diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2018-04-24 21:34:40 -0700 |
---|---|---|
committer | Eric Wieser <wieser.eric@gmail.com> | 2018-05-26 01:21:02 -0700 |
commit | 8a8be508d2b2ce719de94209286293973c278b46 (patch) | |
tree | 234cbbbd5ab2ff15b5bf817556c45c15047df127 /numpy | |
parent | 4ec8930f0b60d7fff059d0f005ed2a0efbf41fb7 (diff) | |
download | numpy-8a8be508d2b2ce719de94209286293973c278b46.tar.gz |
BUG: Remove fragile use of __array_interface__ in ctypeslib.as_array
Everything behaves a lot better if we let the array constructor handle it, which will use the ctypes PEP3118 support.
Bugs this fixes:
* Stale state being attached to pointer objects (fixes gh-2671, closes gh-6214)
* Weird failure modes on structured arrays (fixes-10978)
* A regression in gh-10882 (fixes gh-10968)
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/ctypeslib.py | 133 | ||||
-rw-r--r-- | numpy/tests/test_ctypeslib.py | 48 |
2 files changed, 72 insertions, 109 deletions
diff --git a/numpy/ctypeslib.py b/numpy/ctypeslib.py index b8457c78b..9d71adbdb 100644 --- a/numpy/ctypeslib.py +++ b/numpy/ctypeslib.py @@ -319,120 +319,47 @@ def ndpointer(dtype=None, ndim=None, shape=None, flags=None): _pointer_type_cache[(dtype, shape, ndim, num)] = klass return klass -if ctypes is not None: - ct = ctypes - ################################################################ - # simple types - - # maps the numpy typecodes like '<f8' to simple ctypes types like - # c_double. Filled in by prep_simple. - _typecodes = {} - - def prep_simple(simple_type, dtype): - """Given a ctypes simple type, construct and attach an - __array_interface__ property to it if it does not yet have one. - """ - try: simple_type.__array_interface__ - except AttributeError: pass - else: return - - typestr = _dtype(dtype).str - _typecodes[typestr] = simple_type - - def __array_interface__(self): - return {'descr': [('', typestr)], - '__ref': self, - 'strides': None, - 'shape': (), - 'version': 3, - 'typestr': typestr, - 'data': (ct.addressof(self), False), - } - - simple_type.__array_interface__ = property(__array_interface__) +def _get_typecodes(): + """ Return a dictionary mapping __array_interface__ formats to ctypes types """ + ct = ctypes simple_types = [ - ((ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong), "i"), - ((ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong), "u"), - ((ct.c_float, ct.c_double), "f"), + ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong, + ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong, + ct.c_float, ct.c_double, ] - # Prep that numerical ctypes types: - for types, code in simple_types: - for tp in types: - prep_simple(tp, "%c%d" % (code, ct.sizeof(tp))) + return {_dtype(ctype).str: ctype for ctype in simple_types} - ################################################################ - # array types - _ARRAY_TYPE = type(ct.c_int * 1) +def _ctype_ndarray(element_type, shape): + """ Create an ndarray of the given element type and shape """ + for dim in shape[::-1]: + element_type = element_type * dim + return element_type - def prep_array(array_type): - """Given a ctypes array type, construct and attach an - __array_interface__ property to it if it does not yet have one. - """ - try: array_type.__array_interface__ - except AttributeError: pass - else: return - - shape = [] - ob = array_type - while type(ob) is _ARRAY_TYPE: - shape.append(ob._length_) - ob = ob._type_ - shape = tuple(shape) - ai = ob().__array_interface__ - descr = ai['descr'] - typestr = ai['typestr'] - - def __array_interface__(self): - return {'descr': descr, - '__ref': self, - 'strides': None, - 'shape': shape, - 'version': 3, - 'typestr': typestr, - 'data': (ct.addressof(self), False), - } - - array_type.