:
# within the buffer and erroneously decrementing it's refcount
# when the function exits.
buf = np.empty(itemsize, dtype=np.int8) # GC'd at function exit
- buf_ptr = <char*><size_t>buf.ctypes.data
+ buf_ptr = <char*><size_t>np.PyArray_DATA(buf)
with self.lock:
# We trick gcc into providing a specialized implementation for
# the most common case, yielding a ~33% performance improvement.
@@ -4134,6 +4137,7 @@ cdef class RandomState:
out : ndarray
Permuted sequence or array range.
+
Examples
--------
>>> np.random.permutation(10)
@@ -4149,12 +4153,15 @@ cdef class RandomState:
[3, 4, 5]])
"""
+
if isinstance(x, (int, np.integer)):
arr = np.arange(x)
self.shuffle(arr)
return arr
arr = np.asarray(x)
+ if arr.ndim < 1:
+ raise IndexError("x must be an integer or at least 1-dimensional")
# shuffle has fast-path for 1-d
if arr.ndim == 1:
diff --git a/numpy/random/setup.py b/numpy/random/setup.py
index a1bf3b83c..ce7f0565f 100644
--- a/numpy/random/setup.py
+++ b/numpy/random/setup.py
@@ -34,8 +34,6 @@ def configuration(parent_package='', top_path=None):
defs.append(('NPY_NO_DEPRECATED_API', 0))
config.add_data_dir('tests')
- config.add_data_files('common.pxd')
- config.add_data_files('bit_generator.pxd')
EXTRA_LINK_ARGS = []
# Math lib
@@ -49,8 +47,8 @@ def configuration(parent_package='', top_path=None):
elif not is_msvc:
# Some bit generators require c99
EXTRA_COMPILE_ARGS += ['-std=c99']
- INTEL_LIKE = any([val in k.lower() for k in platform.uname()
- for val in ('x86', 'i686', 'i386', 'amd64')])
+ INTEL_LIKE = any(arch in platform.machine()
+ for arch in ('x86', 'i686', 'i386', 'amd64'))
if INTEL_LIKE:
# Assumes GCC or GCC-like compiler
EXTRA_COMPILE_ARGS += ['-msse2']
@@ -61,18 +59,6 @@ def configuration(parent_package='', top_path=None):
# One can force emulated 128-bit arithmetic if one wants.
#PCG64_DEFS += [('PCG_FORCE_EMULATED_128BIT_MATH', '1')]
- config.add_extension('entropy',
- sources=['entropy.c', 'src/entropy/entropy.c'] +
- [generate_libraries],
- libraries=EXTRA_LIBRARIES,
- extra_compile_args=EXTRA_COMPILE_ARGS,
- extra_link_args=EXTRA_LINK_ARGS,
- depends=[join('src', 'splitmix64', 'splitmix.h'),
- join('src', 'entropy', 'entropy.h'),
- 'entropy.pyx',
- ],
- define_macros=defs,
- )
for gen in ['mt19937']:
# gen.pyx, src/gen/gen.c, src/gen/gen-jump.c
config.add_extension(gen,
diff --git a/numpy/core/include/numpy/random/bitgen.h b/numpy/random/src/bitgen.h
index 0adaaf2ee..0adaaf2ee 100644
--- a/numpy/core/include/numpy/random/bitgen.h
+++ b/numpy/random/src/bitgen.h
diff --git a/numpy/random/src/distributions/distributions.c b/numpy/random/src/distributions/distributions.c
index 65257ecbf..1244ffe65 100644
--- a/numpy/random/src/distributions/distributions.c
+++ b/numpy/random/src/distributions/distributions.c
@@ -901,8 +901,8 @@ RAND_INT_TYPE random_binomial_inversion(bitgen_t *bitgen_state, RAND_INT_TYPE n,
return X;
}
-RAND_INT_TYPE random_binomial(bitgen_t *bitgen_state, double p, RAND_INT_TYPE n,
- binomial_t *binomial) {
+int64_t random_binomial(bitgen_t *bitgen_state, double p, int64_t n,
+ binomial_t *binomial) {
double q;
if ((n == 0LL) || (p == 0.0f))
@@ -1478,7 +1478,7 @@ uint64_t random_bounded_uint64(bitgen_t *bitgen_state, uint64_t off,
uint64_t rng, uint64_t mask, bool use_masked) {
if (rng == 0) {
return off;
- } else if (rng < 0xFFFFFFFFUL) {
+ } else if (rng <= 0xFFFFFFFFUL) {
/* Call 32-bit generator if range in 32-bit. */
if (use_masked) {
return off + buffered_bounded_masked_uint32(bitgen_state, rng, mask, NULL,
@@ -1592,7 +1592,7 @@ void random_bounded_uint64_fill(bitgen_t *bitgen_state, uint64_t off,
for (i = 0; i < cnt; i++) {
out[i] = off;
}
- } else if (rng < 0xFFFFFFFFUL) {
+ } else if (rng <= 0xFFFFFFFFUL) {
uint32_t buf = 0;
int bcnt = 0;
diff --git a/numpy/random/src/distributions/distributions.h b/numpy/random/src/distributions/distributions.h
index c8cdfd20f..2a6b2a045 100644
--- a/numpy/random/src/distributions/distributions.h
+++ b/numpy/random/src/distributions/distributions.h
@@ -1,15 +1,14 @@
#ifndef _RANDOMDGEN__DISTRIBUTIONS_H_
#define _RANDOMDGEN__DISTRIBUTIONS_H_
-#pragma once
+#include "Python.h"
+#include "numpy/npy_common.h"
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
-#include "Python.h"
-#include "numpy/npy_common.h"
#include "numpy/npy_math.h"
-#include "numpy/random/bitgen.h"
+#include "src/bitgen.h"
/*
* RAND_INT_TYPE is used to share integer generators with RandomState which
@@ -43,11 +42,11 @@
typedef struct s_binomial_t {
int has_binomial; /* !=0: following parameters initialized for binomial */
double psave;
- int64_t nsave;
+ RAND_INT_TYPE nsave;
double r;
double q;
double fm;
- int64_t m;
+ RAND_INT_TYPE m;
double p1;
double xm;
double xl;
@@ -148,8 +147,18 @@ DECLDIR double random_triangular(bitgen_t *bitgen_state, double left, double mod
DECLDIR RAND_INT_TYPE random_poisson(bitgen_t *bitgen_state, double lam);
DECLDIR RAND_INT_TYPE random_negative_binomial(bitgen_t *bitgen_state, double n,
double p);
-DECLDIR RAND_INT_TYPE random_binomial(bitgen_t *bitgen_state, double p, RAND_INT_TYPE n,
- binomial_t *binomial);
+
+DECLDIR RAND_INT_TYPE random_binomial_btpe(bitgen_t *bitgen_state,
+ RAND_INT_TYPE n,
+ double p,
+ binomial_t *binomial);
+DECLDIR RAND_INT_TYPE random_binomial_inversion(bitgen_t *bitgen_state,
+ RAND_INT_TYPE n,
+ double p,
+ binomial_t *binomial);
+DECLDIR int64_t random_binomial(bitgen_t *bitgen_state, double p,
+ int64_t n, binomial_t *binomial);
+
DECLDIR RAND_INT_TYPE random_logseries(bitgen_t *bitgen_state, double p);
DECLDIR RAND_INT_TYPE random_geometric_search(bitgen_t *bitgen_state, double p);
DECLDIR RAND_INT_TYPE random_geometric_inversion(bitgen_t *bitgen_state, double p);
diff --git a/numpy/random/src/distributions/random_hypergeometric.c b/numpy/random/src/distributions/random_hypergeometric.c
index 59a3a4b9b..94dc6380f 100644
--- a/numpy/random/src/distributions/random_hypergeometric.c
+++ b/numpy/random/src/distributions/random_hypergeometric.c
@@ -1,6 +1,6 @@
-#include <stdint.h>
#include "distributions.h"
#include "logfactorial.h"
+#include <stdint.h>
/*
* Generate a sample from the hypergeometric distribution.
