summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2022-07-20 07:34:28 -0700
committerGitHub <noreply@github.com>2022-07-20 07:34:28 -0700
commit606fa1fb6d4ff573675ca146f880c7aa012b42c8 (patch)
tree91d308994242b6caa2ecf9de13824a54db459402 /numpy
parent25bcff17a58e942fbeaaba65902157b0f070376a (diff)
parenta346e6d483483751b95915267b655e06889c9b1a (diff)
downloadnumpy-606fa1fb6d4ff573675ca146f880c7aa012b42c8.tar.gz
Merge pull request #22016 from mattip/revert21977
BUG: Revert using __array_ufunc__ for MaskedArray
Diffstat (limited to 'numpy')
-rw-r--r--numpy/lib/tests/test_function_base.py2
-rw-r--r--numpy/ma/core.py222
-rw-r--r--numpy/ma/extras.py22
-rw-r--r--numpy/ma/tests/test_core.py16
-rw-r--r--numpy/ma/tests/test_extras.py19
5 files changed, 49 insertions, 232 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 1c3c32bdd..8457551ca 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -780,7 +780,7 @@ class TestDiff:
mask=[[False, False], [True, False],
[False, True], [True, True], [False, False]])
out = diff(x)
- assert_array_equal(out.data, [[1], [4], [6], [8], [1]])
+ assert_array_equal(out.data, [[1], [1], [1], [1], [1]])
assert_array_equal(out.mask, [[False], [True],
[True], [True], [False]])
assert_(type(out) is type(x))
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index eef9de712..93eb74be3 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -22,7 +22,6 @@ Released for unlimited redistribution.
# pylint: disable-msg=E1002
import builtins
import inspect
-from numbers import Number
import operator
import warnings
import textwrap
@@ -59,10 +58,10 @@ __all__ = [
'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask',
'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot',
'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA',
- 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'isfinite',
- 'isinf', 'isnan', 'left_shift', 'less', 'less_equal', 'log', 'log10',
- 'log2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor',
- 'make_mask', 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
+ 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift',
+ 'less', 'less_equal', 'log', 'log10', 'log2',
+ 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask',
+ 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
'masked_array', 'masked_equal', 'masked_greater',
'masked_greater_equal', 'masked_inside', 'masked_invalid',
'masked_less', 'masked_less_equal', 'masked_not_equal',
@@ -926,12 +925,6 @@ class _MaskedUnaryOperation(_MaskedUFunc):
"""
d = getdata(a)
- if 'out' in kwargs:
- # Need to drop the mask from the output array when being called
- kwargs['out'] = getdata(kwargs['out'])
- args = [getdata(arg) if isinstance(arg, MaskedArray) else arg
- for arg in args]
-
# Deal with domain
if self.domain is not None:
# Case 1.1. : Domained function
@@ -1055,7 +1048,7 @@ class _MaskedBinaryOperation(_MaskedUFunc):
masked_result._update_from(b)
return masked_result
- def reduce(self, target, axis=0, dtype=None, **kwargs):
+ def reduce(self, target, axis=0, dtype=None):
"""
Reduce `target` along the given `axis`.
@@ -1190,10 +1183,6 @@ class _DomainedBinaryOperation(_MaskedUFunc):
# Transforms to a (subclass of) MaskedArray
masked_result = result.view(get_masked_subclass(a, b))
- # If the original masks were scalar or nomask, don't expand the result
- # which comes from the isfinite initialization above
- if getmask(a).shape + getmask(b).shape == ():
- m = _shrink_mask(m)
masked_result._mask = m
if isinstance(a, MaskedArray):
masked_result._update_from(a)
@@ -1220,9 +1209,6 @@ floor = _MaskedUnaryOperation(umath.floor)
ceil = _MaskedUnaryOperation(umath.ceil)
around = _MaskedUnaryOperation(np.round_)
logical_not = _MaskedUnaryOperation(umath.logical_not)
-isinf = _MaskedUnaryOperation(umath.isinf)
-isnan = _MaskedUnaryOperation(umath.isnan)
-isfinite = _MaskedUnaryOperation(umath.isfinite)
# Domained unary ufuncs
sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0,
@@ -3095,7 +3081,7 @@ class MaskedArray(ndarray):
func, args, out_i = context
# args sometimes contains outputs (gh-10459), which we don't want
input_args = args[:func.nin]
- m = reduce(mask_or, [getmask(arg) for arg in input_args])
+ m = reduce(mask_or, [getmaskarray(arg) for arg in input_args])
# Get the domain mask
domain = ufunc_domain.get(func, None)
if domain is not None:
@@ -3123,6 +3109,7 @@ class MaskedArray(ndarray):
else:
# Don't modify inplace, we risk back-propagation
m = (m | d)
+
# Make sure the mask has the proper size
if result is not self and result.shape == () and m:
return masked
@@ -3132,85 +3119,6 @@ class MaskedArray(ndarray):
return result
- def __array_ufunc__(self, np_ufunc, method, *inputs, **kwargs):
- """
- MaskedArray capability for ufuncs
-
- Handle masked versions of ufuncs if they are implemented within
- the MaskedArray module. If the masked ufunc is not implemented,
- this falls back to the standard numpy ndarray ufunc, which we
- then call with the ndarray view of the input data.