__array_interface__ = property(__array_interface__) - - def prep_pointer(pointer_obj, shape): - """Given a ctypes pointer object, construct and - attach an __array_interface__ property to it if it does not - yet have one. - """ - try: pointer_obj.__array_interface__ - except AttributeError: pass - else: return - - contents = pointer_obj.contents - dtype = _dtype(type(contents)) - - inter = {'version': 3, - 'typestr': dtype.str, - 'data': (ct.addressof(contents), False), - 'shape': shape} - - pointer_obj.__array_interface__ = inter - ################################################################ - # public functions +if ctypes is not None: + _typecodes = _get_typecodes() def as_array(obj, shape=None): - """Create a numpy array from a ctypes array or a ctypes POINTER. + """ + Create a numpy array from a ctypes array or POINTER. + The numpy array shares the memory with the ctypes object. - The size parameter must be given if converting from a ctypes POINTER. - The size parameter is ignored if converting from a ctypes array + The shape parameter must be given if converting from a ctypes POINTER. + The shape parameter is ignored if converting from a ctypes array """ - tp = type(obj) - try: tp.__array_interface__ - except AttributeError: - if hasattr(obj, 'contents'): - prep_pointer(obj, shape) - else: - prep_array(tp) + if isinstance(obj, ctypes._Pointer): + # convert pointers to an array of the desired shape + if shape is None: + raise TypeError( + 'as_array() requires a shape argument when called on a ' + 'pointer') + p_arr_type = ctypes.POINTER(_ctype_ndarray(obj._type_, shape)) + obj = ctypes.cast(obj, p_arr_type).contents + return array(obj, copy=False) def as_ctypes(obj): @@ -446,9 +373,7 @@ if ctypes is not None: addr, readonly = ai["data"] if readonly: raise TypeError("readonly arrays unsupported") - tp = _typecodes[ai["typestr"]] - for dim in ai["shape"][::-1]: - tp = tp * dim + tp = _ctype_ndarray(_typecodes[ai["typestr"]], ai["shape"]) result = tp.from_address(addr) result.__keep = ai return result diff --git a/numpy/tests/test_ctypeslib.py b/numpy/tests/test_ctypeslib.py index fd4336fad..75ce9c8ca 100644 --- a/numpy/tests/test_ctypeslib.py +++ b/numpy/tests/test_ctypeslib.py @@ -118,17 +118,55 @@ class TestNdpointer(object): class TestAsArray(object): def test_array(self): from ctypes import c_int - at = c_int * 2 - a = as_array(at(1, 2)) + + pair_t = c_int * 2 + a = as_array(pair_t(1, 2)) assert_equal(a.shape, (2,)) assert_array_equal(a, np.array([1, 2])) - a = as_array((at * 3)(at(1, 2), at(3, 4), at(5, 6))) + a = as_array((pair_t * 3)(pair_t(1, 2), pair_t(3, 4), pair_t(5, 6))) assert_equal(a.shape, (3, 2)) assert_array_equal(a, np.array([[1, 2], [3, 4], [5, 6]])) def test_pointer(self): from ctypes import c_int, cast, POINTER + p = cast((c_int * 10)(*range(10)), POINTER(c_int)) - a = as_array(p, (10,)) + + a = as_array(p, shape=(10,)) assert_equal(a.shape, (10,)) - assert_array_equal(a, np.array(range(10))) + assert_array_equal(a, np.arange(10)) + + a = as_array(p, shape=(2, 5)) + assert_equal(a.shape, (2, 5)) + assert_array_equal(a, np.arange(10).reshape((2, 5))) + + # shape argument is required + assert_raises(TypeError, as_array, p) + + def test_struct_array_pointer(self): + from ctypes import c_int16, Structure, pointer + + class Struct(Structure): + _fields_ = [('a', c_int16)] + + Struct3 = 3 * Struct + + c_array = (2 * Struct3)( + Struct3(Struct(a=1), Struct(a=2), Struct(a=3)), + Struct3(Struct(a=4), Struct(a=5), Struct(a=6)) + ) + + expected = np.array([ + [(1,), (2,), (3,)], + [(4,), (5,), (6,)], + ], dtype=[('a', np.int16)]) + + def check(x): + assert_equal(x.dtype, expected.dtype) + assert_equal(x, expected) + + # all of these should be equivalent + check(as_array(c_array)) + check(as_array(pointer(c_array), shape=())) + check(as_array(pointer(c_array[0]), shape=(2,))) + check(as_array(pointer(c_array[0][0]), shape=(2, 3))) |