summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2021-05-03 13:44:18 -0600
committerCharles Harris <charlesr.harris@gmail.com>2021-05-03 16:48:49 -0600
commit8145b0549d6744d854d94b66006ac7aeb1ad0864 (patch)
tree732f648d8c91a44658abaacfb9fe431cd029cfe5 /numpy
parent2416ff43c4feb199890c13046f5f3e666a29f7e5 (diff)
downloadnumpy-8145b0549d6744d854d94b66006ac7aeb1ad0864.tar.gz
MAINT: Add ".csv" to some data file names.
It is useful to encode the data file type in the name.
Diffstat (limited to 'numpy')
-rw-r--r--numpy/core/tests/data/umath-validation-set-README.txt (renamed from numpy/core/tests/data/umath-validation-set-README)4
-rw-r--r--numpy/core/tests/data/umath-validation-set-cos.csv (renamed from numpy/core/tests/data/umath-validation-set-cos)0
-rw-r--r--numpy/core/tests/data/umath-validation-set-exp.csv (renamed from numpy/core/tests/data/umath-validation-set-exp)0
-rw-r--r--numpy/core/tests/data/umath-validation-set-log.csv (renamed from numpy/core/tests/data/umath-validation-set-log)0
-rw-r--r--numpy/core/tests/data/umath-validation-set-sin.csv (renamed from numpy/core/tests/data/umath-validation-set-sin)0
-rw-r--r--numpy/core/tests/test_umath_accuracy.py11
6 files changed, 8 insertions, 7 deletions
diff --git a/numpy/core/tests/data/umath-validation-set-README b/numpy/core/tests/data/umath-validation-set-README.txt
index 6561ca3b5..cfc9e4145 100644
--- a/numpy/core/tests/data/umath-validation-set-README
+++ b/numpy/core/tests/data/umath-validation-set-README.txt
@@ -1,5 +1,5 @@
Steps to validate transcendental functions:
-1) Add a file 'umath-validation-set-<ufuncname>', where ufuncname is name of
+1) Add a file 'umath-validation-set-<ufuncname>.txt', where ufuncname is name of
the function in NumPy you want to validate
2) The file should contain 4 columns: dtype,input,expected output,ulperror
a. dtype: one of np.float16, np.float32, np.float64
@@ -11,5 +11,5 @@ Steps to validate transcendental functions:
d. ulperror: expected maximum ulp error of the function. This
should be same across all rows of the same dtype. Otherwise, the function is
tested for the maximum ulp error among all entries of that dtype.
-3) Add file umath-validation-set-<ufuncname> to the test file test_umath_accuracy.py
+3) Add file umath-validation-set-<ufuncname>.txt to the test file test_umath_accuracy.py
which will then validate your ufunc.
diff --git a/numpy/core/tests/data/umath-validation-set-cos b/numpy/core/tests/data/umath-validation-set-cos.csv
index 2e75f044c..2e75f044c 100644
--- a/numpy/core/tests/data/umath-validation-set-cos
+++ b/numpy/core/tests/data/umath-validation-set-cos.csv
diff --git a/numpy/core/tests/data/umath-validation-set-exp b/numpy/core/tests/data/umath-validation-set-exp.csv
index 7c5ef3b33..7c5ef3b33 100644
--- a/numpy/core/tests/data/umath-validation-set-exp
+++ b/numpy/core/tests/data/umath-validation-set-exp.csv
diff --git a/numpy/core/tests/data/umath-validation-set-log b/numpy/core/tests/data/umath-validation-set-log.csv
index b8f6b0875..b8f6b0875 100644
--- a/numpy/core/tests/data/umath-validation-set-log
+++ b/numpy/core/tests/data/umath-validation-set-log.csv
diff --git a/numpy/core/tests/data/umath-validation-set-sin b/numpy/core/tests/data/umath-validation-set-sin.csv
index 64e78ae15..64e78ae15 100644
--- a/numpy/core/tests/data/umath-validation-set-sin
+++ b/numpy/core/tests/data/umath-validation-set-sin.csv
diff --git a/numpy/core/tests/test_umath_accuracy.py b/numpy/core/tests/test_umath_accuracy.py
index 33080edbb..8e04d2875 100644
--- a/numpy/core/tests/test_umath_accuracy.py
+++ b/numpy/core/tests/test_umath_accuracy.py
@@ -28,10 +28,10 @@ def convert(s, datatype="np.float32"):
return fp.contents.value # dereference the pointer, get the float
str_to_float = np.vectorize(convert)
-files = ['umath-validation-set-exp',
- 'umath-validation-set-log',
- 'umath-validation-set-sin',
- 'umath-validation-set-cos']
+files = ['umath-validation-set-exp.csv',
+ 'umath-validation-set-log.csv',
+ 'umath-validation-set-sin.csv',
+ 'umath-validation-set-cos.csv']
class TestAccuracy:
@platform_skip
@@ -47,7 +47,8 @@ class TestAccuracy:
names=('type','input','output','ulperr'),
delimiter=',',
skip_header=1)
- npfunc = getattr(np, filename.split('-')[3])
+ npname = path.splitext(filename)[0].split('-')[3]
+ npfunc = getattr(np, npname)
for datatype in np.unique(data['type']):
data_subset = data[data['type'] == datatype]
inval = np.array(str_to_float(data_subset['input'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))