diff --git a/numpy/random/src/entropy/entropy.c b/numpy/random/src/entropy/entropy.c
deleted file mode 100644
index eaca37a9c..000000000
--- a/numpy/random/src/entropy/entropy.c
+++ /dev/null
@@ -1,114 +0,0 @@
-#include <stddef.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "entropy.h"
-#ifdef _WIN32
-/* Windows */
-#include <sys/timeb.h>
-#include <time.h>
-#include <windows.h>
-
-#include <wincrypt.h>
-#else
-/* Unix */
-#include <sys/time.h>
-#include <time.h>
-#include <unistd.h>
-#include <fcntl.h>
-#endif
-
-bool entropy_getbytes(void *dest, size_t size) {
-#ifndef _WIN32
-
- int fd = open("/dev/urandom", O_RDONLY);
- if (fd < 0)
- return false;
- ssize_t sz = read(fd, dest, size);
- if ((sz < 0) || ((size_t)sz < size))
- return false;
- return close(fd) == 0;
-
-#else
-
- HCRYPTPROV hCryptProv;
- BOOL done;
-
- if (!CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL,
- CRYPT_VERIFYCONTEXT) ||
- !hCryptProv) {
- return true;
- }
- done = CryptGenRandom(hCryptProv, (DWORD)size, (unsigned char *)dest);
- CryptReleaseContext(hCryptProv, 0);
- if (!done) {
- return false;
- }
-
- return true;
-#endif
-}
-
-/* Thomas Wang 32/64 bits integer hash function */
-uint32_t entropy_hash_32(uint32_t key) {
- key += ~(key << 15);
- key ^= (key >> 10);
- key += (key << 3);
- key ^= (key >> 6);
- key += ~(key << 11);
- key ^= (key >> 16);
- return key;
-}
-
-uint64_t entropy_hash_64(uint64_t key) {
- key = (~key) + (key << 21); // key = (key << 21) - key - 1;
- key = key ^ (key >> 24);
- key = (key + (key << 3)) + (key << 8); // key * 265
- key = key ^ (key >> 14);
- key = (key + (key << 2)) + (key << 4); // key * 21
- key = key ^ (key >> 28);
- key = key + (key << 31);
- return key;
-}
-
-uint32_t entropy_randombytes(void) {
-
-#ifndef _WIN32
- struct timeval tv;
- gettimeofday(&tv, NULL);
- return entropy_hash_32(getpid()) ^ entropy_hash_32(tv.tv_sec) ^
- entropy_hash_32(tv.tv_usec) ^ entropy_hash_32(clock());
-#else
- uint32_t out = 0;
- int64_t counter;
- struct _timeb tv;
- _ftime_s(&tv);
- out = entropy_hash_32(GetCurrentProcessId()) ^
- entropy_hash_32((uint32_t)tv.time) ^ entropy_hash_32(tv.millitm) ^
- entropy_hash_32(clock());
- if (QueryPerformanceCounter((LARGE_INTEGER *)&counter) != 0)
- out ^= entropy_hash_32((uint32_t)(counter & 0xffffffff));
- return out;
-#endif
-}
-
-bool entropy_fallback_getbytes(void *dest, size_t size) {
- int hashes = (int)size;
- uint32_t *hash = malloc(hashes * sizeof(uint32_t));
- int i;
- for (i = 0; i < hashes; i++) {
- hash[i] = entropy_randombytes();
- }
- memcpy(dest, (void *)hash, size);
- free(hash);
- return true;
-}
-
-void entropy_fill(void *dest, size_t size) {
- bool success;
- success = entropy_getbytes(dest, size);
- if (!success) {
- entropy_fallback_getbytes(dest, size);
- }
-}
diff --git a/numpy/random/src/entropy/entropy.h b/numpy/random/src/entropy/entropy.h
deleted file mode 100644
index f00caf61d..000000000
--- a/numpy/random/src/entropy/entropy.h
+++ /dev/null
@@ -1,14 +0,0 @@
-#ifndef _RANDOMDGEN__ENTROPY_H_
-#define _RANDOMDGEN__ENTROPY_H_
-
-#include <stddef.h>
-#include <stdbool.h>
-#include <stdint.h>
-
-extern void entropy_fill(void *dest, size_t size);
-
-extern bool entropy_getbytes(void *dest, size_t size);
-
-extern bool entropy_fallback_getbytes(void *dest, size_t size);
-
-#endif
diff --git a/numpy/random/src/legacy/legacy-distributions.c b/numpy/random/src/legacy/legacy-distributions.c
index 4741a0352..684b3d762 100644
--- a/numpy/random/src/legacy/legacy-distributions.c
+++ b/numpy/random/src/legacy/legacy-distributions.c
@@ -215,6 +215,37 @@ double legacy_exponential(aug_bitgen_t *aug_state, double scale) {
}
+static RAND_INT_TYPE legacy_random_binomial_original(bitgen_t *bitgen_state,
+ double p,
+ RAND_INT_TYPE n,
+ binomial_t *binomial) {
+ double q;
+
+ if (p <= 0.5) {
+ if (p * n <= 30.0) {
+ return random_binomial_inversion(bitgen_state, n, p, binomial);
+ } else {
+ return random_binomial_btpe(bitgen_state, n, p, binomial);
+ }
+ } else {
+ q = 1.0 - p;
+ if (q * n <= 30.0) {
+ return n - random_binomial_inversion(bitgen_state, n, q, binomial);
+ } else {
+ return n - random_binomial_btpe(bitgen_state, n, q, binomial);
+ }
+ }
+}
+
+
+int64_t legacy_random_binomial(bitgen_t *bitgen_state, double p,
+ int64_t n, binomial_t *binomial) {
+ return (int64_t) legacy_random_binomial_original(bitgen_state, p,
+ (RAND_INT_TYPE) n,
+ binomial);
+}
+
+
static RAND_INT_TYPE random_hypergeometric_hyp(bitgen_t *bitgen_state,
RAND_INT_TYPE good,
RAND_INT_TYPE bad,
diff --git a/numpy/random/src/legacy/legacy-distributions.h b/numpy/random/src/legacy/legacy-distributions.h
index 005c4e5d2..4bc15d58e 100644
--- a/numpy/random/src/legacy/legacy-distributions.h
+++ b/numpy/random/src/legacy/legacy-distributions.h
