diff options
| author | Matti Picus <matti.picus@gmail.com> | 2021-02-17 13:34:14 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2021-02-17 13:34:14 +0200 |
| commit | 6f65e1fc25f265ff36bdbfb3aa482f65fd84a684 (patch) | |
| tree | 6bf832e0700b4cbc223f6c165faef1f16a33732d /numpy | |
| parent | 06b995cae91b98778b78e5249129912b5372a959 (diff) | |
| parent | 0b46d6abe5e030b46d98c139b6fd858e6ef089c1 (diff) | |
| download | numpy-6f65e1fc25f265ff36bdbfb3aa482f65fd84a684.tar.gz | |
Merge pull request #18395 from bashtage/random-typing
ENH: Initial typing of random
Diffstat (limited to 'numpy')
| -rw-r--r-- | numpy/random/__init__.pyi | 17 | ||||
| -rw-r--r-- | numpy/random/_generator.pyi | 534 | ||||
| -rw-r--r-- | numpy/random/_generator.pyx | 10 | ||||
| -rw-r--r-- | numpy/random/_mt19937.pyi | 28 | ||||
| -rw-r--r-- | numpy/random/_pcg64.pyi | 34 | ||||
| -rw-r--r-- | numpy/random/_philox.pyi | 42 | ||||
| -rw-r--r-- | numpy/random/_sfc64.pyi | 34 | ||||
| -rw-r--r-- | numpy/random/bit_generator.pyi | 124 |
8 files changed, 810 insertions, 13 deletions
diff --git a/numpy/random/__init__.pyi b/numpy/random/__init__.pyi index bd5ece536..b99c002ae 100644 --- a/numpy/random/__init__.pyi +++ b/numpy/random/__init__.pyi @@ -1,5 +1,14 @@ from typing import Any, List +from numpy.random._generator import Generator as Generator +from numpy.random._generator import default_rng as default_rng +from numpy.random._mt19937 import MT19937 as MT19937 +from numpy.random._pcg64 import PCG64 as PCG64 +from numpy.random._philox import Philox as Philox +from numpy.random._sfc64 import SFC64 as SFC64 +from numpy.random.bit_generator import BitGenerator as BitGenerator +from numpy.random.bit_generator import SeedSequence as SeedSequence + __all__: List[str] beta: Any @@ -52,12 +61,4 @@ vonmises: Any wald: Any weibull: Any zipf: Any -Generator: Any RandomState: Any -SeedSequence: Any -MT19937: Any -Philox: Any -PCG64: Any -SFC64: Any -default_rng: Any -BitGenerator: Any diff --git a/numpy/random/_generator.pyi b/numpy/random/_generator.pyi new file mode 100644 index 000000000..aadc4d0f8 --- /dev/null +++ b/numpy/random/_generator.pyi @@ -0,0 +1,534 @@ +import sys +from typing import Any, Callable, Dict, Literal, Optional, Sequence, Tuple, Type, Union, overload + +from numpy import ( + bool_, + double, + dtype, + float32, + float64, + int8, + int16, + int32, + int64, + int_, + ndarray, + single, + uint, + uint8, + uint16, + uint32, + uint64, +) +from numpy.random import BitGenerator, SeedSequence +from numpy.typing import ( + ArrayLike, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _BoolCodes, + _DoubleCodes, + _DTypeLikeBool, + _DTypeLikeInt, + _DTypeLikeUInt, + _Float32Codes, + _Float64Codes, + _Int8Codes, + _Int16Codes, + _Int32Codes, + _Int64Codes, + _IntCodes, + _ShapeLike, + _SingleCodes, + _SupportsDType, + _UInt8Codes, + _UInt16Codes, + _UInt32Codes, + _UInt64Codes, + _UIntCodes, +) + +if sys.version_info >= (3, 8): + from typing import Literal +else: + from typing_extensions import Literal + +_DTypeLikeFloat32 = Union[ + dtype[float32], + _SupportsDType[dtype[float32]], + Type[float32], + _Float32Codes, + _SingleCodes, +] + +_DTypeLikeFloat64 = Union[ + dtype[float64], + _SupportsDType[dtype[float64]], + Type[float], + Type[float64], + _Float64Codes, + _DoubleCodes, +] + +class Generator: + # COMPLETE + def __init__(self, bit_generator: BitGenerator) -> None: ... + def __repr__(self) -> str: ... + def __str__(self) -> str: ... + # Pickling support: + def __getstate__(self) -> Dict[str, Any]: ... + def __setstate__(self, state: Dict[str, Any]) -> None: ... + def __reduce__(self) -> Tuple[Callable[[str], BitGenerator], Tuple[str], Dict[str, Any]]: ... + @property + def bit_generator(self) -> BitGenerator: ... + def bytes(self, length: int) -> str: ... + @overload + def standard_normal( # type: ignore[misc] + self, + size: None = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + out: None = ..., + ) -> float: ... + @overload + def standard_normal( # type: ignore[misc] + self, + size: _ShapeLike = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + out: Optional[ndarray[Any, dtype[Union[float32, float64]]]] = ..., + ) -> ndarray[Any, dtype[Union[float32, float64]]]: ... + @overload + def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ... + @overload + def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ... + @overload + def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_cauchy(self, size: Optional[_ShapeLike] = ...) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_exponential( # type: ignore[misc] + self, + size: None = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + method: Literal["zig", "inv"] = ..., + out: None = ..., + ) -> float: ... + @overload + def standard_exponential( + self, + size: _ShapeLike = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + method: Literal["zig", "inv"] = ..., + out: Optional[ndarray[Any, dtype[Union[float32, float64]]]] = ..., + ) -> ndarray[Any, dtype[Union[float32, float64]]]: ... + @overload + def standard_exponential( + self, + size: Optional[_ShapeLike] = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + method: Literal["zig", "inv"] = ..., + out: ndarray[Any, dtype[Union[float32, float64]]] = ..., + ) -> ndarray[Any, dtype[Union[float32, float64]]]: ... + @overload + def random( # type: ignore[misc] + self, + size: None = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + out: None = ..., + ) -> float: ... + @overload + def random( + self, + size: _ShapeLike = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + out: Optional[ndarray[Any, dtype[Union[float32, float64]]]] = ..., + ) -> ndarray[Any, dtype[Union[float32, float64]]]: ... + @overload + def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def beta( + self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def exponential( + self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: int, + high: Optional[int] = ..., + size: None = ..., + dtype: _DTypeLikeBool = ..., + endpoint: bool = ..., + ) -> bool: ... + @overload + def integers( # type: ignore[misc] + self, + low: int, + high: Optional[int] = ..., + size: None = ..., + dtype: Union[_DTypeLikeInt, _DTypeLikeUInt] = ..., + endpoint: bool = ..., + ) -> int: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[bool_], Type[bool], Type[bool_], _BoolCodes, _SupportsDType[dtype[bool_]] + ] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[bool_]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[int_], Type[int], Type[int_], _IntCodes, _SupportsDType[dtype[int_]] + ] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[int_]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[uint], Type[uint], _UIntCodes, _SupportsDType[dtype[uint]]] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[uint]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[int8], Type[int8], _Int8Codes, _SupportsDType[dtype[int8]]] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[int8]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[int16], Type[int16], _Int16Codes, _SupportsDType[dtype[int16]]] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[int16]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[int32], Type[int32], _Int32Codes, _SupportsDType[dtype[int32]]] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[Union[int32]]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Optional[ + Union[dtype[int64], Type[int64], _Int64Codes, _SupportsDType[dtype[int64]]] + ] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[dtype[uint8], Type[uint8], _UInt8Codes, _SupportsDType[dtype[uint8]]] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[uint8]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[uint16], Type[uint16], _UInt16Codes, _SupportsDType[dtype[uint16]] + ] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[Union[uint16]]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[uint32], Type[uint32], _UInt32Codes, _SupportsDType[dtype[uint32]] + ] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[uint32]]: ... + @overload + def integers( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: Optional[_ArrayLikeInt_co] = ..., + size: Optional[_ShapeLike] = ..., + dtype: Union[ + dtype[uint64], Type[uint64], _UInt64Codes, _SupportsDType[dtype[uint64]] + ] = ..., + endpoint: bool = ..., + ) -> ndarray[Any, dtype[uint64]]: ... + # TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> Union[_T, ndarray[Any,Any]] + def choice( + self, + a: ArrayLike, + size: Optional[_ShapeLike] = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + axis: Optional[int] = ..., + shuffle: bool = ..., + ) -> Any: ... + @overload + def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def uniform( + self, + low: _ArrayLikeFloat_co = ..., + high: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def normal( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_gamma( # type: ignore[misc] + self, + shape: float, + size: None = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + out: None = ..., + ) -> float: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + dtype: Union[_DTypeLikeFloat32, _DTypeLikeFloat64] = ..., + out: Optional[ndarray[Any, dtype[Union[float32, float64]]]] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def gamma( + self, + shape: _ArrayLikeFloat_co, + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def f( + self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def noncentral_f( + self, + dfnum: _ArrayLikeFloat_co, + dfden: _ArrayLikeFloat_co, + nonc: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def chisquare( + self, df: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def noncentral_chisquare( + self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: None = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def vonmises( + self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def pareto( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def weibull( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def power( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def laplace( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def gumbel( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def logistic( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def lognormal( + self, + mean: _ArrayLikeFloat_co = ..., + sigma: _ArrayLikeFloat_co = ..., + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def rayleigh( + self, scale: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def wald( + self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + @overload + def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def triangular( + self, + left: _ArrayLikeFloat_co, + mode: _ArrayLikeFloat_co, + right: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[float64]]: ... + # Complicated, discrete distributions: + @overload + def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def binomial( + self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def negative_binomial( + self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc] + @overload + def poisson( + self, lam: _ArrayLikeFloat_co = ..., size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def zipf( + self, a: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def geometric( + self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def hypergeometric( + self, + ngood: _ArrayLikeInt_co, + nbad: _ArrayLikeInt_co, + nsample: _ArrayLikeInt_co, + size: Optional[_ShapeLike] = ..., + ) -> ndarray[Any, dtype[int64]]: ... + @overload + def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def logseries( + self, p: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + # Multivariate distributions: + def multivariate_normal( + self, + mean: _ArrayLikeFloat_co, + cov: _ArrayLikeFloat_co, + size: Optional[_ShapeLike] = ..., + check_valid: Literal["warn", "raise", "ignore"] = ..., + tol: float = ..., + *, + method: Literal["svd", "eigh", "cholesky"] = ... + ) -> ndarray[Any, dtype[float64]]: ... + def multinomial( + self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[int64]]: ... + def multivariate_hypergeometric( + self, + colors: _ArrayLikeInt_co, + nsample: int, + size: Optional[_ShapeLike] = ..., + method: Literal["marginals", "count"] = ..., + ) -> ndarray[Any, dtype[int64]]: ... + def dirichlet( + self, alpha: _ArrayLikeFloat_co, size: Optional[_ShapeLike] = ... + ) -> ndarray[Any, dtype[float64]]: ... + def permuted( + self, x: ArrayLike, *, axis: Optional[int] = ..., out: Optional[ndarray[Any, Any]] = ... + ) -> ndarray[Any, Any]: ... + def shuffle(self, x: ArrayLike, axis: int = ...) -> Sequence[Any]: ... + +def default_rng(seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ...) -> Generator: ... diff --git a/numpy/random/_generator.pyx b/numpy/random/_generator.pyx index cc7991eb1..a7d98e2ed 100644 --- a/numpy/random/_generator.pyx +++ b/numpy/random/_generator.pyx @@ -579,13 +579,13 @@ cdef class Generator: Returns ------- - out : str + out : bytes String of length `length`. Examples -------- >>> np.random.default_rng().bytes(10) - ' eh\\x85\\x022SZ\\xbf\\xa4' #random + b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random """ cdef Py_ssize_t n_uint32 = ((length - 1) // 4 + 1) @@ -996,7 +996,7 @@ cdef class Generator: -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() - 2.1923875335537315 #random + 2.1923875335537315 # random >>> s = rng.standard_normal(8000) >>> s @@ -1755,7 +1755,7 @@ cdef class Generator: statistic appear? >>> np.sum(s<t) / float(len(s)) - 0.0090699999999999999 #random + 0.0090699999999999999 # random So the p-value is about 0.009, which says the null hypothesis has a probability of about 99% of being true. @@ -3196,7 +3196,7 @@ cdef class Generator: How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. - 0.34889999999999999 #random + 0.34889999999999999 # random """ return disc(&random_geometric, &self._bitgen, size, self.lock, 1, 0, diff --git a/numpy/random/_mt19937.pyi b/numpy/random/_mt19937.pyi new file mode 100644 index 000000000..1b8bacdae --- /dev/null +++ b/numpy/random/_mt19937.pyi @@ -0,0 +1,28 @@ +import sys +from typing import Any, Union + +from numpy import dtype, ndarray, uint32 +from numpy.random.bit_generator import BitGenerator, SeedSequence +from numpy.typing import _ArrayLikeInt_co + +if sys.version_info >= (3, 8): + from typing import TypedDict +else: + from typing_extensions import TypedDict + +class _MT19937Internal(TypedDict): + key: ndarray[Any, dtype[uint32]] + pos: int + +class _MT19937State(TypedDict): + bit_generator: str + state: _MT19937Internal + +class MT19937(BitGenerator): + def __init__(self, seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ...) -> None: ... + def _legacy_seeding(self, seed: _ArrayLikeInt_co) -> None: ... + def jumped(self, jumps: int = ...) -> MT19937: ... + @property + def state(self) -> _MT19937State: ... + @state.setter + def state(self, value: _MT19937State) -> None: ... diff --git a/numpy/random/_pcg64.pyi b/numpy/random/_pcg64.pyi new file mode 100644 index 000000000..a4f6e0760 --- /dev/null +++ b/numpy/random/_pcg64.pyi @@ -0,0 +1,34 @@ +import sys +from typing import Union + +from numpy.random.bit_generator import BitGenerator, SeedSequence +from numpy.typing import _ArrayLikeInt_co + +if sys.version_info >= (3, 8): + from typing import TypedDict +else: + from typing_extensions import TypedDict + +class _PCG64Internal(TypedDict): + state: int + inc: int + +class _PCG64State(TypedDict): + bit_generator: str + state: _PCG64Internal + has_uint32: int + uinteger: int + +class PCG64(BitGenerator): + def __init__(self, seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ...) -> None: ... + def jumped(self, jumps: int = ...) -> PCG64: ... + @property + def state( + self, + ) -> _PCG64State: ... + @state.setter + def state( + self, + value: _PCG64State, + ) -> None: ... + def advance(self, delta: int) -> PCG64: ... diff --git a/numpy/random/_philox.pyi b/numpy/random/_philox.pyi new file mode 100644 index 000000000..f6a5b9b9b --- /dev/null +++ b/numpy/random/_philox.pyi @@ -0,0 +1,42 @@ +import sys +from typing import Any, Union + +from numpy import dtype, ndarray, uint64 +from numpy.random.bit_generator import BitGenerator, SeedSequence +from numpy.typing import _ArrayLikeInt_co + +if sys.version_info >= (3, 8): + from typing import TypedDict +else: + from typing_extensions import TypedDict + +class _PhiloxInternal(TypedDict): + counter: ndarray[Any, dtype[uint64]] + key: ndarray[Any, dtype[uint64]] + +class _PhiloxState(TypedDict): + bit_generator: str + state: _PhiloxInternal + buffer: ndarray[Any, dtype[uint64]] + buffer_pos: int + has_uint32: int + uinteger: int + +class Philox(BitGenerator): + def __init__( + self, + seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ..., + counter: Union[None, _ArrayLikeInt_co] = ..., + key: Union[None, _ArrayLikeInt_co] = ..., + ) -> None: ... + @property + def state( + self, + ) -> _PhiloxState: ... + @state.setter + def state( + self, + value: _PhiloxState, + ) -> None: ... + def jumped(self, jumps: int = ...) -> Philox: ... + def advance(self, delta: int) -> Philox: ... diff --git a/numpy/random/_sfc64.pyi b/numpy/random/_sfc64.pyi new file mode 100644 index 000000000..72a271c92 --- /dev/null +++ b/numpy/random/_sfc64.pyi @@ -0,0 +1,34 @@ +import sys +from typing import Any, Union + +from numpy import dtype as dtype +from numpy import ndarray as ndarray +from numpy import uint64 +from numpy.random.bit_generator import BitGenerator, SeedSequence +from numpy.typing import _ArrayLikeInt_co + +if sys.version_info >= (3, 8): + from typing import TypedDict +else: + from typing_extensions import TypedDict + +class _SFC64Internal(TypedDict): + state: ndarray[Any, dtype[uint64]] + +class _SFC64State(TypedDict): + bit_generator: str + state: _SFC64Internal + has_uint32: int + uinteger: int + +class SFC64(BitGenerator): + def __init__(self, seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ...) -> None: ... + @property + def state( + self, + ) -> _SFC64State: ... + @state.setter + def state( + self, + value: _SFC64State, + ) -> None: ... diff --git a/numpy/random/bit_generator.pyi b/numpy/random/bit_generator.pyi new file mode 100644 index 000000000..80a2e829b --- /dev/null +++ b/numpy/random/bit_generator.pyi @@ -0,0 +1,124 @@ +import abc +import sys +from threading import Lock +from typing import ( + Any, + Callable, + Dict, + List, + Mapping, + NamedTuple, + Optional, + Sequence, + Tuple, + Type, + TypedDict, + TypeVar, + Union, + overload, +) + +from numpy import dtype, ndarray, uint32, uint64, unsignedinteger +from numpy.typing import DTypeLike, _ArrayLikeInt_co, _DTypeLikeUInt, _ShapeLike, _SupportsDType + +if sys.version_info >= (3, 8): + from typing import Literal +else: + from typing_extensions import Literal + +_T = TypeVar("_T") + +_UIntType = TypeVar("_UIntType", uint64, uint32) +_DTypeLike = Union[ + Type[_UIntType], + dtype[_UIntType], + _SupportsDType[dtype[_UIntType]], +] + +class _SeedSeqState(TypedDict): + entropy: Union[None, int, Sequence[int]] + spawn_key: Tuple[int, ...] + pool_size: int + n_children_spawned: int + +class _Interface(NamedTuple): + state_address: Any + state: Any + next_uint64: Any + next_uint32: Any + next_double: Any + bit_generator: Any + +class ISeedSequence(abc.ABC): + @overload + @abc.abstractmethod + def generate_state( + self, n_words: int, dtype: _DTypeLike[_UIntType] = ... + ) -> ndarray[Any, dtype[_UIntType]]: ... + @overload + @abc.abstractmethod + def generate_state( + self, n_words: int, dtype: _DTypeLikeUInt = ... + ) -> ndarray[Any, dtype[unsignedinteger[Any]]]: ... + +class ISpawnableSeedSequence(ISeedSequence): + @abc.abstractmethod + def spawn(self: _T, n_children: int) -> List[_T]: ... + +class SeedlessSeedSequence(ISpawnableSeedSequence): + @overload + def generate_state( + self, n_words: int, dtype: _DTypeLike[_UIntType] = ... + ) -> ndarray[Any, dtype[_UIntType]]: ... + @overload + def generate_state( + self, n_words: int, dtype: _DTypeLikeUInt = ... + ) -> ndarray[Any, dtype[unsignedinteger[Any]]]: ... + def spawn(self: _T, n_children: int) -> List[_T]: ... + +class SeedSequence(ISpawnableSeedSequence): + entropy: Union[None, int, Sequence[int]] + spawn_key: Tuple[int, ...] + pool_size: int + n_children_spawned: int + pool: ndarray[Any, dtype[uint32]] + def __init__( + self, + entropy: Union[None, int, Sequence[int]] = ..., + *, + spawn_key: Sequence[int] = ..., + pool_size: int = ..., + n_children_spawned: int = ..., + ) -> None: ... + def __repr__(self) -> str: ... + @property + def state( + self, + ) -> _SeedSeqState: ... + def generate_state(self, n_words: int, dtype: DTypeLike = ...) -> ndarray[Any, Any]: ... + def spawn(self, n_children: int) -> List[SeedSequence]: ... + +class BitGenerator(abc.ABC): + lock: Lock + def __init__(self, seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ...) -> None: ... + def __getstate__(self) -> Dict[str, Any]: ... + def __setstate__(self, state: Dict[str, Any]) -> None: ... + def __reduce__( + self, + ) -> Tuple[Callable[[str], BitGenerator], Tuple[str], Tuple[Dict[str, Any]]]: ... + @abc.abstractmethod + @property + def state(self) -> Mapping[str, Any]: ... + @state.setter + def state(self, value: Mapping[str, Any]) -> None: ... + @overload + def random_raw(self, size: None = ..., output: Literal[True] = ...) -> int: ... # type: ignore[misc] + @overload + def random_raw(self, size: _ShapeLike = ..., output: Literal[True] = ...) -> ndarray[Any, dtype[uint64]]: ... # type: ignore[misc] + @overload + def random_raw(self, size: Optional[_ShapeLike] = ..., output: Literal[False] = ...) -> None: ... # type: ignore[misc] + def _benchmark(self, cnt: int, method: str = ...) -> None: ... + @property + def ctypes(self) -> _Interface: ... + @property + def cffi(self) -> _Interface: ... |
