summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2021-05-04 11:43:50 -0600
committerGitHub <noreply@github.com>2021-05-04 11:43:50 -0600
commit4d753a0cd67cc381af9d096afdafda674a37c971 (patch)
treeb3834178d0026c26cfaafeb9196c085033237c9c /numpy
parent70dd918b8b531ce7be91bb9e6bb52fdc7c7199b9 (diff)
parent6fa34d432722faaaf54f27fb9cb3b1b9e197e9fe (diff)
downloadnumpy-4d753a0cd67cc381af9d096afdafda674a37c971.tar.gz
Merge pull request #18885 from BvB93/unsafe
MAINT: Remove unsafe unions and ABCs from return-annotations
Diffstat (limited to 'numpy')
-rw-r--r--numpy/__init__.pyi551
-rw-r--r--numpy/core/einsumfunc.pyi18
-rw-r--r--numpy/core/fromnumeric.pyi342
-rw-r--r--numpy/core/function_base.pyi6
-rw-r--r--numpy/core/numeric.pyi72
-rw-r--r--numpy/lib/index_tricks.pyi23
-rw-r--r--numpy/lib/ufunclike.pyi28
-rw-r--r--numpy/typing/__init__.py15
-rw-r--r--numpy/typing/_array_like.py2
-rw-r--r--numpy/typing/_callable.py10
-rw-r--r--numpy/typing/tests/data/fail/fromnumeric.py108
-rw-r--r--numpy/typing/tests/data/fail/index_tricks.py2
-rw-r--r--numpy/typing/tests/data/reveal/arithmetic.py288
-rw-r--r--numpy/typing/tests/data/reveal/array_constructors.py2
-rw-r--r--numpy/typing/tests/data/reveal/comparisons.py80
-rw-r--r--numpy/typing/tests/data/reveal/einsumfunc.py16
-rw-r--r--numpy/typing/tests/data/reveal/fromnumeric.py258
-rw-r--r--numpy/typing/tests/data/reveal/index_tricks.py19
-rw-r--r--numpy/typing/tests/data/reveal/mod.py28
-rw-r--r--numpy/typing/tests/data/reveal/ndarray_misc.py90
-rw-r--r--numpy/typing/tests/data/reveal/numeric.py10
-rw-r--r--numpy/typing/tests/data/reveal/ufunclike.py24
22 files changed, 980 insertions, 1012 deletions
diff --git a/numpy/__init__.pyi b/numpy/__init__.pyi
index 5c7a3c7e4..8824497f0 100644
--- a/numpy/__init__.pyi
+++ b/numpy/__init__.pyi
@@ -11,7 +11,6 @@ from numpy.typing import (
# Arrays
ArrayLike,
_ArrayND,
- _ArrayOrScalar,
_SupportsArray,
_NestedSequence,
_RecursiveSequence,
@@ -1289,14 +1288,21 @@ class _ArrayOrScalarCommon:
def __array_wrap__(array, context=...): ...
def __setstate__(self, __state): ...
# a `bool_` is returned when `keepdims=True` and `self` is a 0d array
+
@overload
def all(
- self, axis: None = ..., out: None = ..., keepdims: Literal[False] = ...
+ self,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
) -> bool_: ...
@overload
def all(
- self, axis: Optional[_ShapeLike] = ..., out: None = ..., keepdims: bool = ...
- ) -> Union[bool_, ndarray]: ...
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
@overload
def all(
self,
@@ -1304,14 +1310,21 @@ class _ArrayOrScalarCommon:
out: _NdArraySubClass = ...,
keepdims: bool = ...,
) -> _NdArraySubClass: ...
+
@overload
def any(
- self, axis: None = ..., out: None = ..., keepdims: Literal[False] = ...
+ self,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
) -> bool_: ...
@overload
def any(
- self, axis: Optional[_ShapeLike] = ..., out: None = ..., keepdims: bool = ...
- ) -> Union[bool_, ndarray]: ...
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
@overload
def any(
self,
@@ -1319,40 +1332,67 @@ class _ArrayOrScalarCommon:
out: _NdArraySubClass = ...,
keepdims: bool = ...,
) -> _NdArraySubClass: ...
+
@overload
- def argmax(self, axis: None = ..., out: None = ...) -> intp: ...
+ def argmax(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ ) -> intp: ...
@overload
def argmax(
- self, axis: _ShapeLike = ..., out: None = ...
- ) -> Union[ndarray, intp]: ...
+ self,
+ axis: _ShapeLike = ...,
+ out: None = ...,
+ ) -> Any: ...
@overload
def argmax(
- self, axis: Optional[_ShapeLike] = ..., out: _NdArraySubClass = ...
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
) -> _NdArraySubClass: ...
+
@overload
- def argmin(self, axis: None = ..., out: None = ...) -> intp: ...
+ def argmin(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ ) -> intp: ...
@overload
def argmin(
- self, axis: _ShapeLike = ..., out: None = ...
- ) -> Union[ndarray, intp]: ...
+ self,
+ axis: _ShapeLike = ...,
+ out: None = ...,
+ ) -> Any: ...
@overload
def argmin(
- self, axis: Optional[_ShapeLike] = ..., out: _NdArraySubClass = ...
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
) -> _NdArraySubClass: ...
+
def argsort(
self,
axis: Optional[SupportsIndex] = ...,
kind: Optional[_SortKind] = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
+
@overload
def choose(
- self, choices: ArrayLike, out: None = ..., mode: _ModeKind = ...,
+ self,
+ choices: ArrayLike,
+ out: None = ...,
+ mode: _ModeKind = ...,
) -> ndarray: ...
@overload
def choose(
- self, choices: ArrayLike, out: _NdArraySubClass = ..., mode: _ModeKind = ...,
+ self,
+ choices: ArrayLike,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
) -> _NdArraySubClass: ...
+
@overload
def clip(
self,
@@ -1360,7 +1400,7 @@ class _ArrayOrScalarCommon:
max: Optional[ArrayLike] = ...,
out: None = ...,
**kwargs: Any,
- ) -> Union[number, ndarray]: ...
+ ) -> ndarray: ...
@overload
def clip(
self,
@@ -1368,7 +1408,7 @@ class _ArrayOrScalarCommon:
max: ArrayLike = ...,
out: None = ...,
**kwargs: Any,
- ) -> Union[number, ndarray]: ...
+ ) -> ndarray: ...
@overload
def clip(
self,
@@ -1385,6 +1425,7 @@ class _ArrayOrScalarCommon:
out: _NdArraySubClass = ...,
**kwargs: Any,
) -> _NdArraySubClass: ...
+
@overload
def compress(
self,
@@ -1399,8 +1440,11 @@ class _ArrayOrScalarCommon:
axis: Optional[SupportsIndex] = ...,
out: _NdArraySubClass = ...,
) -> _NdArraySubClass: ...
+
def conj(self: _ArraySelf) -> _ArraySelf: ...
+
def conjugate(self: _ArraySelf) -> _ArraySelf: ...
+
@overload
def cumprod(
self,
@@ -1415,6 +1459,7 @@ class _ArrayOrScalarCommon:
dtype: DTypeLike = ...,
out: _NdArraySubClass = ...,
) -> _NdArraySubClass: ...
+
@overload
def cumsum(
self,
@@ -1429,15 +1474,7 @@ class _ArrayOrScalarCommon:
dtype: DTypeLike = ...,
out: _NdArraySubClass = ...,
) -> _NdArraySubClass: ...
- @overload
- def max(
- self,
- axis: None = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
- ) -> number: ...
+
@overload
def max(
self,
@@ -1446,7 +1483,7 @@ class _ArrayOrScalarCommon:
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def max(
self,
@@ -1456,14 +1493,7 @@ class _ArrayOrScalarCommon:
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
) -> _NdArraySubClass: ...
- @overload
- def mean(
- self,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- ) -> number: ...
+
@overload
def mean(
self,
@@ -1471,7 +1501,7 @@ class _ArrayOrScalarCommon:
dtype: DTypeLike = ...,
out: None = ...,
keepdims: bool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def mean(
self,
@@ -1480,15 +1510,7 @@ class _ArrayOrScalarCommon:
out: _NdArraySubClass = ...,
keepdims: bool = ...,
) -> _NdArraySubClass: ...
- @overload
- def min(
- self,
- axis: None = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
- ) -> number: ...
+
@overload
def min(
self,
@@ -1497,7 +1519,7 @@ class _ArrayOrScalarCommon:
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def min(
self,
@@ -1507,17 +1529,12 @@ class _ArrayOrScalarCommon:
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
) -> _NdArraySubClass: ...
- def newbyteorder(self: _ArraySelf, __new_order: _ByteOrder = ...) -> _ArraySelf: ...
- @overload
- def prod(
- self,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
- ) -> number: ...
+
+ def newbyteorder(
+ self: _ArraySelf,
+ __new_order: _ByteOrder = ...,
+ ) -> _ArraySelf: ...
+
@overload
def prod(
self,
@@ -1527,7 +1544,7 @@ class _ArrayOrScalarCommon:
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def prod(
self,
@@ -1538,14 +1555,14 @@ class _ArrayOrScalarCommon:
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
) -> _NdArraySubClass: ...
+
@overload
def ptp(
- self, axis: None = ..., out: None = ..., keepdims: Literal[False] = ...,
- ) -> number: ...
- @overload
- def ptp(
- self, axis: Optional[_ShapeLike] = ..., out: None = ..., keepdims: bool = ...,
- ) -> Union[number, ndarray]: ...
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
@overload
def ptp(
self,
@@ -1553,26 +1570,26 @@ class _ArrayOrScalarCommon:
out: _NdArraySubClass = ...,
keepdims: bool = ...,
) -> _NdArraySubClass: ...
+
def repeat(
- self, repeats: _ArrayLikeIntOrBool, axis: Optional[SupportsIndex] = ...
+ self,
+ repeats: _ArrayLikeIntOrBool,
+ axis: Optional[SupportsIndex] = ...,
) -> ndarray: ...
+
@overload
def round(
- self: _ArraySelf, decimals: SupportsIndex = ..., out: None = ...
+ self: _ArraySelf,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
) -> _ArraySelf: ...
@overload
def round(
- self, decimals: SupportsIndex = ..., out: _NdArraySubClass = ...
- ) -> _NdArraySubClass: ...
- @overload
- def std(
self,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: int = ...,
- keepdims: Literal[False] = ...,
- ) -> number: ...
+ decimals: SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
@overload
def std(
self,
@@ -1581,7 +1598,7 @@ class _ArrayOrScalarCommon:
out: None = ...,
ddof: int = ...,
keepdims: bool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def std(
self,
@@ -1591,16 +1608,7 @@ class _ArrayOrScalarCommon:
ddof: int = ...,
keepdims: bool = ...,
) -> _NdArraySubClass: ...
- @overload
- def sum(
- self,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
- ) -> number: ...
+
@overload
def sum(
self,
@@ -1610,7 +1618,7 @@ class _ArrayOrScalarCommon:
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def sum(
self,
@@ -1621,6 +1629,7 @@ class _ArrayOrScalarCommon:
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
) -> _NdArraySubClass: ...
+
@overload
def take(
self,
@@ -1628,7 +1637,7 @@ class _ArrayOrScalarCommon:
axis: Optional[SupportsIndex] = ...,
out: None = ...,
mode: _ModeKind = ...,
- ) -> generic: ...
+ ) -> Any: ...
@overload
def take(
self,
@@ -1645,15 +1654,7 @@ class _ArrayOrScalarCommon:
out: _NdArraySubClass = ...,
mode: _ModeKind = ...,
) -> _NdArraySubClass: ...
- @overload
- def var(
- self,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: int = ...,
- keepdims: Literal[False] = ...,
- ) -> number: ...
+
@overload
def var(
self,
@@ -1662,7 +1663,7 @@ class _ArrayOrScalarCommon:
out: None = ...,
ddof: int = ...,
keepdims: bool = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def var(
self,
@@ -1772,7 +1773,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
axis2: SupportsIndex = ...,
) -> _ArraySelf: ...
@overload
- def dot(self, b: ArrayLike, out: None = ...) -> Union[number, ndarray]: ...
+ def dot(self, b: ArrayLike, out: None = ...) -> ndarray: ...
@overload
def dot(self, b: ArrayLike, out: _NdArraySubClass = ...) -> _NdArraySubClass: ...
# `nonzero()` is deprecated for 0d arrays/generics
@@ -1812,7 +1813,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
axis2: SupportsIndex = ...,
dtype: DTypeLike = ...,
out: None = ...,
- ) -> Union[number, ndarray]: ...
+ ) -> Any: ...
@overload
def trace(
self, # >= 2D array
@@ -1843,105 +1844,105 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __lt__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayOrScalar[bool_]: ...
+ def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayND[bool_]: ...
@overload
- def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[bool_]: ...
+ def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[bool_]: ...
@overload
- def __lt__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayOrScalar[bool_]: ...
+ def __lt__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayND[bool_]: ...
@overload
- def __lt__(self: _ArrayND[object_], other: Any) -> _ArrayOrScalar[bool_]: ...
+ def __lt__(self: _ArrayND[object_], other: Any) -> _ArrayND[bool_]: ...
@overload
- def __lt__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayOrScalar[bool_]: ...
+ def __lt__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayND[bool_]: ...
@overload
def __lt__(
self: _ArrayND[Union[number[Any], datetime64, timedelta64, bool_]],
other: _RecursiveSequence,
- ) -> _ArrayOrScalar[bool_]: ...
+ ) -> _ArrayND[bool_]: ...
@overload
def __le__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayOrScalar[bool_]: ...
+ def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayND[bool_]: ...
@overload
- def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[bool_]: ...
+ def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[bool_]: ...
@overload
- def __le__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayOrScalar[bool_]: ...
+ def __le__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayND[bool_]: ...
@overload
- def __le__(self: _ArrayND[object_], other: Any) -> _ArrayOrScalar[bool_]: ...
+ def __le__(self: _ArrayND[object_], other: Any) -> _ArrayND[bool_]: ...
@overload
- def __le__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayOrScalar[bool_]: ...
+ def __le__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayND[bool_]: ...
@overload
def __le__(
self: _ArrayND[Union[number[Any], datetime64, timedelta64, bool_]],
other: _RecursiveSequence,
- ) -> _ArrayOrScalar[bool_]: ...
+ ) -> _ArrayND[bool_]: ...
@overload
def __gt__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayOrScalar[bool_]: ...
+ def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayND[bool_]: ...
@overload
- def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[bool_]: ...
+ def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[bool_]: ...
@overload
- def __gt__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayOrScalar[bool_]: ...
+ def __gt__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayND[bool_]: ...
@overload
- def __gt__(self: _ArrayND[object_], other: Any) -> _ArrayOrScalar[bool_]: ...
+ def __gt__(self: _ArrayND[object_], other: Any) -> _ArrayND[bool_]: ...
@overload
- def __gt__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayOrScalar[bool_]: ...
+ def __gt__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayND[bool_]: ...
@overload
def __gt__(
self: _ArrayND[Union[number[Any], datetime64, timedelta64, bool_]],
other: _RecursiveSequence,
- ) -> _ArrayOrScalar[bool_]: ...
+ ) -> _ArrayND[bool_]: ...