@@ -16,26 +16,23 @@ extern double legacy_pareto(aug_bitgen_t *aug_state, double a);
extern double legacy_weibull(aug_bitgen_t *aug_state, double a);
extern double legacy_power(aug_bitgen_t *aug_state, double a);
extern double legacy_gamma(aug_bitgen_t *aug_state, double shape, double scale);
-extern double legacy_pareto(aug_bitgen_t *aug_state, double a);
-extern double legacy_weibull(aug_bitgen_t *aug_state, double a);
extern double legacy_chisquare(aug_bitgen_t *aug_state, double df);
extern double legacy_noncentral_chisquare(aug_bitgen_t *aug_state, double df,
double nonc);
-
extern double legacy_noncentral_f(aug_bitgen_t *aug_state, double dfnum,
double dfden, double nonc);
extern double legacy_wald(aug_bitgen_t *aug_state, double mean, double scale);
extern double legacy_lognormal(aug_bitgen_t *aug_state, double mean,
double sigma);
extern double legacy_standard_t(aug_bitgen_t *aug_state, double df);
-extern int64_t legacy_negative_binomial(aug_bitgen_t *aug_state, double n,
- double p);
extern double legacy_standard_cauchy(aug_bitgen_t *state);
extern double legacy_beta(aug_bitgen_t *aug_state, double a, double b);
extern double legacy_f(aug_bitgen_t *aug_state, double dfnum, double dfden);
extern double legacy_normal(aug_bitgen_t *aug_state, double loc, double scale);
extern double legacy_standard_gamma(aug_bitgen_t *aug_state, double shape);
extern double legacy_exponential(aug_bitgen_t *aug_state, double scale);
+extern int64_t legacy_random_binomial(bitgen_t *bitgen_state, double p,
+ int64_t n, binomial_t *binomial);
extern int64_t legacy_negative_binomial(aug_bitgen_t *aug_state, double n,
double p);
extern int64_t legacy_random_hypergeometric(bitgen_t *bitgen_state,
diff --git a/numpy/random/src/philox/philox.h b/numpy/random/src/philox/philox.h
index 309d89eae..c72424a97 100644
--- a/numpy/random/src/philox/philox.h
+++ b/numpy/random/src/philox/philox.h
@@ -1,8 +1,8 @@
#ifndef _RANDOMDGEN__PHILOX_H_
#define _RANDOMDGEN__PHILOX_H_
-#include <inttypes.h>
#include "numpy/npy_common.h"
+#include <inttypes.h>
#define PHILOX_BUFFER_SIZE 4L
diff --git a/numpy/random/src/sfc64/sfc64.h b/numpy/random/src/sfc64/sfc64.h
index 6674ae69c..75c4118d3 100644
--- a/numpy/random/src/sfc64/sfc64.h
+++ b/numpy/random/src/sfc64/sfc64.h
@@ -1,11 +1,11 @@
#ifndef _RANDOMDGEN__SFC64_H_
#define _RANDOMDGEN__SFC64_H_
+#include "numpy/npy_common.h"
#include <inttypes.h>
#ifdef _WIN32
#include <stdlib.h>
#endif
-#include "numpy/npy_common.h"
typedef struct s_sfc64_state {
uint64_t s[4];
diff --git a/numpy/random/tests/test_generator_mt19937.py b/numpy/random/tests/test_generator_mt19937.py
index a962fe84e..20bc10cd0 100644
--- a/numpy/random/tests/test_generator_mt19937.py
+++ b/numpy/random/tests/test_generator_mt19937.py
@@ -732,6 +732,20 @@ class TestRandomDist(object):
desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7])
assert_array_equal(actual, desired)
+ def test_shuffle_custom_axis(self):
+ random = Generator(MT19937(self.seed))
+ actual = np.arange(16).reshape((4, 4))
+ random.shuffle(actual, axis=1)
+ desired = np.array([[ 0, 3, 1, 2],
+ [ 4, 7, 5, 6],
+ [ 8, 11, 9, 10],
+ [12, 15, 13, 14]])
+ assert_array_equal(actual, desired)
+ random = Generator(MT19937(self.seed))
+ actual = np.arange(16).reshape((4, 4))
+ random.shuffle(actual, axis=-1)
+ assert_array_equal(actual, desired)
+
def test_shuffle_masked(self):
# gh-3263
a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
@@ -746,6 +760,16 @@ class TestRandomDist(object):
assert_equal(
sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
+ def test_shuffle_exceptions(self):
+ random = Generator(MT19937(self.seed))
+ arr = np.arange(10)
+ assert_raises(np.AxisError, random.shuffle, arr, 1)
+ arr = np.arange(9).reshape((3, 3))
+ assert_raises(np.AxisError, random.shuffle, arr, 3)
+ assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None))
+ arr = [[1, 2, 3], [4, 5, 6]]
+ assert_raises(NotImplementedError, random.shuffle, arr, 1)
+
def test_permutation(self):
random = Generator(MT19937(self.seed))
alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
@@ -757,6 +781,40 @@ class TestRandomDist(object):
arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
actual = random.permutation(arr_2d)
assert_array_equal(actual, np.atleast_2d(desired).T)
+
+ bad_x_str = "abcd"
+ assert_raises(np.AxisError, random.permutation, bad_x_str)
+
+ bad_x_float = 1.2
+ assert_raises(np.AxisError, random.permutation, bad_x_float)
+
+ random = Generator(MT19937(self.seed))
+ integer_val = 10
+ desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6]
+
+ actual = random.permutation(integer_val)
+ assert_array_equal(actual, desired)
+
+ def test_permutation_custom_axis(self):
+ a = np.arange(16).reshape((4, 4))
+ desired = np.array([[ 0, 3, 1, 2],
+ [ 4, 7, 5, 6],
