diff options
author | Warren Weckesser <warren.weckesser@gmail.com> | 2013-11-02 12:41:31 -0400 |
---|---|---|
committer | Warren Weckesser <warren.weckesser@gmail.com> | 2013-11-02 12:41:31 -0400 |
commit | 6ced92b72d3c43f0fcd1e680ea0df70ef1779855 (patch) | |
tree | ed39560a8cdd8086f2605db71ed6547b4748570c /numpy | |
parent | a73f729e683b89f74fe076cb2e8f17a4168ece69 (diff) | |
download | numpy-6ced92b72d3c43f0fcd1e680ea0df70ef1779855.tar.gz |
ENH: lib: Rewrite vander: make it faster, and add an option to specify the order of the powers (either decreasing or increasing).
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/lib/tests/test_twodim_base.py | 36 | ||||
-rw-r--r-- | numpy/lib/twodim_base.py | 48 |
2 files changed, 69 insertions, 15 deletions
diff --git a/numpy/lib/tests/test_twodim_base.py b/numpy/lib/tests/test_twodim_base.py index 5e3c9dd02..89ec68a7d 100644 --- a/numpy/lib/tests/test_twodim_base.py +++ b/numpy/lib/tests/test_twodim_base.py @@ -9,7 +9,7 @@ from numpy.testing import (TestCase, run_module_suite, assert_equal, from numpy import (arange, rot90, add, fliplr, flipud, zeros, ones, eye, array, diag, histogram2d, tri, mask_indices, triu_indices, - triu_indices_from, tril_indices, tril_indices_from) + triu_indices_from, tril_indices, tril_indices_from, vander) import numpy as np from numpy.compat import asbytes, asbytes_nested @@ -370,5 +370,39 @@ class TestTriuIndicesFrom(object): assert_raises(ValueError, triu_indices_from, np.ones((2, 3))) +class TestVander(object): + def test_basic(self): + c = np.array([0,1,-2, 3]) + v = vander(c) + powers = np.array([[ 0, 0, 0, 0, 1], + [ 1, 1, 1, 1, 1], + [16, -8, 4, -2, 1], + [81, 27, 9, 3, 1]]) + # Check default value of N: + yield (assert_array_equal, v, powers[:, 1:]) + # Check a range of N values, including 0 and 5 (greater than default) + m = powers.shape[1] + for n in range(6): + v = vander(c, N=n) + yield (assert_array_equal, v, powers[:, m-n:m]) + + def test_dtypes(self): + c = array([11, -12, 13], dtype=np.int8) + v = vander(c) + expected = np.array([[121, 11, 1], + [144, -12, 1], + [169, 13, 1]]) + yield (assert_array_equal, v, expected) + + c = array([1.0+1j, 1.0-1j]) + v = vander(c, N=3) + expected = np.array([[ 2j, 1+1j, 1], + [-2j, 1-1j, 1]]) + # The data is floating point, but the values are small integers, + # so assert_array_equal *should* be safe here (rather than, say, + # assert_array_almost_equal). + yield (assert_array_equal, v, expected) + + if __name__ == "__main__": run_module_suite() diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index 91df1f4f8..cdb0a4f5b 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -450,13 +450,15 @@ def triu(m, k=0): out = multiply((1 - tri(m.shape[0], m.shape[1], k - 1, dtype=m.dtype)), m) return out -# borrowed from John Hunter and matplotlib -def vander(x, N=None): +# Originally borrowed from John Hunter and matplotlib +def vander(x, N=None, order='decreasing'): """ - Generate a Van der Monde matrix. + Generate a Vandermonde matrix. - The columns of the output matrix are decreasing powers of the input - vector. Specifically, the `i`-th output column is the input vector + The columns of the output matrix are powers of the input vector. The + order of the powers is determined by the `order` argument, either + "decreasing" (the default) or "increasing". Specifically, when + `order` is "decreasing", the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde. @@ -466,14 +468,18 @@ def vander(x, N=None): x : array_like 1-D input array. N : int, optional - Order of (number of columns in) the output. If `N` is not specified, - a square array is returned (``N = len(x)``). + Number of columns in the output. If `N` is not specified, a square + array is returned (``N = len(x)``). + order : str, optional + Order of the powers of the columns. Must be either 'decreasing' + (the default) or 'increasing'. Returns ------- out : ndarray - Van der Monde matrix of order `N`. The first column is ``x^(N-1)``, - the second ``x^(N-2)`` and so forth. + Vandermonde matrix. If `order` is "decreasing", the first column is + ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `order` is + "increasing", the columns are ``x^0, x^1, ..., x^(N-1)``. Examples -------- @@ -497,6 +503,11 @@ def vander(x, N=None): [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) + >>> np.vander(x, order='increasing') + array([[ 1, 1, 1, 1], + [ 1, 2, 4, 8], + [ 1, 3, 9, 27], + [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: @@ -507,13 +518,22 @@ def vander(x, N=None): 48 """ + if order not in ['decreasing', 'increasing']: + raise ValueError("Invalid order %r; order must be either " + "'decreasing' or 'increasing'." % (order,)) x = asarray(x) + if x.ndim != 1: + raise ValueError("x must be a one-dimensional array or sequence.") if N is None: - N=len(x) - X = ones( (len(x), N), x.dtype) - for i in range(N - 1): - X[:, i] = x**(N - i - 1) - return X + N = len(x) + if order == "decreasing": + powers = arange(N-1, -1, -1) + else: + powers = arange(N) + + V = x.reshape(-1, 1) ** powers + + return V def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): |