@overload
def __ge__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayOrScalar[bool_]: ...
+ def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> _ArrayND[bool_]: ...
@overload
- def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[bool_]: ...
+ def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[bool_]: ...
@overload
- def __ge__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayOrScalar[bool_]: ...
+ def __ge__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayND[bool_]: ...
@overload
- def __ge__(self: _ArrayND[object_], other: Any) -> _ArrayOrScalar[bool_]: ...
+ def __ge__(self: _ArrayND[object_], other: Any) -> _ArrayND[bool_]: ...
@overload
- def __ge__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayOrScalar[bool_]: ...
+ def __ge__(self: _ArrayND[Any], other: _ArrayLikeObject_co) -> _ArrayND[bool_]: ...
@overload
def __ge__(
self: _ArrayND[Union[number[Any], datetime64, timedelta64, bool_]],
other: _RecursiveSequence,
- ) -> _ArrayOrScalar[bool_]: ...
+ ) -> _ArrayND[bool_]: ...
# Unary ops
@overload
- def __abs__(self: _ArrayND[bool_]) -> _ArrayOrScalar[bool_]: ...
+ def __abs__(self: _ArrayND[bool_]) -> _ArrayND[bool_]: ...
@overload
- def __abs__(self: _ArrayND[complexfloating[_NBit1, _NBit1]]) -> _ArrayOrScalar[floating[_NBit1]]: ...
+ def __abs__(self: _ArrayND[complexfloating[_NBit1, _NBit1]]) -> _ArrayND[floating[_NBit1]]: ...
@overload
- def __abs__(self: _ArrayND[_NumberType]) -> _ArrayOrScalar[_NumberType]: ...
+ def __abs__(self: _ArrayND[_NumberType]) -> _ArrayND[_NumberType]: ...
@overload
- def __abs__(self: _ArrayND[timedelta64]) -> _ArrayOrScalar[timedelta64]: ...
+ def __abs__(self: _ArrayND[timedelta64]) -> _ArrayND[timedelta64]: ...
@overload
def __abs__(self: _ArrayND[object_]) -> Any: ...
@overload
- def __invert__(self: _ArrayND[bool_]) -> _ArrayOrScalar[bool_]: ...
+ def __invert__(self: _ArrayND[bool_]) -> _ArrayND[bool_]: ...
@overload
- def __invert__(self: _ArrayND[_IntType]) -> _ArrayOrScalar[_IntType]: ...
+ def __invert__(self: _ArrayND[_IntType]) -> _ArrayND[_IntType]: ...
@overload
def __invert__(self: _ArrayND[object_]) -> Any: ...
@overload
- def __pos__(self: _ArrayND[_NumberType]) -> _ArrayOrScalar[_NumberType]: ...
+ def __pos__(self: _ArrayND[_NumberType]) -> _ArrayND[_NumberType]: ...
@overload
- def __pos__(self: _ArrayND[timedelta64]) -> _ArrayOrScalar[timedelta64]: ...
+ def __pos__(self: _ArrayND[timedelta64]) -> _ArrayND[timedelta64]: ...
@overload
def __pos__(self: _ArrayND[object_]) -> Any: ...
@overload
- def __neg__(self: _ArrayND[_NumberType]) -> _ArrayOrScalar[_NumberType]: ...
+ def __neg__(self: _ArrayND[_NumberType]) -> _ArrayND[_NumberType]: ...
@overload
- def __neg__(self: _ArrayND[timedelta64]) -> _ArrayOrScalar[timedelta64]: ...
+ def __neg__(self: _ArrayND[timedelta64]) -> _ArrayND[timedelta64]: ...
@overload
def __neg__(self: _ArrayND[object_]) -> Any: ...
@@ -1950,15 +1951,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __matmul__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __matmul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __matmul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ...
+ def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ...
@overload
def __matmul__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -1972,15 +1973,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rmatmul__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rmatmul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __rmatmul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ...
+ def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ...
@overload
def __rmatmul__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -1994,15 +1995,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __mod__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __mod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __mod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __mod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayOrScalar[timedelta64]: ...
+ def __mod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayND[timedelta64]: ...
@overload
def __mod__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2016,15 +2017,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rmod__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rmod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __rmod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayOrScalar[timedelta64]: ...
+ def __rmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayND[timedelta64]: ...
@overload
def __rmod__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2038,15 +2039,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __divmod__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __divmod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _2Tuple[_ArrayOrScalar[int8]]: ... # type: ignore[misc]
+ def __divmod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _2Tuple[_ArrayND[int8]]: ... # type: ignore[misc]
@overload
- def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[_ArrayOrScalar[unsignedinteger[Any]]]: ... # type: ignore[misc]
+ def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[_ArrayND[unsignedinteger[Any]]]: ... # type: ignore[misc]
@overload
- def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[_ArrayOrScalar[signedinteger[Any]]]: ... # type: ignore[misc]
+ def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[_ArrayND[signedinteger[Any]]]: ... # type: ignore[misc]
@overload
- def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[_ArrayOrScalar[floating[Any]]]: ... # type: ignore[misc]
+ def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[_ArrayND[floating[Any]]]: ... # type: ignore[misc]
@overload
- def __divmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> Union[Tuple[int64, timedelta64], Tuple[_ArrayND[int64], _ArrayND[timedelta64]]]: ...
+ def __divmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> Tuple[_ArrayND[int64], _ArrayND[timedelta64]]: ...
@overload
def __divmod__(
self: _ArrayND[Union[bool_, integer[Any], floating[Any], timedelta64]],
@@ -2056,15 +2057,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rdivmod__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rdivmod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _2Tuple[_ArrayOrScalar[int8]]: ... # type: ignore[misc]
+ def __rdivmod__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _2Tuple[_ArrayND[int8]]: ... # type: ignore[misc]
@overload
- def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[_ArrayOrScalar[unsignedinteger[Any]]]: ... # type: ignore[misc]
+ def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[_ArrayND[unsignedinteger[Any]]]: ... # type: ignore[misc]
@overload
- def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[_ArrayOrScalar[signedinteger[Any]]]: ... # type: ignore[misc]
+ def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[_ArrayND[signedinteger[Any]]]: ... # type: ignore[misc]
@overload
- def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[_ArrayOrScalar[floating[Any]]]: ... # type: ignore[misc]
+ def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[_ArrayND[floating[Any]]]: ... # type: ignore[misc]
@overload
- def __rdivmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> Union[Tuple[int64, timedelta64], Tuple[_ArrayND[int64], _ArrayND[timedelta64]]]: ...
+ def __rdivmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> Tuple[_ArrayND[int64], _ArrayND[timedelta64]]: ...
@overload
def __rdivmod__(
self: _ArrayND[Union[bool_, integer[Any], floating[Any], timedelta64]],
@@ -2074,21 +2075,21 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __add__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __add__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __add__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ... # type: ignore[misc]
+ def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ... # type: ignore[misc]
@overload
- def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> _ArrayOrScalar[datetime64]: ...
+ def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> _ArrayND[datetime64]: ...
@overload
- def __add__(self: _ArrayND[datetime64], other: _ArrayLikeTD64_co) -> _ArrayOrScalar[datetime64]: ...
+ def __add__(self: _ArrayND[datetime64], other: _ArrayLikeTD64_co) -> _ArrayND[datetime64]: ...
@overload
def __add__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2102,21 +2103,21 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __radd__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __radd__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __radd__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ... # type: ignore[misc]
+ def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ... # type: ignore[misc]
@overload
- def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> _ArrayOrScalar[datetime64]: ...
+ def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> _ArrayND[datetime64]: ...
@overload
- def __radd__(self: _ArrayND[datetime64], other: _ArrayLikeTD64_co) -> _ArrayOrScalar[datetime64]: ...
+ def __radd__(self: _ArrayND[datetime64], other: _ArrayLikeTD64_co) -> _ArrayND[datetime64]: ...
@overload
def __radd__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2132,19 +2133,19 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __sub__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
@overload
- def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ... # type: ignore[misc]
+ def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ... # type: ignore[misc]
@overload
- def __sub__(self: _ArrayND[datetime64], other: _ArrayLikeTD64_co) -> _ArrayOrScalar[datetime64]: ...
+ def __sub__(self: _ArrayND[datetime64], other: _ArrayLikeTD64_co) -> _ArrayND[datetime64]: ...
@overload
- def __sub__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __sub__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayND[timedelta64]: ...
@overload
def __sub__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2160,19 +2161,19 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rsub__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
@overload
- def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ... # type: ignore[misc]
+ def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ... # type: ignore[misc]
@overload
- def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> _ArrayOrScalar[datetime64]: ... # type: ignore[misc]
+ def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> _ArrayND[datetime64]: ... # type: ignore[misc]
@overload
- def __rsub__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __rsub__(self: _ArrayND[datetime64], other: _ArrayLikeDT64_co) -> _ArrayND[timedelta64]: ...
@overload
def __rsub__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2186,19 +2187,19 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __mul__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __mul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __mul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> _ArrayND[timedelta64]: ...
@overload
- def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ...
@overload
def __mul__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2212,19 +2213,19 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rmul__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rmul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __rmul__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> _ArrayND[timedelta64]: ...
@overload
- def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ...
@overload
def __rmul__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2238,21 +2239,21 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __floordiv__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __floordiv__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __floordiv__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __floordiv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __floordiv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __floordiv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayOrScalar[int64]: ...
+ def __floordiv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayND[int64]: ...
@overload
def __floordiv__(self: _ArrayND[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
@overload
- def __floordiv__(self: _ArrayND[timedelta64], other: _ArrayLikeFloat_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __floordiv__(self: _ArrayND[timedelta64], other: _ArrayLikeFloat_co) -> _ArrayND[timedelta64]: ...
@overload
def __floordiv__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2266,21 +2267,21 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rfloordiv__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rfloordiv__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __rfloordiv__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rfloordiv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __rfloordiv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __rfloordiv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayOrScalar[int64]: ...
+ def __rfloordiv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayND[int64]: ...
@overload
def __rfloordiv__(self: _ArrayND[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
@overload
- def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ...
@overload
def __rfloordiv__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2294,15 +2295,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __pow__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __pow__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __pow__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ...
+ def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ...
@overload
def __pow__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2316,15 +2317,15 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rpow__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rpow__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __rpow__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ... # type: ignore[misc]
+ def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ...
+ def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ...
@overload
def __rpow__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2338,17 +2339,17 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __truediv__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> _ArrayOrScalar[float64]: ... # type: ignore[misc]
+ def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> _ArrayND[float64]: ... # type: ignore[misc]
@overload
- def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __truediv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayOrScalar[float64]: ...
+ def __truediv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayND[float64]: ...
@overload
def __truediv__(self: _ArrayND[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
@overload
- def __truediv__(self: _ArrayND[timedelta64], other: _ArrayLikeFloat_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __truediv__(self: _ArrayND[timedelta64], other: _ArrayLikeFloat_co) -> _ArrayND[timedelta64]: ...
@overload
def __truediv__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2362,17 +2363,17 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rtruediv__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> _ArrayOrScalar[float64]: ... # type: ignore[misc]
+ def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> _ArrayND[float64]: ... # type: ignore[misc]
@overload
- def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayOrScalar[floating[Any]]: ... # type: ignore[misc]
+ def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _ArrayND[floating[Any]]: ... # type: ignore[misc]
@overload
- def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayOrScalar[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> _ArrayND[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
- def __rtruediv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayOrScalar[float64]: ...
+ def __rtruediv__(self: _ArrayND[timedelta64], other: _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> _ArrayND[float64]: ...
@overload
def __rtruediv__(self: _ArrayND[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
@overload
- def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayOrScalar[timedelta64]: ...
+ def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> _ArrayND[timedelta64]: ...
@overload
def __rtruediv__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2386,11 +2387,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __lshift__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __lshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __lshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __lshift__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2404,11 +2405,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rlshift__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rlshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __rlshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __rlshift__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2422,11 +2423,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rshift__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __rshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __rshift__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2440,11 +2441,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rrshift__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rrshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[int8]: ... # type: ignore[misc]
+ def __rrshift__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[int8]: ... # type: ignore[misc]
@overload
- def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __rrshift__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2458,11 +2459,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __and__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __and__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __and__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __and__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2476,11 +2477,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rand__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rand__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __rand__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __rand__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2494,11 +2495,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __xor__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __xor__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __xor__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __xor__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2512,11 +2513,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __rxor__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __rxor__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __rxor__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __rxor__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2530,11 +2531,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __or__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __or__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __or__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __or__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
@@ -2548,11 +2549,11 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
@overload
def __ror__(self: _ArrayND[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
@overload
- def __ror__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayOrScalar[bool_]: ... # type: ignore[misc]
+ def __ror__(self: _ArrayND[bool_], other: _ArrayLikeBool_co) -> _ArrayND[bool_]: ... # type: ignore[misc]
@overload
- def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayOrScalar[unsignedinteger[Any]]: ... # type: ignore[misc]
+ def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _ArrayND[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
- def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayOrScalar[signedinteger[Any]]: ...
+ def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _ArrayND[signedinteger[Any]]: ...
@overload
def __ror__(self: _ArrayND[object_], other: Any) -> Any: ...
@overload
diff --git a/numpy/core/einsumfunc.pyi b/numpy/core/einsumfunc.pyi
index b33aff29f..2457e8719 100644
--- a/numpy/core/einsumfunc.pyi
+++ b/numpy/core/einsumfunc.pyi
@@ -13,7 +13,6 @@ from numpy import (
_OrderKACF,
)
from numpy.typing import (
- _ArrayOrScalar,
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
_ArrayLikeInt_co,
@@ -46,6 +45,11 @@ _CastingUnsafe = Literal["unsafe"]
__all__: List[str]
# TODO: Properly handle the `casting`-based combinatorics
+# TODO: We need to evaluate the content `__subscripts` in order
+# to identify whether or an array or scalar is returned. At a cursory
+# glance this seems like something that can quite easilly be done with
+# a mypy plugin.
+# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
@overload
def einsum(
__subscripts: str,
@@ -55,7 +59,7 @@ def einsum(
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
-) -> _ArrayOrScalar[bool_]: ...
+) -> Any: ...
@overload
def einsum(
__subscripts: str,
@@ -65,7 +69,7 @@ def einsum(
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
-) -> _ArrayOrScalar[unsignedinteger[Any]]: ...
+) -> Any: ...
@overload
def einsum(
__subscripts: str,
@@ -75,7 +79,7 @@ def einsum(
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
-) -> _ArrayOrScalar[signedinteger[Any]]: ...
+) -> Any: ...
@overload
def einsum(
__subscripts: str,
@@ -85,7 +89,7 @@ def einsum(
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
-) -> _ArrayOrScalar[floating[Any]]: ...
+) -> Any: ...
@overload
def einsum(
__subscripts: str,
@@ -95,7 +99,7 @@ def einsum(
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
-) -> _ArrayOrScalar[complexfloating[Any, Any]]: ...
+) -> Any: ...
@overload
def einsum(
__subscripts: str,
@@ -105,7 +109,7 @@ def einsum(
out: None = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
-) -> _ArrayOrScalar[Any]: ...
+) -> Any: ...