+ [ 8, 11, 9, 10],
+ [12, 15, 13, 14]])
+ random = Generator(MT19937(self.seed))
+ actual = random.permutation(a, axis=1)
+ assert_array_equal(actual, desired)
+ random = Generator(MT19937(self.seed))
+ actual = random.permutation(a, axis=-1)
+ assert_array_equal(actual, desired)
+
+ def test_permutation_exceptions(self):
+ random = Generator(MT19937(self.seed))
+ arr = np.arange(10)
+ assert_raises(np.AxisError, random.permutation, arr, 1)
+ arr = np.arange(9).reshape((3, 3))
+ assert_raises(np.AxisError, random.permutation, arr, 3)
+ assert_raises(TypeError, random.permutation, arr, slice(1, 2, None))
def test_beta(self):
random = Generator(MT19937(self.seed))
diff --git a/numpy/random/tests/test_randomstate.py b/numpy/random/tests/test_randomstate.py
index 3b5a279a3..a0edc5c23 100644
--- a/numpy/random/tests/test_randomstate.py
+++ b/numpy/random/tests/test_randomstate.py
@@ -686,6 +686,21 @@ class TestRandomDist(object):
actual = random.permutation(arr_2d)
assert_array_equal(actual, np.atleast_2d(desired).T)
+ random.seed(self.seed)
+ bad_x_str = "abcd"
+ assert_raises(IndexError, random.permutation, bad_x_str)
+
+ random.seed(self.seed)
+ bad_x_float = 1.2
+ assert_raises(IndexError, random.permutation, bad_x_float)
+
+ integer_val = 10
+ desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2]
+
+ random.seed(self.seed)
+ actual = random.permutation(integer_val)
+ assert_array_equal(actual, desired)
+
def test_beta(self):
random.seed(self.seed)
actual = random.beta(.1, .9, size=(3, 2))
diff --git a/numpy/random/tests/test_randomstate_regression.py b/numpy/random/tests/test_randomstate_regression.py
index 29870534a..edf32ea97 100644
--- a/numpy/random/tests/test_randomstate_regression.py
+++ b/numpy/random/tests/test_randomstate_regression.py
@@ -181,3 +181,30 @@ class TestRegression(object):
assert c.dtype == np.dtype(int)
c = np.random.choice(10, replace=False, size=2)
assert c.dtype == np.dtype(int)
+
+ @pytest.mark.skipif(np.iinfo('l').max < 2**32,
+ reason='Cannot test with 32-bit C long')
+ def test_randint_117(self):
+ # GH 14189
+ random.seed(0)
+ expected = np.array([2357136044, 2546248239, 3071714933, 3626093760,
+ 2588848963, 3684848379, 2340255427, 3638918503,
+ 1819583497, 2678185683], dtype='int64')
+ actual = random.randint(2**32, size=10)
+ assert_array_equal(actual, expected)
+
+ def test_p_zero_stream(self):
+ # Regression test for gh-14522. Ensure that future versions
+ # generate the same variates as version 1.16.
+ np.random.seed(12345)
+ assert_array_equal(random.binomial(1, [0, 0.25, 0.5, 0.75, 1]),
+ [0, 0, 0, 1, 1])
+
+ def test_n_zero_stream(self):
+ # Regression test for gh-14522. Ensure that future versions
+ # generate the same variates as version 1.16.
+ np.random.seed(8675309)
+ expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [3, 4, 2, 3, 3, 1, 5, 3, 1, 3]])
+ assert_array_equal(random.binomial([[0], [10]], 0.25, size=(2, 10)),
+ expected)
diff --git a/numpy/random/tests/test_smoke.py b/numpy/random/tests/test_smoke.py
index 84d261e5e..6e641b5f4 100644
--- a/numpy/random/tests/test_smoke.py
+++ b/numpy/random/tests/test_smoke.py
@@ -5,7 +5,7 @@ from functools import partial
import numpy as np
import pytest
from numpy.testing import assert_equal, assert_, assert_array_equal
-from numpy.random import (Generator, MT19937, PCG64, Philox, SFC64, entropy)
+from numpy.random import (Generator, MT19937, PCG64, Philox, SFC64)
@pytest.fixture(scope='module',
params=(np.bool, np.int8, np.int16, np.int32, np.int64,
@@ -806,23 +806,3 @@ class TestDefaultRNG(RNG):
np.random.default_rng(-1)
with pytest.raises(ValueError):
np.random.default_rng([12345, -1])
-
-
-class TestEntropy(object):
- def test_entropy(self):
- e1 = entropy.random_entropy()
- e2 = entropy.random_entropy()
- assert_((e1 != e2))
- e1 = entropy.random_entropy(10)
- e2 = entropy.random_entropy(10)
- assert_((e1 != e2).all())
- e1 = entropy.random_entropy(10, source='system')
- e2 = entropy.random_entropy(10, source='system')
- assert_((e1 != e2).all())
-
- def test_fallback(self):
- e1 = entropy.random_entropy(source='fallback')
- time.sleep(0.1)
- e2 = entropy.random_entropy(source='fallback')
- assert_((e1 != e2))
-
diff --git a/numpy/testing/_private/parameterized.py b/numpy/testing/_private/parameterized.py
index a5fa4fb5e..489d8e09a 100644
--- a/numpy/testing/_private/parameterized.py
+++ b/numpy/testing/_private/parameterized.py
@@ -45,11 +45,18 @@ except ImportError:
from unittest import TestCase
-PY3 = sys.version_info[0] == 3
PY2 = sys.version_info[0] == 2
-if PY3:
+if PY2:
+ from types import InstanceType
+ lzip = zip
+ text_type = unicode
+ bytes_type = str
+ string_types = basestring,
+ def make_method(func, instance, type):
+ return MethodType(func, instance, type)
+else:
# Python 3 doesn't have an InstanceType, so just use a dummy type.
class InstanceType():
pass
@@ -61,14 +68,6 @@ if PY3:
if instance is None:
return func
return MethodType(func, instance)
-else:
- from types import InstanceType
- lzip = zip
- text_type = unicode
- bytes_type = str
- string_types = basestring,
- def make_method(func, instance, type):
- return MethodType(func, instance, type)
_param = namedtuple("param", "args kwargs")
diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py
index 87e66e06f..8a31fcf15 100644
--- a/numpy/testing/_private/utils.py
+++ b/numpy/testing/_private/utils.py
@@ -21,7 +21,6 @@ import pprint
from numpy.core import(
intp, float32, empty, arange, array_repr, ndarray, isnat, array)
-from numpy.lib.utils import deprecate
if sys.version_info[0] >= 3:
from io import StringIO
@@ -33,7 +32,7 @@ __all__ = [
'assert_array_equal', 'assert_array_less', 'assert_string_equal',
'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
- 'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure',
+ 'raises', 'rundocs', 'runstring', 'verbose', 'measure',
'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex',
'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings',
@@ -154,22 +153,6 @@ def gisinf(x):
return st
-@deprecate(message="numpy.testing.rand is deprecated in numpy 1.11. "
- "Use numpy.random.rand instead.")
-def rand(*args):
- """Returns an array of random numbers with the given shape.
-
- This only uses the standard library, so it is useful for testing purposes.
- """
- import random
- from numpy.core import zeros, float64
- results = zeros(args, float64)
- f = results.flat
- for i in range(len(f)):
- f[i] = random.random()
- return results
-
-
if os.name == 'nt':
# Code "stolen" from enthought/debug/memusage.py
def GetPerformanceAttributes(object, counter, instance=None,
@@ -703,7 +686,7 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
header='', precision=6, equal_nan=True,
equal_inf=True):
__tracebackhide__ = True # Hide traceback for py.test
- from numpy.core import array, array2string, isnan, inf, bool_, errstate
+ from numpy.core import array, array2string, isnan, inf, bool_, errstate, all, max, object_
x = array(x, copy=False, subok=True)
y = array(y, copy=False, subok=True)
@@ -804,15 +787,19 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
# do not trigger a failure (np.ma.masked != True evaluates as
# np.ma.masked, which is falsy).
if cond != True:
- mismatch = 100. * (reduced.size - reduced.sum(dtype=intp)) / ox.size
- remarks = ['Mismatch: {:.3g}%'.format(mismatch)]
+ n_mismatch = reduced.size - reduced.sum(dtype=intp)
+ n_elements = flagged.size if flagged.ndim != 0 else reduced.size
+ percent_mismatch = 100 * n_mismatch / n_elements
+ remarks = [
+ 'Mismatched elements: {} / {} ({:.3g}%)'.format(
+ n_mismatch, n_elements, percent_mismatch)]
with errstate(invalid='ignore', divide='ignore'):
# ignore errors for non-numeric types
with contextlib.suppress(TypeError):
error = abs(x - y)
- max_abs_error = error.max()
- if error.dtype == 'object':
+ max_abs_error = max(error)
+ if getattr(error, 'dtype', object_) == object_:
remarks.append('Max absolute difference: '
+ str(max_abs_error))
else:
@@ -821,8 +808,13 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
# note: this definition of relative error matches that one
# used by assert_allclose (found in np.isclose)
- max_rel_error = (error / abs(y)).max()
- if error.dtype == 'object':
+ # Filter values where the divisor would be zero
+ nonzero = bool_(y != 0)
+ if all(~nonzero):
+ max_rel_error = array(inf)
+ else:
+ max_rel_error = max(error[nonzero] / abs(y[nonzero]))
+ if getattr(error, 'dtype', object_) == object_:
remarks.append('Max relative difference: '
+ str(max_rel_error))
else:
diff --git a/numpy/testing/decorators.py b/numpy/testing/decorators.py
deleted file mode 100644
index bf78be500..000000000
--- a/numpy/testing/decorators.py
+++ /dev/null
@@ -1,15 +0,0 @@
-"""
-Back compatibility decorators module. It will import the appropriate
-set of tools
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import warnings
-
-# 2018-04-04, numpy 1.15.0
-warnings.warn("Importing from numpy.testing.decorators is deprecated "
- "since numpy 1.15.0, import from numpy.testing instead.",
- DeprecationWarning, stacklevel=2)
-
-from ._private.decorators import *
diff --git a/numpy/testing/noseclasses.py b/numpy/testing/noseclasses.py
deleted file mode 100644
index 5748a9a0f..000000000
--- a/numpy/testing/noseclasses.py
+++ /dev/null
@@ -1,14 +0,0 @@
-"""
-Back compatibility noseclasses module. It will import the appropriate
-set of tools
-"""
-from __future__ import division, absolute_import, print_function
-
-import warnings
-
-# 2018-04-04, numpy 1.15.0
-warnings.warn("Importing from numpy.testing.noseclasses is deprecated "
- "since 1.15.0, import from numpy.testing instead",
- DeprecationWarning, stacklevel=2)
-
-from ._private.noseclasses import *
diff --git a/numpy/testing/nosetester.py b/numpy/testing/nosetester.py
deleted file mode 100644
index 2ac212eee..000000000
--- a/numpy/testing/nosetester.py
+++ /dev/null
@@ -1,19 +0,0 @@
-"""
-Back compatibility nosetester module. It will import the appropriate
-set of tools
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import warnings
-
-# 2018-04-04, numpy 1.15.0
-warnings.warn("Importing from numpy.testing.nosetester is deprecated "
- "since 1.15.0, import from numpy.testing instead.",
- DeprecationWarning, stacklevel=2)
-
-from ._private.nosetester import *
-
-__all__ = ['get_package_name', 'run_module_suite', 'NoseTester',
- '_numpy_tester', 'get_package_name', 'import_nose',
- 'suppress_warnings']
diff --git a/numpy/testing/print_coercion_tables.py b/numpy/testing/print_coercion_tables.py
index 3a359f472..72b22cee1 100755
--- a/numpy/testing/print_coercion_tables.py
+++ b/numpy/testing/print_coercion_tables.py
@@ -70,22 +70,24 @@ def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray,
print(char, end=' ')
print()
-print("can cast")
-print_cancast_table(np.typecodes['All'])
-print()
-print("In these tables, ValueError is '!', OverflowError is '@', TypeError is '#'")
-print()
-print("scalar + scalar")
-print_coercion_table(np.typecodes['All'], 0, 0, False)
-print()
-print("scalar + neg scalar")
-print_coercion_table(np.typecodes['All'], 0, -1, False)
-print()
-print("array + scalar")
-print_coercion_table(np.typecodes['All'], 0, 0, True)
-print()
-print("array + neg scalar")
-print_coercion_table(np.typecodes['All'], 0, -1, True)
-print()
-print("promote_types")
-print_coercion_table(np.typecodes['All'], 0, 0, False, True)
+
+if __name__ == '__main__':
+ print("can cast")
+ print_cancast_table(np.typecodes['All'])
+ print()
+ print("In these tables, ValueError is '!', OverflowError is '@', TypeError is '#'")
+ print()
+ print("scalar + scalar")
+ print_coercion_table(np.typecodes['All'], 0, 0, False)
+ print()
+ print("scalar + neg scalar")
+ print_coercion_table(np.typecodes['All'], 0, -1, False)
+ print()
+ print("array + scalar")
+ print_coercion_table(np.typecodes['All'], 0, 0, True)
+ print()
+ print("array + neg scalar")
+ print_coercion_table(np.typecodes['All'], 0, -1, True)
+ print()
+ print("promote_types")
+ print_coercion_table(np.typecodes['All'], 0, 0, False, True)
diff --git a/numpy/testing/tests/test_utils.py b/numpy/testing/tests/test_utils.py
index bf60772d3..44f93a693 100644
--- a/numpy/testing/tests/test_utils.py
+++ b/numpy/testing/tests/test_utils.py
@@ -520,7 +520,7 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y, decimal=12)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 100%')
+ assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)')
assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
assert_equal(
@@ -536,7 +536,7 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 33.3%')
+ assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)')
assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])')
@@ -548,7 +548,7 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 50%')
+ assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)')
assert_equal(msgs[4], 'Max absolute difference: 1.')