-
- """
- # Output can be specified as arguments or as keyword arguments
- outputs = kwargs.pop('out', ())
- if not isinstance(outputs, tuple):
- outputs = (outputs,)
- outputs += inputs[np_ufunc.nin:]
- args = inputs[:np_ufunc.nin]
-
- # Determine what class types we are compatible with and return
- # NotImplemented if we don't know how to handle them
- for arg in args + outputs:
- if not isinstance(arg, (ndarray, np.bool_, Number, list, str)):
- return NotImplemented
-
- # Get the equivalent masked version of the numpy function
- # if it is in the module level functions
- ma_ufunc = np.ma.__dict__.get(np_ufunc.__name__, np_ufunc)
- if ma_ufunc is np_ufunc:
- # We didn't have a Masked version of the ufunc, so we need to
- # call the ndarray version with the data from the objects and
- # prevent infinite recursion.
-
- # Make ndarray views of the input arguments
- args = [getdata(input) if isinstance(input, MaskedArray)
- else input for input in args]
- else:
- # The masked power function doesn't support extra args
- if np_ufunc.__name__ in ('power'):
- kwargs = {}
-
- results = getattr(ma_ufunc, method)(*args, **kwargs)
- if results is NotImplemented:
- return NotImplemented
- if method == 'at':
- return
- if np_ufunc.nout == 1:
- results = (results,)
- if outputs == ():
- outputs = (None,) * np_ufunc.nout
-
- returns = []
- for i, result in enumerate(results):
- output = outputs[i]
-
- # Reapply the mask
- if isinstance(result, ndarray) and result is not masked:
- # Need to copy over all of the data and mask from results
- # to the original object requested with out
- if output is not None:
- if isinstance(output, MaskedArray):
- output._update_from(result)
- if isinstance(result, MaskedArray):
- output.data[:] = result._data
- output._mask = result._mask
- else:
- output.data[:] = result
- else:
- output[:] = result
-
- result = output
-
- elif output is not None:
- # An out value was requested, but the result is a scalar
- output[()] = result
- result = output
-
- returns.append(result)
-
- return returns[0] if np_ufunc.nout == 1 else returns
-
def view(self, dtype=None, type=None, fill_value=None):
"""
Return a view of the MaskedArray data.
@@ -3384,7 +3292,7 @@ class MaskedArray(ndarray):
return dout
else:
# Force dout to MA
- dout = MaskedArray(dout)
+ dout = dout.view(type(self))
# Inherit attributes from self
dout._update_from(self)
# Check the fill_value
@@ -3946,23 +3854,6 @@ class MaskedArray(ndarray):
result = self._data
return result
- def clip(self, a_min, a_max, out=None, **kwargs):
- """docstring inherited
- np.clip.__doc__
-
- TODO: Should we ignore the clip where the data is masked?
- It is currently in line with the old numpy version
- """
- result = self.data.clip(a_min, a_max, **kwargs).view(MaskedArray)
- if out is not None:
- # Just copy the data and mask
- out.data[:] = getdata(result)
- out._mask = self._mask
- return out
- result._update_from(self)
- result._mask = self._mask
- return result
-
def compressed(self):
"""
Return all the non-masked data as a 1-D array.