@overload
def einsum(
__subscripts: str,
diff --git a/numpy/core/fromnumeric.pyi b/numpy/core/fromnumeric.pyi
index fc7f28a59..26a43c1a0 100644
--- a/numpy/core/fromnumeric.pyi
+++ b/numpy/core/fromnumeric.pyi
@@ -23,7 +23,6 @@ from numpy.typing import (
ArrayLike,
_ShapeLike,
_Shape,
- _IntLike_co,
_NumberLike_co,
)
@@ -42,11 +41,7 @@ _ScalarBuiltin = Union[str, bytes, dt.date, dt.timedelta, bool, int, float, comp
_Scalar = Union[_ScalarBuiltin, _ScalarNumpy]
# Integers and booleans can generally be used interchangeably
-_ScalarIntOrBool = TypeVar("_ScalarIntOrBool", bound=Union[integer, bool_])
_ScalarGeneric = TypeVar("_ScalarGeneric", bound=generic)
-_ScalarGenericDT = TypeVar(
- "_ScalarGenericDT", bound=Union[dt.datetime, dt.timedelta, generic]
-)
_Number = TypeVar("_Number", bound=number)
@@ -55,67 +50,51 @@ _Number = TypeVar("_Number", bound=number)
# 2. A scalar comes in; a generic comes out
# 3. An array-like object comes in; some keyword ensures that a generic comes out
# 4. An array-like object comes in; an ndarray or generic comes out
-@overload
-def take(
- a: _ScalarGenericDT,
- indices: int,
- axis: Optional[int] = ...,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarGenericDT: ...
-@overload
-def take(
- a: _Scalar,
- indices: int,
- axis: Optional[int] = ...,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarNumpy: ...
-@overload
-def take(
- a: ArrayLike,
- indices: int,
- axis: Optional[int] = ...,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarNumpy: ...
-@overload
def take(
a: ArrayLike,
indices: _ArrayLikeIntOrBool,
axis: Optional[int] = ...,
out: Optional[ndarray] = ...,
mode: _ModeKind = ...,
-) -> Union[_ScalarNumpy, ndarray]: ...
-def reshape(a: ArrayLike, newshape: _ShapeLike, order: _OrderACF = ...) -> ndarray: ...
-@overload
-def choose(
- a: _ScalarIntOrBool,
- choices: ArrayLike,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarIntOrBool: ...
-@overload
-def choose(
- a: _IntLike_co, choices: ArrayLike, out: Optional[ndarray] = ..., mode: _ModeKind = ...
-) -> Union[integer, bool_]: ...
-@overload
+) -> Any: ...
+
+def reshape(
+ a: ArrayLike,
+ newshape: _ShapeLike,
+ order: _OrderACF = ...,
+) -> ndarray: ...
+
def choose(
a: _ArrayLikeIntOrBool,
choices: ArrayLike,
out: Optional[ndarray] = ...,
mode: _ModeKind = ...,
-) -> ndarray: ...
+) -> Any: ...
+
def repeat(
- a: ArrayLike, repeats: _ArrayLikeIntOrBool, axis: Optional[int] = ...
+ a: ArrayLike,
+ repeats: _ArrayLikeIntOrBool,
+ axis: Optional[int] = ...,
) -> ndarray: ...
+
def put(
- a: ndarray, ind: _ArrayLikeIntOrBool, v: ArrayLike, mode: _ModeKind = ...
+ a: ndarray,
+ ind: _ArrayLikeIntOrBool,
+ v: ArrayLike,
+ mode: _ModeKind = ...,
) -> None: ...
-def swapaxes(a: ArrayLike, axis1: int, axis2: int) -> ndarray: ...
+
+def swapaxes(
+ a: ArrayLike,
+ axis1: int,
+ axis2: int,
+) -> ndarray: ...
+
def transpose(
- a: ArrayLike, axes: Union[None, Sequence[int], ndarray] = ...
+ a: ArrayLike,
+ axes: Union[None, Sequence[int], ndarray] = ...
) -> ndarray: ...
+
def partition(
a: ArrayLike,
kth: _ArrayLikeIntOrBool,
@@ -123,54 +102,55 @@ def partition(
kind: _PartitionKind = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
-@overload
-def argpartition(
- a: generic,
- kth: _ArrayLikeIntOrBool,
- axis: Optional[int] = ...,
- kind: _PartitionKind = ...,
- order: Union[None, str, Sequence[str]] = ...,
-) -> intp: ...
-@overload
-def argpartition(
- a: _ScalarBuiltin,
- kth: _ArrayLikeIntOrBool,
- axis: Optional[int] = ...,
- kind: _PartitionKind = ...,
- order: Union[None, str, Sequence[str]] = ...,
-) -> ndarray: ...
-@overload
+
def argpartition(
a: ArrayLike,
kth: _ArrayLikeIntOrBool,
axis: Optional[int] = ...,
kind: _PartitionKind = ...,
order: Union[None, str, Sequence[str]] = ...,
-) -> ndarray: ...
+) -> Any: ...
+
def sort(
a: ArrayLike,
axis: Optional[int] = ...,
kind: Optional[_SortKind] = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
+
def argsort(
a: ArrayLike,
axis: Optional[int] = ...,
kind: Optional[_SortKind] = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
+
@overload
-def argmax(a: ArrayLike, axis: None = ..., out: Optional[ndarray] = ...) -> intp: ...
+def argmax(
+ a: ArrayLike,
+ axis: None = ...,
+ out: Optional[ndarray] = ...,
+) -> intp: ...
@overload
def argmax(
- a: ArrayLike, axis: int = ..., out: Optional[ndarray] = ...
-) -> Union[ndarray, intp]: ...
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
@overload
-def argmin(a: ArrayLike, axis: None = ..., out: Optional[ndarray] = ...) -> intp: ...
+def argmin(
+ a: ArrayLike,
+ axis: None = ...,
+ out: Optional[ndarray] = ...,
+) -> intp: ...
@overload
def argmin(
- a: ArrayLike, axis: int = ..., out: Optional[ndarray] = ...
-) -> Union[ndarray, intp]: ...
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
@overload
def searchsorted(
a: ArrayLike,
@@ -185,14 +165,30 @@ def searchsorted(
side: _SortSide = ...,
sorter: Optional[_ArrayLikeIntOrBool] = ..., # 1D int array
) -> ndarray: ...
-def resize(a: ArrayLike, new_shape: _ShapeLike) -> ndarray: ...
+
+def resize(
+ a: ArrayLike,
+ new_shape: _ShapeLike,
+) -> ndarray: ...
+
@overload
-def squeeze(a: _ScalarGeneric, axis: Optional[_ShapeLike] = ...) -> _ScalarGeneric: ...
+def squeeze(
+ a: _ScalarGeneric,
+ axis: Optional[_ShapeLike] = ...,
+) -> _ScalarGeneric: ...
@overload
-def squeeze(a: ArrayLike, axis: Optional[_ShapeLike] = ...) -> ndarray: ...
+def squeeze(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
def diagonal(
- a: ArrayLike, offset: int = ..., axis1: int = ..., axis2: int = ... # >= 2D array
+ a: ArrayLike,
+ offset: int = ...,
+ axis1: int = ...,
+ axis2: int = ..., # >= 2D array
) -> ndarray: ...
+
def trace(
a: ArrayLike, # >= 2D array
offset: int = ...,
@@ -200,32 +196,21 @@ def trace(
axis2: int = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
+
def ravel(a: ArrayLike, order: _OrderKACF = ...) -> ndarray: ...
+
def nonzero(a: ArrayLike) -> Tuple[ndarray, ...]: ...
+
def shape(a: ArrayLike) -> _Shape: ...
+
def compress(
condition: ArrayLike, # 1D bool array
a: ArrayLike,
axis: Optional[int] = ...,
out: Optional[ndarray] = ...,
) -> ndarray: ...
-@overload
-def clip(
- a: _Number,
- a_min: ArrayLike,
- a_max: Optional[ArrayLike],
- out: Optional[ndarray] = ...,
- **kwargs: Any,
-) -> _Number: ...
-@overload
-def clip(
- a: _Number,
- a_min: None,
- a_max: ArrayLike,
- out: Optional[ndarray] = ...,
- **kwargs: Any,
-) -> _Number: ...
+
@overload
def clip(
a: ArrayLike,
@@ -233,7 +218,7 @@ def clip(
a_max: Optional[ArrayLike],
out: Optional[ndarray] = ...,
**kwargs: Any,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
@overload
def clip(
a: ArrayLike,
@@ -241,18 +226,8 @@ def clip(
a_max: ArrayLike,
out: Optional[ndarray] = ...,
**kwargs: Any,
-) -> Union[number, ndarray]: ...
-@overload
-def sum(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- dtype: DTypeLike = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
+) -> Any: ...
+
def sum(
a: ArrayLike,
axis: _ShapeLike = ...,
@@ -261,12 +236,13 @@ def sum(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
+
@overload
def all(
a: ArrayLike,
axis: None = ...,
- out: Optional[ndarray] = ...,
+ out: None = ...,
keepdims: Literal[False] = ...,
) -> bool_: ...
@overload
@@ -275,12 +251,13 @@ def all(
axis: Optional[_ShapeLike] = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[bool_, ndarray]: ...
+) -> Any: ...
+
@overload
def any(
a: ArrayLike,
axis: None = ...,
- out: Optional[ndarray] = ...,
+ out: None = ...,
keepdims: Literal[False] = ...,
) -> bool_: ...
@overload
@@ -289,53 +266,22 @@ def any(
axis: Optional[_ShapeLike] = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[bool_, ndarray]: ...
+) -> Any: ...
+
def cumsum(
a: ArrayLike,
axis: Optional[int] = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
) -> ndarray: ...
-@overload
-def ptp(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
-) -> _Number: ...
-@overload
-def ptp(
- a: ArrayLike,
- axis: None = ...,
- out: Optional[ndarray] = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+
def ptp(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def amax(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
-def amax(
- a: ArrayLike,
- axis: None = ...,
- out: Optional[ndarray] = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def amax(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -343,26 +289,8 @@ def amax(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def amin(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
-def amin(
- a: ArrayLike,
- axis: None = ...,
- out: Optional[ndarray] = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def amin(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -370,7 +298,7 @@ def amin(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
# TODO: `np.prod()``: For object arrays `initial` does not necessarily
# have to be a numerical scalar.
@@ -379,27 +307,6 @@ def amin(
# Note that the same situation holds for all wrappers around
# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
-@overload
-def prod(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
-def prod(
- a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> number: ...
-@overload
def prod(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -408,53 +315,33 @@ def prod(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
+
def cumprod(
a: ArrayLike,
axis: Optional[int] = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
) -> ndarray: ...
+
def ndim(a: ArrayLike) -> int: ...
+
def size(a: ArrayLike, axis: Optional[int] = ...) -> int: ...
-@overload
-def around(
- a: _Number, decimals: int = ..., out: Optional[ndarray] = ...
-) -> _Number: ...
-@overload
-def around(
- a: _NumberLike_co, decimals: int = ..., out: Optional[ndarray] = ...
-) -> number: ...
-@overload
+
def around(
- a: ArrayLike, decimals: int = ..., out: Optional[ndarray] = ...
-) -> ndarray: ...
-@overload
-def mean(
a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+ decimals: int = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
def mean(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def std(
- a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: int = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def std(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -462,17 +349,8 @@ def std(
out: Optional[ndarray] = ...,
ddof: int = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def var(
- a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: int = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def var(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -480,4 +358,4 @@ def var(
out: Optional[ndarray] = ...,
ddof: int = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
diff --git a/numpy/core/function_base.pyi b/numpy/core/function_base.pyi
index d4543f281..b5d6ca6ab 100644
--- a/numpy/core/function_base.pyi
+++ b/numpy/core/function_base.pyi
@@ -1,7 +1,7 @@
import sys
from typing import overload, Tuple, Union, Sequence, Any
-from numpy import ndarray, inexact
+from numpy import ndarray
from numpy.typing import ArrayLike, DTypeLike, _SupportsArray, _NumberLike_co
if sys.version_info >= (3, 8):
@@ -33,7 +33,8 @@ def linspace(
retstep: Literal[True] = ...,
dtype: DTypeLike = ...,
axis: SupportsIndex = ...,
-) -> Tuple[ndarray, inexact]: ...
+) -> Tuple[ndarray, Any]: ...
+
def logspace(
start: _ArrayLikeNumber,
stop: _ArrayLikeNumber,
@@ -43,6 +44,7 @@ def logspace(
dtype: DTypeLike = ...,
axis: SupportsIndex = ...,
) -> ndarray: ...
+
def geomspace(
start: _ArrayLikeNumber,
stop: _ArrayLikeNumber,
diff --git a/numpy/core/numeric.pyi b/numpy/core/numeric.pyi
index d91cb31c2..6b9ef4b20 100644
--- a/numpy/core/numeric.pyi
+++ b/numpy/core/numeric.pyi
@@ -41,6 +41,7 @@ def zeros_like(
subok: bool = ...,
shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
+
def ones(
shape: _ShapeLike,
dtype: DTypeLike = ...,
@@ -48,6 +49,7 @@ def ones(
*,
like: ArrayLike = ...,
) -> ndarray: ...
+
@overload
def ones_like(
a: _ArrayType,
@@ -64,6 +66,7 @@ def ones_like(
subok: bool = ...,
shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
+
@overload
def empty_like(
a: _ArrayType,
@@ -80,6 +83,7 @@ def empty_like(
subok: bool = ...,
shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
+
def full(
shape: _ShapeLike,
fill_value: Any,
@@ -88,6 +92,7 @@ def full(
*,
like: ArrayLike = ...,
) -> ndarray: ...
+
@overload
def full_like(
a: _ArrayType,
@@ -106,39 +111,73 @@ def full_like(
subok: bool = ...,
shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
+
@overload
def count_nonzero(
- a: ArrayLike, axis: None = ..., *, keepdims: Literal[False] = ...
+ a: ArrayLike,
+ axis: None = ...,
+ *,
+ keepdims: Literal[False] = ...,
) -> int: ...
@overload
def count_nonzero(
- a: ArrayLike, axis: _ShapeLike = ..., *, keepdims: bool = ...
-) -> Union[signedinteger[Any], ndarray]: ... # TODO: np.intp
+ a: ArrayLike,
+ axis: _ShapeLike = ...,
+ *,
+ keepdims: bool = ...,
+) -> Any: ... # TODO: np.intp or ndarray[np.intp]
+
def isfortran(a: Union[ndarray, generic]) -> bool: ...
+
def argwhere(a: ArrayLike) -> ndarray: ...
+
def flatnonzero(a: ArrayLike) -> ndarray: ...
-def correlate(a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ...) -> ndarray: ...
-def convolve(a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ...) -> ndarray: ...
+
+def correlate(
+ a: ArrayLike,
+ v: ArrayLike,
+ mode: _CorrelateMode = ...,
+) -> ndarray: ...
+
+def convolve(
+ a: ArrayLike,
+ v: ArrayLike,
+ mode: _CorrelateMode = ...,
+) -> ndarray: ...
+
@overload
-def outer(a: ArrayLike, b: ArrayLike, out: None = ...) -> ndarray: ...
+def outer(
+ a: ArrayLike,
+ b: ArrayLike,
+ out: None = ...,
+) -> ndarray: ...