assert_equal(msgs[5], 'Max relative difference: 1.')
assert_equal(msgs[6], ' x: array([inf, 0.])')
@@ -560,10 +560,30 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 100%')
+ assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)')
assert_equal(msgs[4], 'Max absolute difference: 2')
assert_equal(msgs[5], 'Max relative difference: inf')
+ def test_error_message_2(self):
+ """Check the message is formatted correctly when either x or y is a scalar."""
+ x = 2
+ y = np.ones(20)
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 1.')
+
+ y = 2
+ x = np.ones(20)
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 0.5')
+
def test_subclass_that_cannot_be_bool(self):
# While we cannot guarantee testing functions will always work for
# subclasses, the tests should ideally rely only on subclasses having
@@ -855,7 +875,8 @@ class TestAssertAllclose(object):
with pytest.raises(AssertionError) as exc_info:
assert_allclose(a, b)
msg = str(exc_info.value)
- assert_('Mismatch: 25%\nMax absolute difference: 1\n'
+ assert_('Mismatched elements: 1 / 4 (25%)\n'
+ 'Max absolute difference: 1\n'
'Max relative difference: 0.5' in msg)
def test_equal_nan(self):
@@ -880,6 +901,15 @@ class TestAssertAllclose(object):
assert_array_less(a, b)
assert_allclose(a, b)
+ def test_report_max_relative_error(self):
+ a = np.array([0, 1])
+ b = np.array([0, 2])
+
+ with pytest.raises(AssertionError) as exc_info:
+ assert_allclose(a, b)
+ msg = str(exc_info.value)
+ assert_('Max relative difference: 0.5' in msg)
+
class TestArrayAlmostEqualNulp(object):
diff --git a/numpy/testing/utils.py b/numpy/testing/utils.py
index 98f19e348..975f6ad5d 100644
--- a/numpy/testing/utils.py
+++ b/numpy/testing/utils.py
@@ -7,10 +7,11 @@ from __future__ import division, absolute_import, print_function
import warnings
-# 2018-04-04, numpy 1.15.0
+# 2018-04-04, numpy 1.15.0 ImportWarning
+# 2019-09-18, numpy 1.18.0 DeprecatonWarning (changed)
warnings.warn("Importing from numpy.testing.utils is deprecated "
"since 1.15.0, import from numpy.testing instead.",
- ImportWarning, stacklevel=2)
+ DeprecationWarning, stacklevel=2)
from ._private.utils import *
@@ -19,7 +20,7 @@ __all__ = [
'assert_array_equal', 'assert_array_less', 'assert_string_equal',
'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
- 'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure',
+ 'raises', 'rundocs', 'runstring', 'verbose', 'measure',
'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex',
'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings',
diff --git a/numpy/tests/test_public_api.py b/numpy/tests/test_public_api.py
index 807c98652..e3621c0fd 100644
--- a/numpy/tests/test_public_api.py
+++ b/numpy/tests/test_public_api.py
@@ -1,14 +1,22 @@
from __future__ import division, absolute_import, print_function
import sys
+import subprocess
+import pkgutil
+import types
+import importlib
+import warnings
import numpy as np
+import numpy
import pytest
+
try:
import ctypes
except ImportError:
ctypes = None
+
def check_dir(module, module_name=None):
"""Returns a mapping of all objects with the wrong __module__ attribute."""
if module_name is None:
@@ -26,7 +34,8 @@ def check_dir(module, module_name=None):
sys.version_info[0] < 3,
reason="NumPy exposes slightly different functions on Python 2")
def test_numpy_namespace():
- # None of these objects are publicly documented.
+ # None of these objects are publicly documented to be part of the main
+ # NumPy namespace (some are useful though, others need to be cleaned up)
undocumented = {
'Tester': 'numpy.testing._private.nosetester.NoseTester',
'_add_newdoc_ufunc': 'numpy.core._multiarray_umath._add_newdoc_ufunc',
@@ -69,6 +78,28 @@ def test_numpy_namespace():
assert bad_results == whitelist
+@pytest.mark.parametrize('name', ['testing', 'Tester'])
+def test_import_lazy_import(name):
+ """Make sure we can actually use the modules we lazy load.
+
+ While not exported as part of the public API, it was accessible. With the
+ use of __getattr__ and __dir__, this isn't always true It can happen that
+ an infinite recursion may happen.
+
+ This is the only way I found that would force the failure to appear on the
+ badly implemented code.