@@ -4056,15 +3947,10 @@ class MaskedArray(ndarray):
# values.
condition = np.asarray(condition)
- _new = _data.compress(condition, axis=axis).view(type(self))
+ _new = _data.compress(condition, axis=axis, out=out).view(type(self))
_new._update_from(self)
if _mask is not nomask:
_new._mask = _mask.compress(condition, axis=axis)
- if out is not None:
- out._update_from(self)
- out.data[:] = _new.data
- out._mask = _new.mask
- return out
return _new
def _insert_masked_print(self):
@@ -4314,7 +4200,7 @@ class MaskedArray(ndarray):
"""
if self._delegate_binop(other):
return NotImplemented
- return np.add(self, other)
+ return add(self, other)
def __radd__(self, other):
"""
@@ -4323,7 +4209,7 @@ class MaskedArray(ndarray):
"""
# In analogy with __rsub__ and __rdiv__, use original order:
# we get here from `other + self`.
- return np.add(other, self)
+ return add(other, self)
def __sub__(self, other):
"""
@@ -4332,20 +4218,20 @@ class MaskedArray(ndarray):
"""
if self._delegate_binop(other):
return NotImplemented
- return np.subtract(self, other)
+ return subtract(self, other)
def __rsub__(self, other):
"""
Subtract self from other, and return a new masked array.
"""
- return np.subtract(other, self)
+ return subtract(other, self)
def __mul__(self, other):
"Multiply self by other, and return a new masked array."
if self._delegate_binop(other):
return NotImplemented
- return np.multiply(self, other)
+ return multiply(self, other)
def __rmul__(self, other):
"""
@@ -4354,7 +4240,7 @@ class MaskedArray(ndarray):
"""
# In analogy with __rsub__ and __rdiv__, use original order:
# we get here from `other * self`.
- return np.multiply(other, self)
+ return multiply(other, self)
def __div__(self, other):
"""
@@ -4363,7 +4249,7 @@ class MaskedArray(ndarray):
"""
if self._delegate_binop(other):
return NotImplemented
- return np.divide(self, other)
+ return divide(self, other)
def __truediv__(self, other):
"""
@@ -4372,14 +4258,14 @@ class MaskedArray(ndarray):
"""
if self._delegate_binop(other):
return NotImplemented
- return np.true_divide(self, other)
+ return true_divide(self, other)
def __rtruediv__(self, other):
"""
Divide self into other, and return a new masked array.
"""
- return np.true_divide(other, self)
+ return true_divide(other, self)
def __floordiv__(self, other):
"""
@@ -4388,14 +4274,14 @@ class MaskedArray(ndarray):
"""
if self._delegate_binop(other):
return NotImplemented
- return np.floor_divide(self, other)
+ return floor_divide(self, other)
def __rfloordiv__(self, other):
"""
Divide self into other, and return a new masked array.
"""
- return np.floor_divide(other, self)
+ return floor_divide(other, self)
def __pow__(self, other):
"""
@@ -5172,8 +5058,8 @@ class MaskedArray(ndarray):
#!!!: implement out + test!
m = self._mask
if m is nomask:
- result = self.view(np.ndarray).trace(offset=offset, axis1=axis1,
- axis2=axis2, out=out)
+ result = super().trace(offset=offset, axis1=axis1, axis2=axis2,
+ out=out)
return result.astype(dtype)
else:
D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2)
@@ -5273,9 +5159,7 @@ class MaskedArray(ndarray):
result = masked
return result
# Explicit output
-
- self.filled(0).sum(axis, dtype=dtype, out=out.view(np.ndarray),
- **kwargs)
+ result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs)
if isinstance(out, MaskedArray):
outmask = getmask(out)
if outmask is nomask:
@@ -5425,10 +5309,7 @@ class MaskedArray(ndarray):
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
if self._mask is nomask:
- result = self.view(np.ndarray).mean(axis=axis,
- dtype=dtype, **kwargs)
- if isinstance(result, np.ndarray):
- result = MaskedArray(result, mask=nomask)
+ result = super().mean(axis=axis, dtype=dtype, **kwargs)[()]
else:
is_float16_result = False
if dtype is None:
@@ -5511,12 +5392,9 @@ class MaskedArray(ndarray):
# Easy case: nomask, business as usual
if self._mask is nomask:
- ret = self.view(np.ndarray).var(axis=axis, dtype=dtype,
- ddof=ddof, **kwargs)
- if isinstance(ret, np.ndarray):
- ret = MaskedArray(ret, mask=nomask)
+ ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof,
+ **kwargs)[()]
if out is not None:
- out.flat = ret
if isinstance(out, MaskedArray):
out.__setmask__(nomask)
return out
@@ -5574,10 +5452,12 @@ class MaskedArray(ndarray):
numpy.std : Equivalent function
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
+
dvar = self.var(axis, dtype, out, ddof, **kwargs)
if dvar is not masked:
if out is not None:
- return np.power(out, 0.5, out=out, casting='unsafe')
+ np.power(out, 0.5, out=out, casting='unsafe')
+ return out
dvar = sqrt(dvar)
return dvar
@@ -5592,10 +5472,6 @@ class MaskedArray(ndarray):
numpy.ndarray.round : corresponding function for ndarrays
numpy.around : equivalent function
"""
- stored_out = None
- if isinstance(out, MaskedArray):
- stored_out = out
- out = getdata(out)
result = self._data.round(decimals=decimals, out=out).view(type(self))
if result.ndim > 0:
result._mask = self._mask
@@ -5606,9 +5482,7 @@ class MaskedArray(ndarray):
# No explicit output: we're done
if out is None:
return result
- if stored_out is not None:
- # We got in a masked array originally, so we need to return one
- out = stored_out
+ if isinstance(out, MaskedArray):
out.__setmask__(self._mask)
return out
@@ -5996,7 +5870,7 @@ class MaskedArray(ndarray):
"`mini` is deprecated; use the `min` method or "
"`np.ma.minimum.reduce instead.",
DeprecationWarning, stacklevel=2)
- return MaskedArray(np.min(self, axis))
+ return minimum.reduce(self, axis)
def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
"""
@@ -6160,13 +6034,13 @@ class MaskedArray(ndarray):
warnings.warn("Warning: 'partition' will ignore the 'mask' "
f"of the {self.__class__.__name__}.",
stacklevel=2)
- return self.view(np.ndarray).partition(*args, **kwargs)
+ return super().partition(*args, **kwargs)
def argpartition(self, *args, **kwargs):
warnings.warn("Warning: 'argpartition' will ignore the 'mask' "
f"of the {self.__class__.__name__}.",
stacklevel=2)
- return self.view(np.ndarray).argpartition(*args, **kwargs)
+ return super().argpartition(*args, **kwargs)
def take(self, indices, axis=None, out=None, mode='raise'):
"""
@@ -6856,7 +6730,7 @@ class _extrema_operation(_MaskedUFunc):
return self.reduce(a)
return where(self.compare(a, b), a, b)
- def reduce(self, target, axis=np._NoValue, **kwargs):
+ def reduce(self, target, axis=np._NoValue):
"Reduce target along the given axis."
target = narray(target, copy=False, subok=True)
m = getmask(target)
@@ -6871,12 +6745,12 @@ class _extrema_operation(_MaskedUFunc):
axis = None
if axis is not np._NoValue:
- kwargs['axis'] = axis
+ kwargs = dict(axis=axis)
+ else:
+ kwargs = dict()
if m is nomask:
- t = self.f.reduce(target.view(np.ndarray), **kwargs)
- if isinstance(t, ndarray):
- t = MaskedArray(t, mask=nomask)
+ t = self.f.reduce(target, **kwargs)
else:
target = target.filled(
self.fill_value_func(target)).view(type(target))
@@ -8080,23 +7954,6 @@ def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
"""
x = masked_array(a, copy=False)
y = masked_array(b, copy=False)
- if masked_equal:
- # Apply the combined mask right away to avoid comparisons at the
- # masked locations (assumed mask is True)
- m = mask_or(getmask(x), getmask(y))
- # Expand scalars to the proper dimension for comparison if needed
- if shape(x) != shape(y):
- if size(x) == 1:
- # scalar a
- x = masked_array(np.ones(shape=shape(y))*x, mask=m)
- elif size(y) == 1:
- # scalar b
- y = masked_array(np.ones(shape=shape(x))*y, mask=m)
- else:
- raise ValueError("Cannot compare arrays of different shapes.")