@overload
-def outer(a: ArrayLike, b: ArrayLike, out: _ArrayType = ...) -> _ArrayType: ...
+def outer(
+ a: ArrayLike,
+ b: ArrayLike,
+ out: _ArrayType = ...,
+) -> _ArrayType: ...
+
def tensordot(
a: ArrayLike,
b: ArrayLike,
axes: Union[int, Tuple[_ShapeLike, _ShapeLike]] = ...,
) -> ndarray: ...
+
def roll(
a: ArrayLike,
shift: _ShapeLike,
axis: Optional[_ShapeLike] = ...,
) -> ndarray: ...
+
def rollaxis(a: ndarray, axis: int, start: int = ...) -> ndarray: ...
+
def moveaxis(
a: ndarray,
source: _ShapeLike,
destination: _ShapeLike,
) -> ndarray: ...
+
def cross(
a: ArrayLike,
b: ArrayLike,
@@ -147,6 +186,7 @@ def cross(
axisc: int = ...,
axis: Optional[int] = ...,
) -> ndarray: ...
+
@overload
def indices(
dimensions: Sequence[int],
@@ -159,6 +199,7 @@ def indices(
dtype: DTypeLike = ...,
sparse: Literal[True] = ...,
) -> Tuple[ndarray, ...]: ...
+
def fromfunction(
function: Callable[..., _T],
shape: Sequence[int],
@@ -167,10 +208,20 @@ def fromfunction(
like: ArrayLike = ...,
**kwargs: Any,
) -> _T: ...
+
def isscalar(element: Any) -> bool: ...
+
def binary_repr(num: int, width: Optional[int] = ...) -> str: ...
+
def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ...
-def identity(n: int, dtype: DTypeLike = ..., *, like: ArrayLike = ...) -> ndarray: ...
+
+def identity(
+ n: int,
+ dtype: DTypeLike = ...,
+ *,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+
def allclose(
a: ArrayLike,
b: ArrayLike,
@@ -178,12 +229,15 @@ def allclose(
atol: float = ...,
equal_nan: bool = ...,
) -> bool: ...
+
def isclose(
a: ArrayLike,
b: ArrayLike,
rtol: float = ...,
atol: float = ...,
equal_nan: bool = ...,
-) -> Union[bool_, ndarray]: ...
+) -> Any: ...
+
def array_equal(a1: ArrayLike, a2: ArrayLike) -> bool: ...
+
def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...
diff --git a/numpy/lib/index_tricks.pyi b/numpy/lib/index_tricks.pyi
index 3e5bc1adb..e486fe8f2 100644
--- a/numpy/lib/index_tricks.pyi
+++ b/numpy/lib/index_tricks.pyi
@@ -17,6 +17,7 @@ from numpy import (
ndindex as ndindex,
ndarray,
dtype,
+ integer,
str_,
bytes_,
bool_,
@@ -33,7 +34,6 @@ from numpy.typing import (
_NestedSequence,
_RecursiveSequence,
_ArrayND,
- _ArrayOrScalar,
_ArrayLikeInt,
# DTypes
@@ -57,18 +57,33 @@ _ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
__all__: List[str]
+@overload
+def unravel_index( # type: ignore[misc]
+ indices: Union[int, integer[Any]],
+ shape: _ShapeLike,
+ order: _OrderCF = ...
+) -> Tuple[intp, ...]: ...
+@overload
def unravel_index(
indices: _ArrayLikeInt,
shape: _ShapeLike,
order: _OrderCF = ...
-) -> Tuple[_ArrayOrScalar[intp], ...]: ...
+) -> Tuple[_ArrayND[intp], ...]: ...
+@overload
+def ravel_multi_index( # type: ignore[misc]
+ multi_index: Sequence[Union[int, integer[Any]]],
+ dims: _ShapeLike,
+ mode: Union[_ModeKind, Tuple[_ModeKind, ...]] = ...,
+ order: _OrderCF = ...
+) -> intp: ...
+@overload
def ravel_multi_index(
- multi_index: ArrayLike,
+ multi_index: Sequence[_ArrayLikeInt],
dims: _ShapeLike,
mode: Union[_ModeKind, Tuple[_ModeKind, ...]] = ...,
order: _OrderCF = ...
-) -> _ArrayOrScalar[intp]: ...
+) -> _ArrayND[intp]: ...
@overload
def ix_(*args: _NestedSequence[_SupportsDType[_DType]]) -> Tuple[ndarray[Any, _DType], ...]: ...
diff --git a/numpy/lib/ufunclike.pyi b/numpy/lib/ufunclike.pyi
index 3443fa7ae..e97383af8 100644
--- a/numpy/lib/ufunclike.pyi
+++ b/numpy/lib/ufunclike.pyi
@@ -1,10 +1,11 @@
from typing import Any, overload, TypeVar, List, Union
-from numpy import floating, bool_, ndarray
+from numpy import floating, bool_, object_, ndarray
from numpy.typing import (
+ _ArrayND,
+ _FloatLike_co,
_ArrayLikeFloat_co,
_ArrayLikeObject_co,
- _ArrayOrScalar,
)
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
@@ -12,15 +13,20 @@ _ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
__all__: List[str]
@overload
+def fix( # type: ignore[misc]
+ x: _FloatLike_co,
+ out: None = ...,
+) -> floating[Any]: ...
+@overload
def fix(
x: _ArrayLikeFloat_co,
out: None = ...,
-) -> _ArrayOrScalar[floating[Any]]: ...
+) -> _ArrayND[floating[Any]]: ...
@overload
def fix(
x: _ArrayLikeObject_co,
out: None = ...,
-) -> Any: ...
+) -> _ArrayND[object_]: ...
@overload
def fix(
x: Union[_ArrayLikeFloat_co, _ArrayLikeObject_co],
@@ -28,10 +34,15 @@ def fix(
) -> _ArrayType: ...
@overload
+def isposinf( # type: ignore[misc]
+ x: _FloatLike_co,
+ out: None = ...,
+) -> bool_: ...
+@overload
def isposinf(
x: _ArrayLikeFloat_co,
out: None = ...,
-) -> _ArrayOrScalar[bool_]: ...
+) -> _ArrayND[bool_]: ...
@overload
def isposinf(
x: _ArrayLikeFloat_co,
@@ -39,10 +50,15 @@ def isposinf(
) -> _ArrayType: ...
@overload
+def isneginf( # type: ignore[misc]
+ x: _FloatLike_co,
+ out: None = ...,
+) -> bool_: ...
+@overload
def isneginf(
x: _ArrayLikeFloat_co,
out: None = ...,
-) -> _ArrayOrScalar[bool_]: ...
+) -> _ArrayND[bool_]: ...
@overload
def isneginf(
x: _ArrayLikeFloat_co,
diff --git a/numpy/typing/__init__.py b/numpy/typing/__init__.py
index d71ec0719..a2d4c60fb 100644
--- a/numpy/typing/__init__.py
+++ b/numpy/typing/__init__.py
@@ -140,6 +140,20 @@ Timedelta64
The `~numpy.timedelta64` class is not considered a subclass of `~numpy.signedinteger`,
the former only inheriting from `~numpy.generic` while static type checking.
+0D arrays
+~~~~~~~~~
+
+During runtime numpy aggressively casts any passed 0D arrays into their
+corresponding `~numpy.generic` instance. Until the introduction of shape
+typing (see :pep:`646`) it is unfortunately not possible to make the
+necessary distinction between 0D and >0D arrays. While thus not strictly
+correct, all operations are that can potentially perform a 0D-array -> scalar
+cast are currently annotated as exclusively returning an `ndarray`.
+
+If it is known in advance that an operation _will_ perform a
+0D-array -> scalar cast, then one can consider manually remedying the
+situation with either `typing.cast` or a ``# type: ignore`` comment.
+
API
---
@@ -326,7 +340,6 @@ from ._array_like import (
_RecursiveSequence,
_SupportsArray,
_ArrayND,
- _ArrayOrScalar,
_ArrayLikeInt,
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
diff --git a/numpy/typing/_array_like.py b/numpy/typing/_array_like.py
index eb8d3f4e1..582d3db9a 100644
--- a/numpy/typing/_array_like.py
+++ b/numpy/typing/_array_like.py
@@ -132,7 +132,5 @@ _ArrayLikeInt = _ArrayLike[
if TYPE_CHECKING:
_ArrayND = ndarray[Any, dtype[_ScalarType]]
- _ArrayOrScalar = Union[_ScalarType, _ArrayND[_ScalarType]]
else:
_ArrayND = Any
- _ArrayOrScalar = Any
diff --git a/numpy/typing/_callable.py b/numpy/typing/_callable.py
index 23cabd47a..30c210b62 100644
--- a/numpy/typing/_callable.py
+++ b/numpy/typing/_callable.py
@@ -47,7 +47,7 @@ from ._scalars import (
_NumberLike_co,
)
from . import NBitBase
-from ._array_like import ArrayLike, _ArrayOrScalar
+from ._array_like import ArrayLike, _ArrayND
if sys.version_info >= (3, 8):
from typing import Protocol
@@ -168,7 +168,7 @@ if TYPE_CHECKING or HAVE_PROTOCOL:
@overload
def __call__(
self, __other: Union[int, signedinteger[Any]]
- ) -> Union[signedinteger[Any], float64]: ...
+ ) -> Any: ...
@overload
def __call__(self, __other: float) -> floating[Union[_NBit1, _NBitDouble]]: ...
@overload
@@ -198,7 +198,7 @@ if TYPE_CHECKING or HAVE_PROTOCOL:
@overload
def __call__(
self, __other: Union[int, signedinteger[Any]]
- ) -> Union[signedinteger[Any], float64]: ...
+ ) -> Any: ...
@overload
def __call__(self, __other: float) -> floating[Union[_NBit1, _NBitDouble]]: ...
@overload
@@ -212,7 +212,7 @@ if TYPE_CHECKING or HAVE_PROTOCOL:
@overload
def __call__(
self, __other: Union[int, signedinteger[Any]]
- ) -> Union[_2Tuple[signedinteger[Any]], _2Tuple[float64]]: ...
+ ) -> _2Tuple[Any]: ...
@overload
def __call__(self, __other: float) -> _2Tuple[floating[Union[_NBit1, _NBitDouble]]]: ...
@overload
@@ -336,7 +336,7 @@ if TYPE_CHECKING or HAVE_PROTOCOL:
@overload
def __call__(self, __other: _T1) -> bool_: ...
@overload
- def __call__(self, __other: _T2) -> _ArrayOrScalar[bool_]: ...
+ def __call__(self, __other: _T2) -> _ArrayND[bool_]: ...
else:
_BoolOp = Any
diff --git a/numpy/typing/tests/data/fail/fromnumeric.py b/numpy/typing/tests/data/fail/fromnumeric.py
index c9156895d..d8f7a5d69 100644
--- a/numpy/typing/tests/data/fail/fromnumeric.py
+++ b/numpy/typing/tests/data/fail/fromnumeric.py
@@ -7,17 +7,17 @@ A.setflags(write=False)
a = np.bool_(True)
-np.take(a, None) # E: No overload variant of "take" matches argument type
-np.take(a, axis=1.0) # E: No overload variant of "take" matches argument type
-np.take(A, out=1) # E: No overload variant of "take" matches argument type
-np.take(A, mode="bob") # E: No overload variant of "take" matches argument type
+np.take(a, None) # E: incompatible type
+np.take(a, axis=1.0) # E: incompatible type
+np.take(A, out=1) # E: incompatible type
+np.take(A, mode="bob") # E: incompatible type
np.reshape(a, None) # E: Argument 2 to "reshape" has incompatible type
np.reshape(A, 1, order="bob") # E: Argument "order" to "reshape" has incompatible type
-np.choose(a, None) # E: No overload variant of "choose" matches argument type
-np.choose(a, out=1.0) # E: No overload variant of "choose" matches argument type
-np.choose(A, mode="bob") # E: No overload variant of "choose" matches argument type
+np.choose(a, None) # E: incompatible type
+np.choose(a, out=1.0) # E: incompatible type
+np.choose(A, mode="bob") # E: incompatible type
np.repeat(a, None) # E: Argument 2 to "repeat" has incompatible type
np.repeat(A, 1, axis=1.0) # E: Argument "axis" to "repeat" has incompatible type
@@ -38,14 +38,14 @@ np.partition(
A, 0, order=range(5) # E: Argument "order" to "partition" has incompatible type
)
-np.argpartition( # E: No overload variant of "argpartition" matches argument type
- a, None
+np.argpartition(
+ a, None # E: incompatible type
)
-np.argpartition( # E: No overload variant of "argpartition" matches argument type
- a, 0, axis="bob"
+np.argpartition(
+ a, 0, axis="bob" # E: incompatible type
)
-np.argpartition( # E: No overload variant of "argpartition" matches argument type
- A, 0, kind="bob"
+np.argpartition(
+ A, 0, kind="bob" # E: incompatible type
)
np.argpartition(
A, 0, order=range(5) # E: Argument "order" to "argpartition" has incompatible type
@@ -93,62 +93,62 @@ np.compress(
np.clip(a, 1, 2, out=1) # E: No overload variant of "clip" matches argument type
np.clip(1, None, None) # E: No overload variant of "clip" matches argument type
-np.sum(a, axis=1.0) # E: No overload variant of "sum" matches argument type
-np.sum(a, keepdims=1.0) # E: No overload variant of "sum" matches argument type
-np.sum(a, initial=[1]) # E: No overload variant of "sum" matches argument type
+np.sum(a, axis=1.0) # E: incompatible type
+np.sum(a, keepdims=1.0) # E: incompatible type
+np.sum(a, initial=[1]) # E: incompatible type
-np.all(a, axis=1.0) # E: No overload variant of "all" matches argument type
-np.all(a, keepdims=1.0) # E: No overload variant of "all" matches argument type
-np.all(a, out=1.0) # E: No overload variant of "all" matches argument type
+np.all(a, axis=1.0) # E: No overload variant
+np.all(a, keepdims=1.0) # E: No overload variant
+np.all(a, out=1.0) # E: No overload variant
-np.any(a, axis=1.0) # E: No overload variant of "any" matches argument type
-np.any(a, keepdims=1.0) # E: No overload variant of "any" matches argument type
-np.any(a, out=1.0) # E: No overload variant of "any" matches argument type
+np.any(a, axis=1.0) # E: No overload variant
+np.any(a, keepdims=1.0) # E: No overload variant
+np.any(a, out=1.0) # E: No overload variant
-np.cumsum(a, axis=1.0) # E: Argument "axis" to "cumsum" has incompatible type
-np.cumsum(a, dtype=1.0) # E: Argument "dtype" to "cumsum" has incompatible type
-np.cumsum(a, out=1.0) # E: Argument "out" to "cumsum" has incompatible type
+np.cumsum(a, axis=1.0) # E: incompatible type
+np.cumsum(a, dtype=1.0) # E: incompatible type
+np.cumsum(a, out=1.0) # E: incompatible type
-np.ptp(a, axis=1.0) # E: No overload variant of "ptp" matches argument type
-np.ptp(a, keepdims=1.0) # E: No overload variant of "ptp" matches argument type
-np.ptp(a, out=1.0) # E: No overload variant of "ptp" matches argument type
+np.ptp(a, axis=1.0) # E: incompatible type
+np.ptp(a, keepdims=1.0) # E: incompatible type
+np.ptp(a, out=1.0) # E: incompatible type
-np.amax(a, axis=1.0) # E: No overload variant of "amax" matches argument type
-np.amax(a, keepdims=1.0) # E: No overload variant of "amax" matches argument type
-np.amax(a, out=1.0) # E: No overload variant of "amax" matches argument type
-np.amax(a, initial=[1.0]) # E: No overload variant of "amax" matches argument type
+np.amax(a, axis=1.0) # E: incompatible type
+np.amax(a, keepdims=1.0) # E: incompatible type
+np.amax(a, out=1.0) # E: incompatible type
+np.amax(a, initial=[1.0]) # E: incompatible type
np.amax(a, where=[1.0]) # E: List item 0 has incompatible type
-np.amin(a, axis=1.0) # E: No overload variant of "amin" matches argument type
-np.amin(a, keepdims=1.0) # E: No overload variant of "amin" matches argument type
-np.amin(a, out=1.0) # E: No overload variant of "amin" matches argument type
-np.amin(a, initial=[1.0]) # E: No overload variant of "amin" matches argument type
+np.amin(a, axis=1.0) # E: incompatible type
+np.amin(a, keepdims=1.0) # E: incompatible type
+np.amin(a, out=1.0) # E: incompatible type
+np.amin(a, initial=[1.0]) # E: incompatible type
np.amin(a, where=[1.0]) # E: List item 0 has incompatible type
-np.prod(a, axis=1.0) # E: No overload variant of "prod" matches argument type
-np.prod(a, out=False) # E: No overload variant of "prod" matches argument type
-np.prod(a, keepdims=1.0) # E: No overload variant of "prod" matches argument type
-np.prod(a, initial=int) # E: No overload variant of "prod" matches argument type
-np.prod(a, where=1.0) # E: No overload variant of "prod" matches argument type
+np.prod(a, axis=1.0) # E: incompatible type
+np.prod(a, out=False) # E: incompatible type
+np.prod(a, keepdims=1.0) # E: incompatible type
+np.prod(a, initial=int) # E: incompatible type
+np.prod(a, where=1.0) # E: incompatible type
np.cumprod(a, axis=1.0) # E: Argument "axis" to "cumprod" has incompatible type
np.cumprod(a, out=False) # E: Argument "out" to "cumprod" has incompatible type
np.size(a, axis=1.0) # E: Argument "axis" to "size" has incompatible type
-np.around(a, decimals=1.0) # E: No overload variant of "around" matches argument type
-np.around(a, out=type) # E: No overload variant of "around" matches argument type
+np.around(a, decimals=1.0) # E: incompatible type
+np.around(a, out=type) # E: incompatible type
-np.mean(a, axis=1.0) # E: No overload variant of "mean" matches argument type
-np.mean(a, out=False) # E: No overload variant of "mean" matches argument type
-np.mean(a, keepdims=1.0) # E: No overload variant of "mean" matches argument type
+np.mean(a, axis=1.0) # E: incompatible type
+np.mean(a, out=False) # E: incompatible type
+np.mean(a, keepdims=1.0) # E: incompatible type
-np.std(a, axis=1.0) # E: No overload variant of "std" matches argument type
-np.std(a, out=False) # E: No overload variant of "std" matches argument type
-np.std(a, ddof='test') # E: No overload variant of "std" matches argument type
-np.std(a, keepdims=1.0) # E: No overload variant of "std" matches argument type
+np.std(a, axis=1.0) # E: incompatible type
+np.std(a, out=False) # E: incompatible type
+np.std(a, ddof='test') # E: incompatible type
+np.std(a, keepdims=1.0) # E: incompatible type
-np.var(a, axis=1.0) # E: No overload variant of "var" matches argument type
-np.var(a, out=False) # E: No overload variant of "var" matches argument type
-np.var(a, ddof='test') # E: No overload variant of "var" matches argument type
-np.var(a, keepdims=1.0) # E: No overload variant of "var" matches argument type
+np.var(a, axis=1.0) # E: incompatible type
+np.var(a, out=False) # E: incompatible type
+np.var(a, ddof='test') # E: incompatible type
+np.var(a, keepdims=1.0) # E: incompatible type
diff --git a/numpy/typing/tests/data/fail/index_tricks.py b/numpy/typing/tests/data/fail/index_tricks.py
index cbc43fd54..c508bf3ae 100644
--- a/numpy/typing/tests/data/fail/index_tricks.py
+++ b/numpy/typing/tests/data/fail/index_tricks.py