+
+ We also test for the presence of the lazily imported modules in dir
+
+ """
+ exe = (sys.executable, '-c', "import numpy; numpy." + name)
+ result = subprocess.check_output(exe)
+ assert not result
+
+ # Make sure they are still in the __dir__
+ assert name in dir(np)
+
+
def test_numpy_linalg():
bad_results = check_dir(np.linalg)
assert bad_results == {}
@@ -78,6 +109,7 @@ def test_numpy_fft():
bad_results = check_dir(np.fft)
assert bad_results == {}
+
@pytest.mark.skipif(ctypes is None,
reason="ctypes not available in this python")
def test_NPY_NO_EXPORT():
@@ -86,3 +118,381 @@ def test_NPY_NO_EXPORT():
f = getattr(cdll, 'test_not_exported', None)
assert f is None, ("'test_not_exported' is mistakenly exported, "
"NPY_NO_EXPORT does not work")
+
+
+# Historically NumPy has not used leading underscores for private submodules
+# much. This has resulted in lots of things that look like public modules
+# (i.e. things that can be imported as `import numpy.somesubmodule.somefile`),
+# but were never intended to be public. The PUBLIC_MODULES list contains
+# modules that are either public because they were meant to be, or because they
+# contain public functions/objects that aren't present in any other namespace
+# for whatever reason and therefore should be treated as public.
+#
+# The PRIVATE_BUT_PRESENT_MODULES list contains modules that look public (lack
+# of underscores) but should not be used. For many of those modules the
+# current status is fine. For others it may make sense to work on making them
+# private, to clean up our public API and avoid confusion.
+PUBLIC_MODULES = ['numpy.' + s for s in [
+ "ctypeslib",
+ "distutils",
+ "distutils.cpuinfo",
+ "distutils.exec_command",
+ "distutils.misc_util",
+ "distutils.log",
+ "distutils.system_info",
+ "doc",
+ "doc.basics",
+ "doc.broadcasting",
+ "doc.byteswapping",
+ "doc.constants",
+ "doc.creation",
+ "doc.dispatch",
+ "doc.glossary",
+ "doc.indexing",
+ "doc.internals",
+ "doc.misc",
+ "doc.structured_arrays",
+ "doc.subclassing",
+ "doc.ufuncs",
+ "dual",
+ "f2py",
+ "fft",
+ "lib",
+ "lib.format", # was this meant to be public?
+ "lib.mixins",
+ "lib.recfunctions",
+ "lib.scimath",
+ "linalg",
+ "ma",
+ "ma.extras",
+ "ma.mrecords",
+ "matlib",
+ "polynomial",
+ "polynomial.chebyshev",
+ "polynomial.hermite",
+ "polynomial.hermite_e",
+ "polynomial.laguerre",
+ "polynomial.legendre",
+ "polynomial.polynomial",
+ "polynomial.polyutils",
+ "random",
+ "testing",
+ "version",
+]]
+
+
+PUBLIC_ALIASED_MODULES = [
+ "numpy.char",
+ "numpy.emath",
+ "numpy.rec",
+]
+
+
+PRIVATE_BUT_PRESENT_MODULES = ['numpy.' + s for s in [
+ "compat",
+ "compat.py3k",
+ "conftest",
+ "core",
+ "core.arrayprint",
+ "core.defchararray",
+ "core.einsumfunc",
+ "core.fromnumeric",
+ "core.function_base",
+ "core.getlimits",
+ "core.machar",
+ "core.memmap",
+ "core.multiarray",
+ "core.numeric",
+ "core.numerictypes",
+ "core.overrides",
+ "core.records",
+ "core.shape_base",
+ "core.umath",
+ "core.umath_tests",
+ "distutils.ccompiler",
+ "distutils.command",
+ "distutils.command.autodist",
+ "distutils.command.bdist_rpm",
+ "distutils.command.build",
+ "distutils.command.build_clib",
+ "distutils.command.build_ext",
+ "distutils.command.build_py",
+ "distutils.command.build_scripts",
+ "distutils.command.build_src",
+ "distutils.command.config",
+ "distutils.command.config_compiler",
+ "distutils.command.develop",
+ "distutils.command.egg_info",
+ "distutils.command.install",
+ "distutils.command.install_clib",
+ "distutils.command.install_data",
+ "distutils.command.install_headers",
+ "distutils.command.sdist",
+ "distutils.compat",
+ "distutils.conv_template",
+ "distutils.core",
+ "distutils.extension",
+ "distutils.fcompiler",
+ "distutils.fcompiler.absoft",
+ "distutils.fcompiler.compaq",
+ "distutils.fcompiler.environment",
+ "distutils.fcompiler.g95",
+ "distutils.fcompiler.gnu",
+ "distutils.fcompiler.hpux",
+ "distutils.fcompiler.ibm",
+ "distutils.fcompiler.intel",
+ "distutils.fcompiler.lahey",
+ "distutils.fcompiler.mips",
+ "distutils.fcompiler.nag",
+ "distutils.fcompiler.none",
+ "distutils.fcompiler.pathf95",
+ "distutils.fcompiler.pg",
+ "distutils.fcompiler.sun",
+ "distutils.fcompiler.vast",
+ "distutils.from_template",
+ "distutils.intelccompiler",
+ "distutils.lib2def",
+ "distutils.line_endings",
+ "distutils.mingw32ccompiler",
+ "distutils.msvccompiler",
+ "distutils.npy_pkg_config",
+ "distutils.numpy_distribution",
+ "distutils.pathccompiler",
+ "distutils.unixccompiler",
+ "f2py.auxfuncs",
+ "f2py.capi_maps",
+ "f2py.cb_rules",
+ "f2py.cfuncs",
+ "f2py.common_rules",
+ "f2py.crackfortran",
+ "f2py.diagnose",
+ "f2py.f2py2e",
+ "f2py.f2py_testing",
+ "f2py.f90mod_rules",
+ "f2py.func2subr",
+ "f2py.rules",
+ "f2py.use_rules",
+ "fft.helper",
+ "lib.arraypad",
+ "lib.arraysetops",
+ "lib.arrayterator",
+ "lib.financial",
+ "lib.function_base",
+ "lib.histograms",
+ "lib.index_tricks",
+ "lib.nanfunctions",
+ "lib.npyio",
+ "lib.polynomial",
+ "lib.shape_base",
+ "lib.stride_tricks",
+ "lib.twodim_base",
+ "lib.type_check",
+ "lib.ufunclike",
+ "lib.user_array", # note: not in np.lib, but probably should just be deleted
+ "lib.utils",
+ "linalg.lapack_lite",
+ "linalg.linalg",
+ "ma.bench",
+ "ma.core",
+ "ma.testutils",
+ "ma.timer_comparison",
+ "matrixlib",
+ "matrixlib.defmatrix",
+ "random.bit_generator",
+ "random.bounded_integers",
+ "random.common",
+ "random.generator",
+ "random.mt19937",
+ "random.mtrand",
+ "random.pcg64",
+ "random.philox",
+ "random.sfc64",
+ "testing.print_coercion_tables",
+ "testing.utils",
+]]
+
+
+def is_unexpected(name):
+ """Check if this needs to be considered."""
+ if '._' in name or '.tests' in name or '.setup' in name:
+ return False
+
+ if name in PUBLIC_MODULES:
+ return False
+
+ if name in PUBLIC_ALIASED_MODULES:
+ return False
+
+ if name in PRIVATE_BUT_PRESENT_MODULES:
+ return False
+
+ return True
+
+
+# These are present in a directory with an __init__.py but cannot be imported
+# code_generators/ isn't installed, but present for an inplace build
+SKIP_LIST = [
+ "numpy.core.code_generators",
+ "numpy.core.code_generators.genapi",
+ "numpy.core.code_generators.generate_umath",
+ "numpy.core.code_generators.ufunc_docstrings",
+ "numpy.core.code_generators.generate_numpy_api",
+ "numpy.core.code_generators.generate_ufunc_api",
+ "numpy.core.code_generators.numpy_api",
+ "numpy.core.cversions",
+ "numpy.core.generate_numpy_api",
+ "numpy.distutils.msvc9compiler",
+]
+
+
+def test_all_modules_are_expected():
+ """
+ Test that we don't add anything that looks like a new public module by
+ accident. Check is based on filenames.
+ """
+
+ modnames = []
+ for _, modname, ispkg in pkgutil.walk_packages(path=np.__path__,
+ prefix=np.__name__ + '.',
+ onerror=None):
+ if is_unexpected(modname) and modname not in SKIP_LIST:
+ # We have a name that is new. If that's on purpose, add it to
+ # PUBLIC_MODULES. We don't expect to have to add anything to
+ # PRIVATE_BUT_PRESENT_MODULES. Use an underscore in the name!
+ modnames.append(modname)
+
+ if modnames:
+ raise AssertionError("Found unexpected modules: {}".format(modnames))
+
+
+# Stuff that clearly shouldn't be in the API and is detected by the next test
+# below
+SKIP_LIST_2 = [
+ 'numpy.math',
+ 'numpy.distutils.log.sys',
+ 'numpy.distutils.system_info.copy',
+ 'numpy.distutils.system_info.distutils',
+ 'numpy.distutils.system_info.log',
+ 'numpy.distutils.system_info.os',
+ 'numpy.distutils.system_info.platform',
+ 'numpy.distutils.system_info.re',
+ 'numpy.distutils.system_info.shutil',
+ 'numpy.distutils.system_info.subprocess',
+ 'numpy.distutils.system_info.sys',
+ 'numpy.distutils.system_info.tempfile',
+ 'numpy.distutils.system_info.textwrap',
+ 'numpy.distutils.system_info.warnings',
+ 'numpy.doc.constants.re',
+ 'numpy.doc.constants.textwrap',
+ 'numpy.lib.emath',
+ 'numpy.lib.math',
+ 'numpy.matlib.char',
+ 'numpy.matlib.rec',
+ 'numpy.matlib.emath',
+ 'numpy.matlib.math',
+ 'numpy.matlib.linalg',
+ 'numpy.matlib.fft',
+ 'numpy.matlib.random',
+ 'numpy.matlib.ctypeslib',
+ 'numpy.matlib.ma'
+]
+
+
+def test_all_modules_are_expected_2():
+ """
+ Method checking all objects. The pkgutil-based method in
+ `test_all_modules_are_expected` does not catch imports into a namespace,
+ only filenames. So this test is more thorough, and checks this like:
+
+ import .lib.scimath as emath
+
+ To check if something in a module is (effectively) public, one can check if
+ there's anything in that namespace that's a public function/object but is
+ not exposed in a higher-level namespace. For example for a `numpy.lib`
+ submodule::
+
+ mod = np.lib.mixins
+ for obj in mod.__all__:
+ if obj in np.__all__:
+ continue
+ elif obj in np.lib.__all__:
+ continue
+
+ else:
+ print(obj)
+
+ """
+
+ def find_unexpected_members(mod_name):
+ members = []
+ module = importlib.import_module(mod_name)
+ if hasattr(module, '__all__'):
+ objnames = module.__all__
+ else:
+ objnames = dir(module)
+
+ for objname in objnames:
+ if not objname.startswith('_'):
+ fullobjname = mod_name + '.' + objname
+ if isinstance(getattr(module, objname), types.ModuleType):
+ if is_unexpected(fullobjname):
+ if fullobjname not in SKIP_LIST_2:
+ members.append(fullobjname)
+
+ return members
+
+ unexpected_members = find_unexpected_members("numpy")
+ for modname in PUBLIC_MODULES:
+ unexpected_members.extend(find_unexpected_members(modname))
+
+ if unexpected_members:
+ raise AssertionError("Found unexpected object(s) that look like "
+ "modules: {}".format(unexpected_members))
+
+
+def test_api_importable():
+ """
+ Check that all submodules listed higher up in this file can be imported
+
+ Note that if a PRIVATE_BUT_PRESENT_MODULES entry goes missing, it may
+ simply need to be removed from the list (deprecation may or may not be
+ needed - apply common sense).
+ """
+ def check_importable(module_name):
+ try:
+ importlib.import_module(module_name)
+ except (ImportError, AttributeError):
+ return False
+
+ return True
+
+ module_names = []
+ for module_name in PUBLIC_MODULES:
+ if not check_importable(module_name):
+ module_names.append(module_name)
+
+ if module_names:
+ raise AssertionError("Modules in the public API that cannot be "
+ "imported: {}".format(module_names))
+
+ for module_name in PUBLIC_ALIASED_MODULES:
+ try:
+ eval(module_name)
+ except AttributeError:
+ module_names.append(module_name)
+
+ if module_names:
+ raise AssertionError("Modules in the public API that were not "
+ "found: {}".format(module_names))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', category=DeprecationWarning)
+ warnings.filterwarnings('always', category=ImportWarning)
+ for module_name in PRIVATE_BUT_PRESENT_MODULES:
+ if not check_importable(module_name):
+ module_names.append(module_name)
+
+ if module_names:
+ raise AssertionError("Modules that are not really public but looked "
+ "public and can not be imported: "
+ "{}".format(module_names))