diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2017-04-02 22:12:07 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-04-02 22:12:07 +0100 |
commit | 77eab400b16b7f77ed12debf7ad62449ba7461cd (patch) | |
tree | 37341a680cacacd46a6bea0ec529f6e9db2564a5 /numpy | |
parent | 02e4a57d73d093db347e5afbeaf23153a86f4136 (diff) | |
parent | 5b0e3aa11ac5ae7b16ae6c2d72bb5624d3c124bc (diff) | |
download | numpy-77eab400b16b7f77ed12debf7ad62449ba7461cd.tar.gz |
Merge pull request #8836 from MSeifert04/doc_fixed_some_sphinx_warnings
DOC: Several documentation fixes (broken links, incorrect sphinx syntax, duplicate sections)
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/linalg/linalg.py | 15 |
1 files changed, 7 insertions, 8 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index e5623ad97..8ebee0f6f 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -975,9 +975,9 @@ def eigvalsh(a, UPLO='L'): >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) - + >>> # demonstrate the treatment of the imaginary part of the diagonal - >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) + >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[ 5.+2.j, 9.-2.j], [ 0.+2.j, 2.-1.j]]) @@ -1261,7 +1261,7 @@ def eigh(a, UPLO='L'): [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> # demonstrate the treatment of the imaginary part of the diagonal - >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) + >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[ 5.+2.j, 9.-2.j], [ 0.+2.j, 2.-1.j]]) @@ -2357,14 +2357,13 @@ def multi_dot(arrays): >>> # or >>> A.dot(B).dot(C).dot(D) - - Example: multiplication costs of different parenthesizations - ------------------------------------------------------------ - + Notes + ----- The cost for a matrix multiplication can be calculated with the following function:: - def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] + def cost(A, B): + return A.shape[0] * A.shape[1] * B.shape[1] Let's assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}$`. |