@@ -5,7 +5,7 @@ AR_LIKE_i: List[int]
AR_LIKE_f: List[float]
np.unravel_index(AR_LIKE_f, (1, 2, 3)) # E: incompatible type
-np.ravel_multi_index(AR_LIKE_i, (1, 2, 3), mode="bob") # E: incompatible type
+np.ravel_multi_index(AR_LIKE_i, (1, 2, 3), mode="bob") # E: No overload variant
np.mgrid[1] # E: Invalid index type
np.mgrid[...] # E: Invalid index type
np.ogrid[1] # E: Invalid index type
diff --git a/numpy/typing/tests/data/reveal/arithmetic.py b/numpy/typing/tests/data/reveal/arithmetic.py
index 53a3a846d..f5d185206 100644
--- a/numpy/typing/tests/data/reveal/arithmetic.py
+++ b/numpy/typing/tests/data/reveal/arithmetic.py
@@ -45,104 +45,104 @@ AR_LIKE_O: List[np.object_]
# Array subtraction
-reveal_type(AR_b - AR_LIKE_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_b - AR_LIKE_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_b - AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_b - AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_b - AR_LIKE_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_b - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_b - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_b - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_b - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_b - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_b - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_u - AR_b) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_LIKE_i - AR_b) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_f - AR_b) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c - AR_b) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_m - AR_b) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_M - AR_b) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
+reveal_type(AR_LIKE_u - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_LIKE_i - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_f - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_m - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_M - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
reveal_type(AR_LIKE_O - AR_b) # E: Any
-reveal_type(AR_u - AR_LIKE_b) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_u - AR_LIKE_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_u - AR_LIKE_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_u - AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_u - AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_u - AR_LIKE_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_u - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_u - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_u - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_u - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_u - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_u - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_u - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b - AR_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_LIKE_u - AR_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_LIKE_i - AR_u) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_f - AR_u) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c - AR_u) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_m - AR_u) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_M - AR_u) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
+reveal_type(AR_LIKE_b - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_LIKE_u - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_LIKE_i - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_f - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_m - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_M - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
reveal_type(AR_LIKE_O - AR_u) # E: Any
-reveal_type(AR_i - AR_LIKE_b) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_i - AR_LIKE_u) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_i - AR_LIKE_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_i - AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_i - AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_i - AR_LIKE_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_i - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_i - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_i - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_i - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_i - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_i - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_i - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b - AR_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_u - AR_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_i - AR_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_f - AR_i) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c - AR_i) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_m - AR_i) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_M - AR_i) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
+reveal_type(AR_LIKE_b - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_u - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_i - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_f - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_m - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_M - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
reveal_type(AR_LIKE_O - AR_i) # E: Any
-reveal_type(AR_f - AR_LIKE_b) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f - AR_LIKE_u) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f - AR_LIKE_i) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f - AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f - AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_f - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_f - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b - AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_u - AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_i - AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_f - AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c - AR_f) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_LIKE_b - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_u - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_i - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_f - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_LIKE_O - AR_f) # E: Any
-reveal_type(AR_c - AR_LIKE_b) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c - AR_LIKE_u) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c - AR_LIKE_i) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c - AR_LIKE_f) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c - AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_c - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_c - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b - AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_u - AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_i - AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_f - AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_c - AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_LIKE_b - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_u - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_i - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_f - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_c - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_LIKE_O - AR_c) # E: Any
-reveal_type(AR_m - AR_LIKE_b) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_m - AR_LIKE_u) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_m - AR_LIKE_i) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_m - AR_LIKE_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_m - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_m - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_m - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_m - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_m - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b - AR_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_u - AR_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_i - AR_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_m - AR_m) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_LIKE_M - AR_m) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
+reveal_type(AR_LIKE_b - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_u - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_i - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_m - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_LIKE_M - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
reveal_type(AR_LIKE_O - AR_m) # E: Any
-reveal_type(AR_M - AR_LIKE_b) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
-reveal_type(AR_M - AR_LIKE_u) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
-reveal_type(AR_M - AR_LIKE_i) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
-reveal_type(AR_M - AR_LIKE_m) # E: Union[numpy.datetime64, numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]]
-reveal_type(AR_M - AR_LIKE_M) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_M - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
+reveal_type(AR_M - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
+reveal_type(AR_M - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
+reveal_type(AR_M - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]]
+reveal_type(AR_M - AR_LIKE_M) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_M - AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_M - AR_M) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_LIKE_M - AR_M) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_LIKE_O - AR_M) # E: Any
reveal_type(AR_O - AR_LIKE_b) # E: Any
@@ -165,86 +165,86 @@ reveal_type(AR_LIKE_O - AR_O) # E: Any
# Array floor division
-reveal_type(AR_b // AR_LIKE_b) # E: Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]]
-reveal_type(AR_b // AR_LIKE_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_b // AR_LIKE_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_b // AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_b // AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_b // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[{int8}]]
+reveal_type(AR_b // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_b // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_b // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_b // AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_b // AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b // AR_b) # E: Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]]
-reveal_type(AR_LIKE_u // AR_b) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_LIKE_i // AR_b) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_f // AR_b) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c // AR_b) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_LIKE_b // AR_b) # E: numpy.ndarray[Any, numpy.dtype[{int8}]]
+reveal_type(AR_LIKE_u // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_LIKE_i // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_f // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_LIKE_O // AR_b) # E: Any
-reveal_type(AR_u // AR_LIKE_b) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_u // AR_LIKE_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_u // AR_LIKE_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_u // AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_u // AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_u // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_u // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_u // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_u // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_u // AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_u // AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b // AR_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_LIKE_u // AR_u) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]]
-reveal_type(AR_LIKE_i // AR_u) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_f // AR_u) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c // AR_u) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_m // AR_u) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_LIKE_b // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_LIKE_u // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
+reveal_type(AR_LIKE_i // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_f // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_m // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_LIKE_O // AR_u) # E: Any
-reveal_type(AR_i // AR_LIKE_b) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_i // AR_LIKE_u) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_i // AR_LIKE_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_i // AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_i // AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_i // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_i // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_i // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_i // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_i // AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_i // AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b // AR_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_u // AR_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_i // AR_i) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
-reveal_type(AR_LIKE_f // AR_i) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c // AR_i) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_m // AR_i) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_LIKE_b // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_u // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_i // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(AR_LIKE_f // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_m // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_LIKE_O // AR_i) # E: Any
-reveal_type(AR_f // AR_LIKE_b) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f // AR_LIKE_u) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f // AR_LIKE_i) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f // AR_LIKE_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_f // AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_f // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_f // AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_f // AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b // AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_u // AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_i // AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_f // AR_f) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(AR_LIKE_c // AR_f) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_m // AR_f) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(AR_LIKE_b // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_u // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_i // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_f // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(AR_LIKE_c // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_m // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
reveal_type(AR_LIKE_O // AR_f) # E: Any
-reveal_type(AR_c // AR_LIKE_b) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c // AR_LIKE_u) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c // AR_LIKE_i) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c // AR_LIKE_f) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_c // AR_LIKE_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_c // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_c // AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_c // AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_b // AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_u // AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_i // AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_f // AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
-reveal_type(AR_LIKE_c // AR_c) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+reveal_type(AR_LIKE_b // AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_u // AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_i // AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_f // AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(AR_LIKE_c // AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(AR_LIKE_O // AR_c) # E: Any
-reveal_type(AR_m // AR_LIKE_u) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_m // AR_LIKE_i) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_m // AR_LIKE_f) # E: Union[numpy.timedelta64, numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
-reveal_type(AR_m // AR_LIKE_m) # E: Union[{int64}, numpy.ndarray[Any, numpy.dtype[{int64}]]]
+reveal_type(AR_m // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_m // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_m // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]
+reveal_type(AR_m // AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[{int64}]]
reveal_type(AR_m // AR_LIKE_O) # E: Any
-reveal_type(AR_LIKE_m // AR_m) # E: Union[{int64}, numpy.ndarray[Any, numpy.dtype[{int64}]]]
+reveal_type(AR_LIKE_m // AR_m) # E: numpy.ndarray[Any, numpy.dtype[{int64}]]
reveal_type(AR_LIKE_O // AR_m) # E: Any
reveal_type(AR_O // AR_LIKE_b) # E: Any
@@ -472,9 +472,9 @@ reveal_type(AR_f + f4) # E: Any
# Int
reveal_type(i8 + i8) # E: {int64}
-reveal_type(i8 + u8) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(i8 + u8) # E: Any
reveal_type(i8 + i4) # E: {int64}
-reveal_type(i8 + u4) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(i8 + u4) # E: Any
reveal_type(i8 + b_) # E: {int64}
reveal_type(i8 + b) # E: {int64}
reveal_type(i8 + c) # E: {complex128}
@@ -483,19 +483,19 @@ reveal_type(i8 + i) # E: {int64}
reveal_type(i8 + AR_f) # E: Any
reveal_type(u8 + u8) # E: {uint64}
-reveal_type(u8 + i4) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(u8 + i4) # E: Any
reveal_type(u8 + u4) # E: {uint64}
reveal_type(u8 + b_) # E: {uint64}
reveal_type(u8 + b) # E: {uint64}
reveal_type(u8 + c) # E: {complex128}
reveal_type(u8 + f) # E: {float64}
-reveal_type(u8 + i) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(u8 + i) # E: Any
reveal_type(u8 + AR_f) # E: Any
reveal_type(i8 + i8) # E: {int64}
-reveal_type(u8 + i8) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(u8 + i8) # E: Any
reveal_type(i4 + i8) # E: {int64}
-reveal_type(u4 + i8) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(u4 + i8) # E: Any
reveal_type(b_ + i8) # E: {int64}
reveal_type(b + i8) # E: {int64}
reveal_type(c + i8) # E: {complex128}
@@ -504,13 +504,13 @@ reveal_type(i + i8) # E: {int64}
reveal_type(AR_f + i8) # E: Any
reveal_type(u8 + u8) # E: {uint64}
-reveal_type(i4 + u8) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(i4 + u8) # E: Any
reveal_type(u4 + u8) # E: {uint64}
reveal_type(b_ + u8) # E: {uint64}
reveal_type(b + u8) # E: {uint64}
reveal_type(c + u8) # E: {complex128}
reveal_type(f + u8) # E: {float64}
-reveal_type(i + u8) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(i + u8) # E: Any
reveal_type(AR_f + u8) # E: Any
reveal_type(i4 + i8) # E: {int64}
@@ -520,11 +520,11 @@ reveal_type(i4 + b_) # E: {int32}
reveal_type(i4 + b) # E: {int32}
reveal_type(i4 + AR_f) # E: Any
-reveal_type(u4 + i8) # E: Union[numpy.signedinteger[Any], {float64}]
-reveal_type(u4 + i4) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(u4 + i8) # E: Any
+reveal_type(u4 + i4) # E: Any
reveal_type(u4 + u8) # E: {uint64}
reveal_type(u4 + u4) # E: {uint32}
-reveal_type(u4 + i) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(u4 + i) # E: Any
reveal_type(u4 + b_) # E: {uint32}
reveal_type(u4 + b) # E: {uint32}
reveal_type(u4 + AR_f) # E: Any
@@ -536,11 +536,11 @@ reveal_type(b_ + i4) # E: {int32}
reveal_type(b + i4) # E: {int32}
reveal_type(AR_f + i4) # E: Any
-reveal_type(i8 + u4) # E: Union[numpy.signedinteger[Any], {float64}]
-reveal_type(i4 + u4) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(i8 + u4) # E: Any
+reveal_type(i4 + u4) # E: Any
reveal_type(u8 + u4) # E: {uint64}
reveal_type(u4 + u4) # E: {uint32}
reveal_type(b_ + u4) # E: {uint32}
reveal_type(b + u4) # E: {uint32}
-reveal_type(i + u4) # E: Union[numpy.signedinteger[Any], {float64}]
+reveal_type(i + u4) # E: Any
reveal_type(AR_f + u4) # E: Any
diff --git a/numpy/typing/tests/data/reveal/array_constructors.py b/numpy/typing/tests/data/reveal/array_constructors.py
index 04d5cd229..2e803a365 100644
--- a/numpy/typing/tests/data/reveal/array_constructors.py
+++ b/numpy/typing/tests/data/reveal/array_constructors.py
@@ -41,7 +41,7 @@ reveal_type(np.require(B, requirements="A")) # E: SubClass
reveal_type(np.require(C)) # E: numpy.ndarray[Any, Any]
reveal_type(np.linspace(0, 10)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[numpy.ndarray[Any, Any], numpy.inexact[Any]]
+reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[numpy.ndarray[Any, Any], Any]
reveal_type(np.logspace(0, 10)) # E: numpy.ndarray[Any, Any]
reveal_type(np.geomspace(1, 10)) # E: numpy.ndarray[Any, Any]
diff --git a/numpy/typing/tests/data/reveal/comparisons.py b/numpy/typing/tests/data/reveal/comparisons.py
index 5053a9e82..16f21cc39 100644
--- a/numpy/typing/tests/data/reveal/comparisons.py
+++ b/numpy/typing/tests/data/reveal/comparisons.py
@@ -34,12 +34,12 @@ reveal_type(td > i) # E: numpy.bool_
reveal_type(td > i4) # E: numpy.bool_
reveal_type(td > i8) # E: numpy.bool_
-reveal_type(td > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(td > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(AR > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(AR > td) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > td) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(td > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(td > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(AR > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(AR > td) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > td) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
# boolean
@@ -56,8 +56,8 @@ reveal_type(b_ > f4) # E: numpy.bool_
reveal_type(b_ > c) # E: numpy.bool_
reveal_type(b_ > c16) # E: numpy.bool_
reveal_type(b_ > c8) # E: numpy.bool_
-reveal_type(b_ > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(b_ > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(b_ > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(b_ > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
# Complex
@@ -72,8 +72,8 @@ reveal_type(c16 > b) # E: numpy.bool_
reveal_type(c16 > c) # E: numpy.bool_
reveal_type(c16 > f) # E: numpy.bool_
reveal_type(c16 > i) # E: numpy.bool_
-reveal_type(c16 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(c16 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(c16 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(c16 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(c16 > c16) # E: numpy.bool_
reveal_type(f8 > c16) # E: numpy.bool_
@@ -86,8 +86,8 @@ reveal_type(b > c16) # E: numpy.bool_
reveal_type(c > c16) # E: numpy.bool_
reveal_type(f > c16) # E: numpy.bool_
reveal_type(i > c16) # E: numpy.bool_
-reveal_type(AR > c16) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > c16) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > c16) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > c16) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(c8 > c16) # E: numpy.bool_
reveal_type(c8 > f8) # E: numpy.bool_
@@ -100,8 +100,8 @@ reveal_type(c8 > b) # E: numpy.bool_
reveal_type(c8 > c) # E: numpy.bool_
reveal_type(c8 > f) # E: numpy.bool_
reveal_type(c8 > i) # E: numpy.bool_
-reveal_type(c8 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(c8 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(c8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(c8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(c16 > c8) # E: numpy.bool_
reveal_type(f8 > c8) # E: numpy.bool_
@@ -114,8 +114,8 @@ reveal_type(b > c8) # E: numpy.bool_
reveal_type(c > c8) # E: numpy.bool_
reveal_type(f > c8) # E: numpy.bool_
reveal_type(i > c8) # E: numpy.bool_
-reveal_type(AR > c8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > c8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > c8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > c8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
# Float
@@ -128,8 +128,8 @@ reveal_type(f8 > b) # E: numpy.bool_
reveal_type(f8 > c) # E: numpy.bool_
reveal_type(f8 > f) # E: numpy.bool_
reveal_type(f8 > i) # E: numpy.bool_
-reveal_type(f8 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(f8 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(f8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(f8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(f8 > f8) # E: numpy.bool_
reveal_type(i8 > f8) # E: numpy.bool_
@@ -140,8 +140,8 @@ reveal_type(b > f8) # E: numpy.bool_
reveal_type(c > f8) # E: numpy.bool_
reveal_type(f > f8) # E: numpy.bool_
reveal_type(i > f8) # E: numpy.bool_
-reveal_type(AR > f8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > f8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > f8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > f8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(f4 > f8) # E: numpy.bool_
reveal_type(f4 > i8) # E: numpy.bool_
@@ -152,8 +152,8 @@ reveal_type(f4 > b) # E: numpy.bool_
reveal_type(f4 > c) # E: numpy.bool_
reveal_type(f4 > f) # E: numpy.bool_
reveal_type(f4 > i) # E: numpy.bool_
-reveal_type(f4 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(f4 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(f4 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(f4 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(f8 > f4) # E: numpy.bool_
reveal_type(i8 > f4) # E: numpy.bool_
@@ -164,8 +164,8 @@ reveal_type(b > f4) # E: numpy.bool_
reveal_type(c > f4) # E: numpy.bool_
reveal_type(f > f4) # E: numpy.bool_
reveal_type(i > f4) # E: numpy.bool_
-reveal_type(AR > f4) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > f4) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > f4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > f4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
# Int
@@ -178,8 +178,8 @@ reveal_type(i8 > b) # E: numpy.bool_
reveal_type(i8 > c) # E: numpy.bool_
reveal_type(i8 > f) # E: numpy.bool_
reveal_type(i8 > i) # E: numpy.bool_
-reveal_type(i8 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(i8 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(i8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(i8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(u8 > u8) # E: numpy.bool_
reveal_type(u8 > i4) # E: numpy.bool_
@@ -189,8 +189,8 @@ reveal_type(u8 > b) # E: numpy.bool_
reveal_type(u8 > c) # E: numpy.bool_
reveal_type(u8 > f) # E: numpy.bool_
reveal_type(u8 > i) # E: numpy.bool_
-reveal_type(u8 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(u8 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(u8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(u8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(i8 > i8) # E: numpy.bool_
reveal_type(u8 > i8) # E: numpy.bool_
@@ -201,8 +201,8 @@ reveal_type(b > i8) # E: numpy.bool_
reveal_type(c > i8) # E: numpy.bool_
reveal_type(f > i8) # E: numpy.bool_
reveal_type(i > i8) # E: numpy.bool_
-reveal_type(AR > i8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > i8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > i8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > i8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(u8 > u8) # E: numpy.bool_
reveal_type(i4 > u8) # E: numpy.bool_
@@ -212,16 +212,16 @@ reveal_type(b > u8) # E: numpy.bool_
reveal_type(c > u8) # E: numpy.bool_
reveal_type(f > u8) # E: numpy.bool_
reveal_type(i > u8) # E: numpy.bool_
-reveal_type(AR > u8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > u8) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > u8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > u8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(i4 > i8) # E: numpy.bool_
reveal_type(i4 > i4) # E: numpy.bool_
reveal_type(i4 > i) # E: numpy.bool_
reveal_type(i4 > b_) # E: numpy.bool_
reveal_type(i4 > b) # E: numpy.bool_
-reveal_type(i4 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(i4 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(i4 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(i4 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(u4 > i8) # E: numpy.bool_
reveal_type(u4 > i4) # E: numpy.bool_
@@ -230,16 +230,16 @@ reveal_type(u4 > u4) # E: numpy.bool_
reveal_type(u4 > i) # E: numpy.bool_
reveal_type(u4 > b_) # E: numpy.bool_
reveal_type(u4 > b) # E: numpy.bool_
-reveal_type(u4 > AR) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(u4 > SEQ) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(u4 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(u4 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(i8 > i4) # E: numpy.bool_
reveal_type(i4 > i4) # E: numpy.bool_
reveal_type(i > i4) # E: numpy.bool_
reveal_type(b_ > i4) # E: numpy.bool_
reveal_type(b > i4) # E: numpy.bool_
-reveal_type(AR > i4) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > i4) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > i4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > i4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(i8 > u4) # E: numpy.bool_
reveal_type(i4 > u4) # E: numpy.bool_
@@ -248,5 +248,5 @@ reveal_type(u4 > u4) # E: numpy.bool_
reveal_type(b_ > u4) # E: numpy.bool_
reveal_type(b > u4) # E: numpy.bool_
reveal_type(i > u4) # E: numpy.bool_
-reveal_type(AR > u4) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(SEQ > u4) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(AR > u4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(SEQ > u4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
diff --git a/numpy/typing/tests/data/reveal/einsumfunc.py b/numpy/typing/tests/data/reveal/einsumfunc.py
index 18c192b0b..f1a90428d 100644
--- a/numpy/typing/tests/data/reveal/einsumfunc.py
+++ b/numpy/typing/tests/data/reveal/einsumfunc.py
@@ -10,17 +10,17 @@ AR_LIKE_U: List[str]
OUT_f: np.ndarray[Any, np.dtype[np.float64]]
-reveal_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
-reveal_type(np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u)) # E: Union[numpy.unsignedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]]
-reveal_type(np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
-reveal_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f)) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
-reveal_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c)) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
-reveal_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
-reveal_type(np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b)) # E: Any
+reveal_type(np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u)) # E: Any
+reveal_type(np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i)) # E: Any
+reveal_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f)) # E: Any
+reveal_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c)) # E: Any
+reveal_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i)) # E: Any
+reveal_type(np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)) # E: Any
reveal_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c, out=OUT_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]
reveal_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe", out=OUT_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]
-reveal_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16")) # E: Union[numpy.complexfloating[Any, Any], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16")) # E: Any
reveal_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe")) # E: Any
reveal_type(np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b)) # E: Tuple[builtins.list[Any], builtins.str]
diff --git a/numpy/typing/tests/data/reveal/fromnumeric.py b/numpy/typing/tests/data/reveal/fromnumeric.py
index 2b58f019f..bbcfbb85a 100644
--- a/numpy/typing/tests/data/reveal/fromnumeric.py
+++ b/numpy/typing/tests/data/reveal/fromnumeric.py
@@ -12,27 +12,13 @@ b = np.float32(1.0)
c = 1.0
d = np.array(1.0, dtype=np.float32) # writeable
-reveal_type(np.take(a, 0)) # E: numpy.bool_
-reveal_type(np.take(b, 0)) # E: {float32}
-reveal_type(
- np.take(c, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta]
-)
-reveal_type(
- np.take(A, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta]
-)
-reveal_type(
- np.take(B, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta]
-)
-reveal_type(
- np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray[Any, Any]]
- A, [0]
- )
-)
-reveal_type(
- np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray[Any, Any]]
- B, [0]
- )
-)
+reveal_type(np.take(a, 0)) # E: Any
+reveal_type(np.take(b, 0)) # E: Any
+reveal_type(np.take(c, 0)) # E: Any
+reveal_type(np.take(A, 0)) # E: Any
+reveal_type(np.take(B, 0)) # E: Any
+reveal_type(np.take(A, [0])) # E: Any
+reveal_type(np.take(B, [0])) # E: Any
reveal_type(np.reshape(a, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.reshape(b, 1)) # E: numpy.ndarray[Any, Any]
@@ -40,8 +26,8 @@ reveal_type(np.reshape(c, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.reshape(A, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.reshape(B, 1)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.choose(a, [True, True])) # E: numpy.bool_
-reveal_type(np.choose(A, [True, True])) # E: numpy.ndarray[Any, Any]
+reveal_type(np.choose(a, [True, True])) # E: Any
+reveal_type(np.choose(A, [True, True])) # E: Any
reveal_type(np.repeat(a, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.repeat(b, 1)) # E: numpy.ndarray[Any, Any]
@@ -66,11 +52,11 @@ reveal_type(np.partition(c, 0, axis=None)) # E: numpy.ndarray[Any, Any]
reveal_type(np.partition(A, 0)) # E: numpy.ndarray[Any, Any]
reveal_type(np.partition(B, 0)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.argpartition(a, 0)) # E: {intp}
-reveal_type(np.argpartition(b, 0)) # E: {intp}
-reveal_type(np.argpartition(c, 0)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.argpartition(A, 0)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.argpartition(B, 0)) # E: numpy.ndarray[Any, Any]
+reveal_type(np.argpartition(a, 0)) # E: Any
+reveal_type(np.argpartition(b, 0)) # E: Any
+reveal_type(np.argpartition(c, 0)) # E: Any
+reveal_type(np.argpartition(A, 0)) # E: Any
+reveal_type(np.argpartition(B, 0)) # E: Any
reveal_type(np.sort(A, 0)) # E: numpy.ndarray[Any, Any]
reveal_type(np.sort(B, 0)) # E: numpy.ndarray[Any, Any]
@@ -80,13 +66,13 @@ reveal_type(np.argsort(B, 0)) # E: numpy.ndarray[Any, Any]
reveal_type(np.argmax(A)) # E: {intp}
reveal_type(np.argmax(B)) # E: {intp}
-reveal_type(np.argmax(A, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
-reveal_type(np.argmax(B, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
+reveal_type(np.argmax(A, axis=0)) # E: Any
+reveal_type(np.argmax(B, axis=0)) # E: Any
reveal_type(np.argmin(A)) # E: {intp}
reveal_type(np.argmin(B)) # E: {intp}
-reveal_type(np.argmin(A, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
-reveal_type(np.argmin(B, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
+reveal_type(np.argmin(A, axis=0)) # E: Any
+reveal_type(np.argmin(B, axis=0)) # E: Any
reveal_type(np.searchsorted(A[0], 0)) # E: {intp}
reveal_type(np.searchsorted(B[0], 0)) # E: {intp}
@@ -108,8 +94,8 @@ reveal_type(np.squeeze(B)) # E: numpy.ndarray[Any, Any]
reveal_type(np.diagonal(A)) # E: numpy.ndarray[Any, Any]
reveal_type(np.diagonal(B)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.trace(A)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.trace(B)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.trace(A)) # E: Any
+reveal_type(np.trace(B)) # E: Any
reveal_type(np.ravel(a)) # E: numpy.ndarray[Any, Any]
reveal_type(np.ravel(b)) # E: numpy.ndarray[Any, Any]
@@ -135,39 +121,39 @@ reveal_type(np.compress([True], c)) # E: numpy.ndarray[Any, Any]
reveal_type(np.compress([True], A)) # E: numpy.ndarray[Any, Any]
reveal_type(np.compress([True], B)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.clip(a, 0, 1.0)) # E: numpy.number[Any]
-reveal_type(np.clip(b, -1, 1)) # E: {float32}
-reveal_type(np.clip(c, 0, 1)) # E: numpy.number[Any]
-reveal_type(np.clip(A, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.clip(B, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.clip(a, 0, 1.0)) # E: Any
+reveal_type(np.clip(b, -1, 1)) # E: Any
+reveal_type(np.clip(c, 0, 1)) # E: Any
+reveal_type(np.clip(A, 0, 1)) # E: Any
+reveal_type(np.clip(B, 0, 1)) # E: Any
-reveal_type(np.sum(a)) # E: numpy.number[Any]
-reveal_type(np.sum(b)) # E: {float32}
-reveal_type(np.sum(c)) # E: numpy.number[Any]
-reveal_type(np.sum(A)) # E: numpy.number[Any]
-reveal_type(np.sum(B)) # E: numpy.number[Any]
-reveal_type(np.sum(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.sum(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.sum(a)) # E: Any
+reveal_type(np.sum(b)) # E: Any
+reveal_type(np.sum(c)) # E: Any
+reveal_type(np.sum(A)) # E: Any
+reveal_type(np.sum(B)) # E: Any
+reveal_type(np.sum(A, axis=0)) # E: Any
+reveal_type(np.sum(B, axis=0)) # E: Any
reveal_type(np.all(a)) # E: numpy.bool_
reveal_type(np.all(b)) # E: numpy.bool_
reveal_type(np.all(c)) # E: numpy.bool_
reveal_type(np.all(A)) # E: numpy.bool_
reveal_type(np.all(B)) # E: numpy.bool_
-reveal_type(np.all(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.all(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.all(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.all(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(np.all(A, axis=0)) # E: Any
+reveal_type(np.all(B, axis=0)) # E: Any
+reveal_type(np.all(A, keepdims=True)) # E: Any
+reveal_type(np.all(B, keepdims=True)) # E: Any
reveal_type(np.any(a)) # E: numpy.bool_
reveal_type(np.any(b)) # E: numpy.bool_
reveal_type(np.any(c)) # E: numpy.bool_
reveal_type(np.any(A)) # E: numpy.bool_
reveal_type(np.any(B)) # E: numpy.bool_
-reveal_type(np.any(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.any(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.any(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.any(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(np.any(A, axis=0)) # E: Any
+reveal_type(np.any(B, axis=0)) # E: Any
+reveal_type(np.any(A, keepdims=True)) # E: Any
+reveal_type(np.any(B, keepdims=True)) # E: Any
reveal_type(np.cumsum(a)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumsum(b)) # E: numpy.ndarray[Any, Any]
@@ -175,47 +161,47 @@ reveal_type(np.cumsum(c)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumsum(A)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumsum(B)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.ptp(a)) # E: numpy.number[Any]
-reveal_type(np.ptp(b)) # E: {float32}
-reveal_type(np.ptp(c)) # E: numpy.number[Any]
-reveal_type(np.ptp(A)) # E: numpy.number[Any]
-reveal_type(np.ptp(B)) # E: numpy.number[Any]
-reveal_type(np.ptp(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.ptp(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.ptp(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.ptp(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-
-reveal_type(np.amax(a)) # E: numpy.number[Any]
-reveal_type(np.amax(b)) # E: {float32}
-reveal_type(np.amax(c)) # E: numpy.number[Any]
-reveal_type(np.amax(A)) # E: numpy.number[Any]
-reveal_type(np.amax(B)) # E: numpy.number[Any]
-reveal_type(np.amax(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amax(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amax(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amax(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-
-reveal_type(np.amin(a)) # E: numpy.number[Any]
-reveal_type(np.amin(b)) # E: {float32}
-reveal_type(np.amin(c)) # E: numpy.number[Any]
-reveal_type(np.amin(A)) # E: numpy.number[Any]
-reveal_type(np.amin(B)) # E: numpy.number[Any]
-reveal_type(np.amin(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amin(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amin(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amin(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-
-reveal_type(np.prod(a)) # E: numpy.number[Any]
-reveal_type(np.prod(b)) # E: {float32}
-reveal_type(np.prod(c)) # E: numpy.number[Any]
-reveal_type(np.prod(A)) # E: numpy.number[Any]
-reveal_type(np.prod(B)) # E: numpy.number[Any]
-reveal_type(np.prod(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.prod(B, out=d)) # E: numpy.ndarray[Any, Any]
+reveal_type(np.ptp(a)) # E: Any
+reveal_type(np.ptp(b)) # E: Any
+reveal_type(np.ptp(c)) # E: Any
+reveal_type(np.ptp(A)) # E: Any
+reveal_type(np.ptp(B)) # E: Any
+reveal_type(np.ptp(A, axis=0)) # E: Any
+reveal_type(np.ptp(B, axis=0)) # E: Any
+reveal_type(np.ptp(A, keepdims=True)) # E: Any
+reveal_type(np.ptp(B, keepdims=True)) # E: Any
+
+reveal_type(np.amax(a)) # E: Any
+reveal_type(np.amax(b)) # E: Any
+reveal_type(np.amax(c)) # E: Any
+reveal_type(np.amax(A)) # E: Any
+reveal_type(np.amax(B)) # E: Any
+reveal_type(np.amax(A, axis=0)) # E: Any
+reveal_type(np.amax(B, axis=0)) # E: Any
+reveal_type(np.amax(A, keepdims=True)) # E: Any
+reveal_type(np.amax(B, keepdims=True)) # E: Any
+
+reveal_type(np.amin(a)) # E: Any
+reveal_type(np.amin(b)) # E: Any
+reveal_type(np.amin(c)) # E: Any
+reveal_type(np.amin(A)) # E: Any
+reveal_type(np.amin(B)) # E: Any
+reveal_type(np.amin(A, axis=0)) # E: Any
+reveal_type(np.amin(B, axis=0)) # E: Any
+reveal_type(np.amin(A, keepdims=True)) # E: Any
+reveal_type(np.amin(B, keepdims=True)) # E: Any
+
+reveal_type(np.prod(a)) # E: Any
+reveal_type(np.prod(b)) # E: Any
+reveal_type(np.prod(c)) # E: Any
+reveal_type(np.prod(A)) # E: Any
+reveal_type(np.prod(B)) # E: Any
+reveal_type(np.prod(A, axis=0)) # E: Any
+reveal_type(np.prod(B, axis=0)) # E: Any
+reveal_type(np.prod(A, keepdims=True)) # E: Any
+reveal_type(np.prod(B, keepdims=True)) # E: Any
+reveal_type(np.prod(b, out=d)) # E: Any
+reveal_type(np.prod(B, out=d)) # E: Any
reveal_type(np.cumprod(a)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumprod(b)) # E: numpy.ndarray[Any, Any]
@@ -235,44 +221,44 @@ reveal_type(np.size(c)) # E: int
reveal_type(np.size(A)) # E: int
reveal_type(np.size(B)) # E: int
-reveal_type(np.around(a)) # E: numpy.number[Any]
-reveal_type(np.around(b)) # E: {float32}
-reveal_type(np.around(c)) # E: numpy.number[Any]
-reveal_type(np.around(A)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.around(B)) # E: numpy.ndarray[Any, Any]
-
-reveal_type(np.mean(a)) # E: numpy.number[Any]
-reveal_type(np.mean(b)) # E: numpy.number[Any]
-reveal_type(np.mean(c)) # E: numpy.number[Any]
-reveal_type(np.mean(A)) # E: numpy.number[Any]
-reveal_type(np.mean(B)) # E: numpy.number[Any]
-reveal_type(np.mean(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.mean(B, out=d)) # E: numpy.ndarray[Any, Any]
-
-reveal_type(np.std(a)) # E: numpy.number[Any]
-reveal_type(np.std(b)) # E: numpy.number[Any]
-reveal_type(np.std(c)) # E: numpy.number[Any]
-reveal_type(np.std(A)) # E: numpy.number[Any]
-reveal_type(np.std(B)) # E: numpy.number[Any]
-reveal_type(np.std(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.std(B, out=d)) # E: numpy.ndarray[Any, Any]
-
-reveal_type(np.var(a)) # E: numpy.number[Any]
-reveal_type(np.var(b)) # E: numpy.number[Any]
-reveal_type(np.var(c)) # E: numpy.number[Any]
-reveal_type(np.var(A)) # E: numpy.number[Any]
-reveal_type(np.var(B)) # E: numpy.number[Any]
-reveal_type(np.var(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.var(B, out=d)) # E: numpy.ndarray[Any, Any]
+reveal_type(np.around(a)) # E: Any
+reveal_type(np.around(b)) # E: Any
+reveal_type(np.around(c)) # E: Any
+reveal_type(np.around(A)) # E: Any
+reveal_type(np.around(B)) # E: Any
+
+reveal_type(np.mean(a)) # E: Any
+reveal_type(np.mean(b)) # E: Any
+reveal_type(np.mean(c)) # E: Any
+reveal_type(np.mean(A)) # E: Any
+reveal_type(np.mean(B)) # E: Any
+reveal_type(np.mean(A, axis=0)) # E: Any
+reveal_type(np.mean(B, axis=0)) # E: Any
+reveal_type(np.mean(A, keepdims=True)) # E: Any
+reveal_type(np.mean(B, keepdims=True)) # E: Any
+reveal_type(np.mean(b, out=d)) # E: Any
+reveal_type(np.mean(B, out=d)) # E: Any
+
+reveal_type(np.std(a)) # E: Any
+reveal_type(np.std(b)) # E: Any
+reveal_type(np.std(c)) # E: Any
+reveal_type(np.std(A)) # E: Any
+reveal_type(np.std(B)) # E: Any
+reveal_type(np.std(A, axis=0)) # E: Any
+reveal_type(np.std(B, axis=0)) # E: Any
+reveal_type(np.std(A, keepdims=True)) # E: Any
+reveal_type(np.std(B, keepdims=True)) # E: Any
+reveal_type(np.std(b, out=d)) # E: Any
+reveal_type(np.std(B, out=d)) # E: Any
+
+reveal_type(np.var(a)) # E: Any
+reveal_type(np.var(b)) # E: Any
+reveal_type(np.var(c)) # E: Any
+reveal_type(np.var(A)) # E: Any
+reveal_type(np.var(B)) # E: Any
+reveal_type(np.var(A, axis=0)) # E: Any
+reveal_type(np.var(B, axis=0)) # E: Any
+reveal_type(np.var(A, keepdims=True)) # E: Any
+reveal_type(np.var(B, keepdims=True)) # E: Any
+reveal_type(np.var(b, out=d)) # E: Any
+reveal_type(np.var(B, out=d)) # E: Any
diff --git a/numpy/typing/tests/data/reveal/index_tricks.py b/numpy/typing/tests/data/reveal/index_tricks.py
index ec2013025..863d60220 100644
--- a/numpy/typing/tests/data/reveal/index_tricks.py
+++ b/numpy/typing/tests/data/reveal/index_tricks.py
@@ -27,15 +27,16 @@ reveal_type(iter(np.ndenumerate(AR_LIKE_U))) # E: Iterator[Tuple[builtins.tuple
reveal_type(iter(np.ndindex(1, 2, 3))) # E: Iterator[builtins.tuple[builtins.int]]
reveal_type(next(np.ndindex(1, 2, 3))) # E: builtins.tuple[builtins.int]
-reveal_type(np.unravel_index([22, 41, 37], (7, 6))) # E: tuple[Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]]
-reveal_type(np.unravel_index([31, 41, 13], (7, 6), order="F")) # E: tuple[Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]]
-reveal_type(np.unravel_index(1621, (6, 7, 8, 9))) # E: tuple[Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]]
-
-reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6))) # E: Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]
-reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6), order="F")) # E: Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]
-reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 6), mode="clip")) # E: Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]
-reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=("clip", "wrap"))) # E: Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]
-reveal_type(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9))) # E: Union[{intp}, numpy.ndarray[Any, numpy.dtype[{intp}]]]
+reveal_type(np.unravel_index([22, 41, 37], (7, 6))) # E: tuple[numpy.ndarray[Any, numpy.dtype[{intp}]]]
+reveal_type(np.unravel_index([31, 41, 13], (7, 6), order="F")) # E: tuple[numpy.ndarray[Any, numpy.dtype[{intp}]]]
+reveal_type(np.unravel_index(1621, (6, 7, 8, 9))) # E: tuple[{intp}]
+
+reveal_type(np.ravel_multi_index([[1]], (7, 6))) # E: numpy.ndarray[Any, numpy.dtype[{intp}]]
+reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6))) # E: {intp}
+reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6), order="F")) # E: {intp}
+reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 6), mode="clip")) # E: {intp}
+reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=("clip", "wrap"))) # E: {intp}
+reveal_type(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9))) # E: {intp}
reveal_type(np.mgrid[1:1:2]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
reveal_type(np.mgrid[1:1:2, None:10]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
diff --git a/numpy/typing/tests/data/reveal/mod.py b/numpy/typing/tests/data/reveal/mod.py
index 4a913f11a..bf45b8c58 100644
--- a/numpy/typing/tests/data/reveal/mod.py
+++ b/numpy/typing/tests/data/reveal/mod.py
@@ -26,8 +26,8 @@ reveal_type(AR_m % td) # E: Any
reveal_type(td % AR_m) # E: Any
reveal_type(divmod(td, td)) # E: Tuple[{int64}, numpy.timedelta64]
-reveal_type(divmod(AR_m, td)) # E: Union[Tuple[numpy.signedinteger[numpy.typing._64Bit], numpy.timedelta64], Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]]
-reveal_type(divmod(td, AR_m)) # E: Union[Tuple[numpy.signedinteger[numpy.typing._64Bit], numpy.timedelta64], Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]]
+reveal_type(divmod(AR_m, td)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
+reveal_type(divmod(td, AR_m)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
# Bool
@@ -38,7 +38,7 @@ reveal_type(b_ % b_) # E: {int8}
reveal_type(b_ % i8) # E: {int64}
reveal_type(b_ % u8) # E: {uint64}
reveal_type(b_ % f8) # E: {float64}
-reveal_type(b_ % AR_b) # E: Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]]
+reveal_type(b_ % AR_b) # E: numpy.ndarray[Any, numpy.dtype[{int8}]]
reveal_type(divmod(b_, b)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(b_, i)) # E: Tuple[{int_}, {int_}]
@@ -47,7 +47,7 @@ reveal_type(divmod(b_, b_)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(b_, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(b_, u8)) # E: Tuple[{uint64}, {uint64}]
reveal_type(divmod(b_, f8)) # E: Tuple[{float64}, {float64}]
-reveal_type(divmod(b_, AR_b)) # E: Tuple[Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]], Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]]]
+reveal_type(divmod(b_, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[{int8}]], numpy.ndarray[Any, numpy.dtype[{int8}]]]
reveal_type(b % b_) # E: {int8}
reveal_type(i % b_) # E: {int_}
@@ -56,7 +56,7 @@ reveal_type(b_ % b_) # E: {int8}
reveal_type(i8 % b_) # E: {int64}
reveal_type(u8 % b_) # E: {uint64}
reveal_type(f8 % b_) # E: {float64}
-reveal_type(AR_b % b_) # E: Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]]
+reveal_type(AR_b % b_) # E: numpy.ndarray[Any, numpy.dtype[{int8}]]
reveal_type(divmod(b, b_)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(i, b_)) # E: Tuple[{int_}, {int_}]
@@ -65,7 +65,7 @@ reveal_type(divmod(b_, b_)) # E: Tuple[{int8}, {int8}]
reveal_type(divmod(i8, b_)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(u8, b_)) # E: Tuple[{uint64}, {uint64}]
reveal_type(divmod(f8, b_)) # E: Tuple[{float64}, {float64}]
-reveal_type(divmod(AR_b, b_)) # E: Tuple[Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]], Union[{int8}, numpy.ndarray[Any, numpy.dtype[{int8}]]]]
+reveal_type(divmod(AR_b, b_)) # E: numpy.ndarray[Any, numpy.dtype[{int8}]], numpy.ndarray[Any, numpy.dtype[{int8}]]]
# int
@@ -78,7 +78,7 @@ reveal_type(i4 % i8) # E: {int64}
reveal_type(i4 % f8) # E: {float64}
reveal_type(i4 % i4) # E: {int32}
reveal_type(i4 % f4) # E: {float32}
-reveal_type(i8 % AR_b) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
+reveal_type(i8 % AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
reveal_type(divmod(i8, b)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, i)) # E: Tuple[{int64}, {int64}]
@@ -89,7 +89,7 @@ reveal_type(divmod(i8, i4)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i8, f4)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i4)) # E: Tuple[{int32}, {int32}]
reveal_type(divmod(i4, f4)) # E: Tuple[{float32}, {float32}]
-reveal_type(divmod(i8, AR_b)) # E: Tuple[Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]], Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]]
+reveal_type(divmod(i8, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
reveal_type(b % i8) # E: {int64}
reveal_type(i % i8) # E: {int64}
@@ -100,7 +100,7 @@ reveal_type(i8 % i4) # E: {int64}
reveal_type(f8 % i4) # E: {float64}
reveal_type(i4 % i4) # E: {int32}
reveal_type(f4 % i4) # E: {float32}
-reveal_type(AR_b % i8) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
+reveal_type(AR_b % i8) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
reveal_type(divmod(b, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(i, i8)) # E: Tuple[{int64}, {int64}]
@@ -111,7 +111,7 @@ reveal_type(divmod(i4, i8)) # E: Tuple[{int64}, {int64}]
reveal_type(divmod(f4, i8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i4, i4)) # E: Tuple[{int32}, {int32}]
reveal_type(divmod(f4, i4)) # E: Tuple[{float32}, {float32}]
-reveal_type(divmod(AR_b, i8)) # E: Tuple[Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]], Union[numpy.signedinteger[Any], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]]
+reveal_type(divmod(AR_b, i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]]
# float
@@ -120,7 +120,7 @@ reveal_type(f8 % i) # E: {float64}
reveal_type(f8 % f) # E: {float64}
reveal_type(i8 % f4) # E: {float64}
reveal_type(f4 % f4) # E: {float32}
-reveal_type(f8 % AR_b) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
+reveal_type(f8 % AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
reveal_type(divmod(f8, b)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, i)) # E: Tuple[{float64}, {float64}]
@@ -128,7 +128,7 @@ reveal_type(divmod(f8, f)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f4)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f4)) # E: Tuple[{float32}, {float32}]
-reveal_type(divmod(f8, AR_b)) # E: Tuple[Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]], Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]]
+reveal_type(divmod(f8, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
reveal_type(b % f8) # E: {float64}
reveal_type(i % f8) # E: {float64}
@@ -136,7 +136,7 @@ reveal_type(f % f8) # E: {float64}
reveal_type(f8 % f8) # E: {float64}
reveal_type(f8 % f8) # E: {float64}
reveal_type(f4 % f4) # E: {float32}
-reveal_type(AR_b % f8) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
+reveal_type(AR_b % f8) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
reveal_type(divmod(b, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(i, f8)) # E: Tuple[{float64}, {float64}]
@@ -144,4 +144,4 @@ reveal_type(divmod(f, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f8, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f8)) # E: Tuple[{float64}, {float64}]
reveal_type(divmod(f4, f4)) # E: Tuple[{float32}, {float32}]
-reveal_type(divmod(AR_b, f8)) # E: Tuple[Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]], Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]]
+reveal_type(divmod(AR_b, f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
diff --git a/numpy/typing/tests/data/reveal/ndarray_misc.py b/numpy/typing/tests/data/reveal/ndarray_misc.py
index 0f7345358..e0f44bcbc 100644
--- a/numpy/typing/tests/data/reveal/ndarray_misc.py
+++ b/numpy/typing/tests/data/reveal/ndarray_misc.py
@@ -16,24 +16,24 @@ B: SubClass
reveal_type(f8.all()) # E: numpy.bool_
reveal_type(A.all()) # E: numpy.bool_
-reveal_type(A.all(axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(A.all(keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(A.all(axis=0)) # E: Any
+reveal_type(A.all(keepdims=True)) # E: Any
reveal_type(A.all(out=B)) # E: SubClass
reveal_type(f8.any()) # E: numpy.bool_
reveal_type(A.any()) # E: numpy.bool_
-reveal_type(A.any(axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(A.any(keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(A.any(axis=0)) # E: Any
+reveal_type(A.any(keepdims=True)) # E: Any
reveal_type(A.any(out=B)) # E: SubClass
reveal_type(f8.argmax()) # E: {intp}
reveal_type(A.argmax()) # E: {intp}
-reveal_type(A.argmax(axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
+reveal_type(A.argmax(axis=0)) # E: Any
reveal_type(A.argmax(out=B)) # E: SubClass
reveal_type(f8.argmin()) # E: {intp}
reveal_type(A.argmin()) # E: {intp}
-reveal_type(A.argmin(axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
+reveal_type(A.argmin(axis=0)) # E: Any
reveal_type(A.argmin(out=B)) # E: SubClass
reveal_type(f8.argsort()) # E: numpy.ndarray[Any, Any]
@@ -43,9 +43,9 @@ reveal_type(f8.astype(np.int64).choose([()])) # E: numpy.ndarray[Any, Any]
reveal_type(A.choose([0])) # E: numpy.ndarray[Any, Any]
reveal_type(A.choose([0], out=B)) # E: SubClass
-reveal_type(f8.clip(1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.clip(1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.clip(None, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.clip(1)) # E: Any
+reveal_type(A.clip(1)) # E: Any
+reveal_type(A.clip(None, 1)) # E: Any
reveal_type(A.clip(1, out=B)) # E: SubClass
reveal_type(A.clip(None, 1, out=B)) # E: SubClass
@@ -69,38 +69,38 @@ reveal_type(f8.cumsum()) # E: numpy.ndarray[Any, Any]
reveal_type(A.cumsum()) # E: numpy.ndarray[Any, Any]
reveal_type(A.cumsum(out=B)) # E: SubClass
-reveal_type(f8.max()) # E: numpy.number[Any]
-reveal_type(A.max()) # E: numpy.number[Any]
-reveal_type(A.max(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.max(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.max()) # E: Any
+reveal_type(A.max()) # E: Any
+reveal_type(A.max(axis=0)) # E: Any
+reveal_type(A.max(keepdims=True)) # E: Any
reveal_type(A.max(out=B)) # E: SubClass
-reveal_type(f8.mean()) # E: numpy.number[Any]
-reveal_type(A.mean()) # E: numpy.number[Any]
-reveal_type(A.mean(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.mean(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.mean()) # E: Any
+reveal_type(A.mean()) # E: Any
+reveal_type(A.mean(axis=0)) # E: Any
+reveal_type(A.mean(keepdims=True)) # E: Any
reveal_type(A.mean(out=B)) # E: SubClass
-reveal_type(f8.min()) # E: numpy.number[Any]
-reveal_type(A.min()) # E: numpy.number[Any]
-reveal_type(A.min(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.min(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.min()) # E: Any
+reveal_type(A.min()) # E: Any
+reveal_type(A.min(axis=0)) # E: Any
+reveal_type(A.min(keepdims=True)) # E: Any
reveal_type(A.min(out=B)) # E: SubClass
reveal_type(f8.newbyteorder()) # E: {float64}
reveal_type(A.newbyteorder()) # E: numpy.ndarray[Any, Any]
reveal_type(B.newbyteorder('|')) # E: SubClass
-reveal_type(f8.prod()) # E: numpy.number[Any]
-reveal_type(A.prod()) # E: numpy.number[Any]
-reveal_type(A.prod(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.prod(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.prod()) # E: Any
+reveal_type(A.prod()) # E: Any
+reveal_type(A.prod(axis=0)) # E: Any
+reveal_type(A.prod(keepdims=True)) # E: Any
reveal_type(A.prod(out=B)) # E: SubClass
-reveal_type(f8.ptp()) # E: numpy.number[Any]
-reveal_type(A.ptp()) # E: numpy.number[Any]
-reveal_type(A.ptp(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.ptp(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.ptp()) # E: Any
+reveal_type(A.ptp()) # E: Any
+reveal_type(A.ptp(axis=0)) # E: Any
+reveal_type(A.ptp(keepdims=True)) # E: Any
reveal_type(A.ptp(out=B)) # E: SubClass
reveal_type(f8.round()) # E: {float64}
@@ -111,40 +111,40 @@ reveal_type(f8.repeat(1)) # E: numpy.ndarray[Any, Any]
reveal_type(A.repeat(1)) # E: numpy.ndarray[Any, Any]
reveal_type(B.repeat(1)) # E: numpy.ndarray[Any, Any]
-reveal_type(f8.std()) # E: numpy.number[Any]
-reveal_type(A.std()) # E: numpy.number[Any]
-reveal_type(A.std(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.std(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.std()) # E: Any
+reveal_type(A.std()) # E: Any
+reveal_type(A.std(axis=0)) # E: Any
+reveal_type(A.std(keepdims=True)) # E: Any
reveal_type(A.std(out=B)) # E: SubClass
-reveal_type(f8.sum()) # E: numpy.number[Any]
-reveal_type(A.sum()) # E: numpy.number[Any]
-reveal_type(A.sum(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.sum(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.sum()) # E: Any
+reveal_type(A.sum()) # E: Any
+reveal_type(A.sum(axis=0)) # E: Any
+reveal_type(A.sum(keepdims=True)) # E: Any
reveal_type(A.sum(out=B)) # E: SubClass
-reveal_type(f8.take(0)) # E: numpy.generic
-reveal_type(A.take(0)) # E: numpy.generic
+reveal_type(f8.take(0)) # E: Any
+reveal_type(A.take(0)) # E: Any
reveal_type(A.take([0])) # E: numpy.ndarray[Any, Any]
reveal_type(A.take(0, out=B)) # E: SubClass
reveal_type(A.take([0], out=B)) # E: SubClass
-reveal_type(f8.var()) # E: numpy.number[Any]
-reveal_type(A.var()) # E: numpy.number[Any]
-reveal_type(A.var(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(A.var(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(f8.var()) # E: Any
+reveal_type(A.var()) # E: Any
+reveal_type(A.var(axis=0)) # E: Any
+reveal_type(A.var(keepdims=True)) # E: Any
reveal_type(A.var(out=B)) # E: SubClass
reveal_type(A.argpartition([0])) # E: numpy.ndarray[Any, Any]
reveal_type(A.diagonal()) # E: numpy.ndarray[Any, Any]
-reveal_type(A.dot(1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(A.dot(1)) # E: Any
reveal_type(A.dot(1, out=B)) # E: SubClass
reveal_type(A.nonzero()) # E: tuple[numpy.ndarray[Any, Any]]
reveal_type(A.searchsorted([1])) # E: numpy.ndarray[Any, Any]
-reveal_type(A.trace()) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(A.trace()) # E: Any
reveal_type(A.trace(out=B)) # E: SubClass
diff --git a/numpy/typing/tests/data/reveal/numeric.py b/numpy/typing/tests/data/reveal/numeric.py
index 78e5c1d61..ec6e47ca0 100644
--- a/numpy/typing/tests/data/reveal/numeric.py
+++ b/numpy/typing/tests/data/reveal/numeric.py
@@ -20,8 +20,8 @@ C: SubClass
reveal_type(np.count_nonzero(i8)) # E: int
reveal_type(np.count_nonzero(A)) # E: int
reveal_type(np.count_nonzero(B)) # E: int
-reveal_type(np.count_nonzero(A, keepdims=True)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.count_nonzero(A, axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.count_nonzero(A, keepdims=True)) # E: Any
+reveal_type(np.count_nonzero(A, axis=0)) # E: Any
reveal_type(np.isfortran(i8)) # E: bool
reveal_type(np.isfortran(A)) # E: bool
@@ -76,9 +76,9 @@ reveal_type(np.allclose(i8, A)) # E: bool
reveal_type(np.allclose(B, A)) # E: bool
reveal_type(np.allclose(A, A)) # E: bool
-reveal_type(np.isclose(i8, A)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.isclose(B, A)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.isclose(A, A)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(np.isclose(i8, A)) # E: Any
+reveal_type(np.isclose(B, A)) # E: Any
+reveal_type(np.isclose(A, A)) # E: Any
reveal_type(np.array_equal(i8, A)) # E: bool
reveal_type(np.array_equal(B, A)) # E: bool
diff --git a/numpy/typing/tests/data/reveal/ufunclike.py b/numpy/typing/tests/data/reveal/ufunclike.py
index 35e45a824..8b3aea7ce 100644
--- a/numpy/typing/tests/data/reveal/ufunclike.py
+++ b/numpy/typing/tests/data/reveal/ufunclike.py
@@ -9,21 +9,21 @@ AR_LIKE_O: List[np.object_]
AR_U: np.ndarray[Any, np.dtype[np.str_]]
-reveal_type(np.fix(AR_LIKE_b)) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(np.fix(AR_LIKE_u)) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(np.fix(AR_LIKE_i)) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
-reveal_type(np.fix(AR_LIKE_f)) # E: Union[numpy.floating[Any], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
+reveal_type(np.fix(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(np.fix(AR_LIKE_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(np.fix(AR_LIKE_i)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(np.fix(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
reveal_type(np.fix(AR_LIKE_O)) # E: Any
reveal_type(np.fix(AR_LIKE_f, out=AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]]
-reveal_type(np.isposinf(AR_LIKE_b)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(np.isposinf(AR_LIKE_u)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(np.isposinf(AR_LIKE_i)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(np.isposinf(AR_LIKE_f)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(np.isposinf(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.isposinf(AR_LIKE_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.isposinf(AR_LIKE_i)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.isposinf(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(np.isposinf(AR_LIKE_f, out=AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]]
-reveal_type(np.isneginf(AR_LIKE_b)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(np.isneginf(AR_LIKE_u)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(np.isneginf(AR_LIKE_i)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
-reveal_type(np.isneginf(AR_LIKE_f)) # E: Union[numpy.bool_, numpy.ndarray[Any, numpy.dtype[numpy.bool_]]]
+reveal_type(np.isneginf(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.isneginf(AR_LIKE_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.isneginf(AR_LIKE_i)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.isneginf(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
reveal_type(np.isneginf(AR_LIKE_f, out=AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]]