- else:
- x = masked_array(a, copy=False, mask=m)
- y = masked_array(b, copy=False, mask=m)
# make sure y is an inexact type to avoid abs(MIN_INT); will cause
# casting of x later.
@@ -8109,7 +7966,8 @@ def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
if y.dtype != dtype:
y = masked_array(y, dtype=dtype, copy=False)
- xinf = filled(np.isinf(x), False)
+ m = mask_or(getmask(x), getmask(y))
+ xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False)
# If we have some infs, they should fall at the same place.
if not np.all(xinf == filled(np.isinf(y), False)):
return False
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 911135505..d2986012b 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -588,8 +588,8 @@ def average(a, axis=None, weights=None, returned=False, *,
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> avg
- masked_array(data=[2.66666667, 3.66666667],
- mask=False,
+ masked_array(data=[2.6666666666666665, 3.6666666666666665],
+ mask=[False, False],
fill_value=1e+20)
With ``keepdims=True``, the following result has shape (3, 1).
@@ -723,10 +723,7 @@ def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
fill_value=1e+20)
"""
-
- a = np.ma.asarray(a)
-
- if a.mask is np.ma.nomask:
+ if not hasattr(a, 'mask'):
m = np.median(getdata(a, subok=True), axis=axis,
out=out, overwrite_input=overwrite_input,
keepdims=keepdims)
@@ -2019,15 +2016,8 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
not_m = ~m
if w is not None:
w = w[not_m]
- x = x[not_m]
- y = y[not_m]
-
- # Only pass the ndarray data
- if w is not None:
- w = w.view(np.ndarray)
- x = x.view(np.ndarray)
- y = y.view(np.ndarray)
-
- return np.polyfit(x, y, deg, rcond, full, w, cov)
+ return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov)
+ else:
+ return np.polyfit(x, y, deg, rcond, full, w, cov)
polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)
diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py
index c2ba6fd77..b056d5169 100644
--- a/numpy/ma/tests/test_core.py
+++ b/numpy/ma/tests/test_core.py
@@ -1235,18 +1235,6 @@ class TestMaskedArrayArithmetic:
b = np.maximum.reduce(a)
assert_equal(b, 3)
- def test_minmax_reduce_axis(self):
- # Test np.min/maximum.reduce along an axis for 2D array
- import numpy as np
- data = [[0, 1, 2, 3, 4, 9], [5, 5, 0, 9, 3, 3]]
- mask = [[0, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]]
- a = array(data, mask=mask)
-
- expected = array([0, 3], mask=False)
- result = np.minimum.reduce(a, axis=1)
-
- assert_array_equal(result, expected)
-
def test_minmax_funcs_with_output(self):
# Tests the min/max functions with explicit outputs
mask = np.random.rand(12).round()
@@ -3220,7 +3208,7 @@ class TestMaskedArrayMethods:
assert_equal(b.fill_value, 9999)
assert_equal(b, a[condition])
- condition = (a.data < 4.)
+ condition = (a < 4.)
b = a.compress(condition)
assert_equal(b._data, [1., 2., 3.])
assert_equal(b._mask, [0, 0, 1])
@@ -5379,7 +5367,7 @@ def test_ufunc_with_out_varied():
a = array([ 1, 2, 3], mask=[1, 0, 0])
b = array([10, 20, 30], mask=[1, 0, 0])
out = array([ 0, 0, 0], mask=[0, 0, 1])
- expected = array([1, 22, 33], mask=[1, 0, 0])
+ expected = array([11, 22, 33], mask=[1, 0, 0])
out_pos = out.copy()
res_pos = np.add(a, b, out_pos)
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index 3637accc3..04bf8cfc2 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -1160,25 +1160,6 @@ class TestMedian:
o[2] = np.nan
assert_(type(np.ma.median(o.astype(object))), float)
- def test_list_of_masked_array(self):
- data1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
- masked1 = np.ma.masked_where(data1 == 4, data1)
- data2 = np.array([[8, 7, 6, 5], [4, 3, 2, 1]])
- masked2 = np.ma.masked_where(data2 == 4, data2)
- list = [masked1, masked2]
- median_masked_list = np.ma.median(list, axis=0).data
- assert_equal(median_masked_list,
- np.array([[4.5, 4.5, 4.5, 5], [5, 4.5, 4.5, 4.5]]))
-
- def test_list_of_masked_array_no_axis(self):
- data1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
- masked1 = np.ma.masked_where(data1 == 2, data1)
- data2 = np.array([[8, 7, 6, 5], [4, 3, 2, 1]])
- masked2 = np.ma.masked_where(data2 == 5, data2)
- list = [masked1, masked2]
- median_masked_list = np.ma.median(list)
- assert_equal(median_masked_list, 4.5)
-
class TestCov: