summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorBas van Beek <b.f.van.beek@vu.nl>2021-04-21 18:05:44 +0200
committerBas van Beek <b.f.van.beek@vu.nl>2021-04-30 22:09:51 +0200
commit9d023167249bd1cfc2c3161483b8253b313b0b46 (patch)
tree7a2a92d6784ac2ec5539ba6d03a27623dd5e09fe /numpy
parent05b12102f93f18c0a8bbd86aa2e4a6fcbb554ab4 (diff)
downloadnumpy-9d023167249bd1cfc2c3161483b8253b313b0b46.tar.gz
MAINT: Remove unsafe unions from `np.core.fromnumeric`
Diffstat (limited to 'numpy')
-rw-r--r--numpy/core/fromnumeric.pyi342
-rw-r--r--numpy/typing/tests/data/fail/fromnumeric.py108
-rw-r--r--numpy/typing/tests/data/reveal/fromnumeric.py258
3 files changed, 286 insertions, 422 deletions
diff --git a/numpy/core/fromnumeric.pyi b/numpy/core/fromnumeric.pyi
index fc7f28a59..26a43c1a0 100644
--- a/numpy/core/fromnumeric.pyi
+++ b/numpy/core/fromnumeric.pyi
@@ -23,7 +23,6 @@ from numpy.typing import (
ArrayLike,
_ShapeLike,
_Shape,
- _IntLike_co,
_NumberLike_co,
)
@@ -42,11 +41,7 @@ _ScalarBuiltin = Union[str, bytes, dt.date, dt.timedelta, bool, int, float, comp
_Scalar = Union[_ScalarBuiltin, _ScalarNumpy]
# Integers and booleans can generally be used interchangeably
-_ScalarIntOrBool = TypeVar("_ScalarIntOrBool", bound=Union[integer, bool_])
_ScalarGeneric = TypeVar("_ScalarGeneric", bound=generic)
-_ScalarGenericDT = TypeVar(
- "_ScalarGenericDT", bound=Union[dt.datetime, dt.timedelta, generic]
-)
_Number = TypeVar("_Number", bound=number)
@@ -55,67 +50,51 @@ _Number = TypeVar("_Number", bound=number)
# 2. A scalar comes in; a generic comes out
# 3. An array-like object comes in; some keyword ensures that a generic comes out
# 4. An array-like object comes in; an ndarray or generic comes out
-@overload
-def take(
- a: _ScalarGenericDT,
- indices: int,
- axis: Optional[int] = ...,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarGenericDT: ...
-@overload
-def take(
- a: _Scalar,
- indices: int,
- axis: Optional[int] = ...,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarNumpy: ...
-@overload
-def take(
- a: ArrayLike,
- indices: int,
- axis: Optional[int] = ...,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarNumpy: ...
-@overload
def take(
a: ArrayLike,
indices: _ArrayLikeIntOrBool,
axis: Optional[int] = ...,
out: Optional[ndarray] = ...,
mode: _ModeKind = ...,
-) -> Union[_ScalarNumpy, ndarray]: ...
-def reshape(a: ArrayLike, newshape: _ShapeLike, order: _OrderACF = ...) -> ndarray: ...
-@overload
-def choose(
- a: _ScalarIntOrBool,
- choices: ArrayLike,
- out: Optional[ndarray] = ...,
- mode: _ModeKind = ...,
-) -> _ScalarIntOrBool: ...
-@overload
-def choose(
- a: _IntLike_co, choices: ArrayLike, out: Optional[ndarray] = ..., mode: _ModeKind = ...
-) -> Union[integer, bool_]: ...
-@overload
+) -> Any: ...
+
+def reshape(
+ a: ArrayLike,
+ newshape: _ShapeLike,
+ order: _OrderACF = ...,
+) -> ndarray: ...
+
def choose(
a: _ArrayLikeIntOrBool,
choices: ArrayLike,
out: Optional[ndarray] = ...,
mode: _ModeKind = ...,
-) -> ndarray: ...
+) -> Any: ...
+
def repeat(
- a: ArrayLike, repeats: _ArrayLikeIntOrBool, axis: Optional[int] = ...
+ a: ArrayLike,
+ repeats: _ArrayLikeIntOrBool,
+ axis: Optional[int] = ...,
) -> ndarray: ...
+
def put(
- a: ndarray, ind: _ArrayLikeIntOrBool, v: ArrayLike, mode: _ModeKind = ...
+ a: ndarray,
+ ind: _ArrayLikeIntOrBool,
+ v: ArrayLike,
+ mode: _ModeKind = ...,
) -> None: ...
-def swapaxes(a: ArrayLike, axis1: int, axis2: int) -> ndarray: ...
+
+def swapaxes(
+ a: ArrayLike,
+ axis1: int,
+ axis2: int,
+) -> ndarray: ...
+
def transpose(
- a: ArrayLike, axes: Union[None, Sequence[int], ndarray] = ...
+ a: ArrayLike,
+ axes: Union[None, Sequence[int], ndarray] = ...
) -> ndarray: ...
+
def partition(
a: ArrayLike,
kth: _ArrayLikeIntOrBool,
@@ -123,54 +102,55 @@ def partition(
kind: _PartitionKind = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
-@overload
-def argpartition(
- a: generic,
- kth: _ArrayLikeIntOrBool,
- axis: Optional[int] = ...,
- kind: _PartitionKind = ...,
- order: Union[None, str, Sequence[str]] = ...,
-) -> intp: ...
-@overload
-def argpartition(
- a: _ScalarBuiltin,
- kth: _ArrayLikeIntOrBool,
- axis: Optional[int] = ...,
- kind: _PartitionKind = ...,
- order: Union[None, str, Sequence[str]] = ...,
-) -> ndarray: ...
-@overload
+
def argpartition(
a: ArrayLike,
kth: _ArrayLikeIntOrBool,
axis: Optional[int] = ...,
kind: _PartitionKind = ...,
order: Union[None, str, Sequence[str]] = ...,
-) -> ndarray: ...
+) -> Any: ...
+
def sort(
a: ArrayLike,
axis: Optional[int] = ...,
kind: Optional[_SortKind] = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
+
def argsort(
a: ArrayLike,
axis: Optional[int] = ...,
kind: Optional[_SortKind] = ...,
order: Union[None, str, Sequence[str]] = ...,
) -> ndarray: ...
+
@overload
-def argmax(a: ArrayLike, axis: None = ..., out: Optional[ndarray] = ...) -> intp: ...
+def argmax(
+ a: ArrayLike,
+ axis: None = ...,
+ out: Optional[ndarray] = ...,
+) -> intp: ...
@overload
def argmax(
- a: ArrayLike, axis: int = ..., out: Optional[ndarray] = ...
-) -> Union[ndarray, intp]: ...
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
@overload
-def argmin(a: ArrayLike, axis: None = ..., out: Optional[ndarray] = ...) -> intp: ...
+def argmin(
+ a: ArrayLike,
+ axis: None = ...,
+ out: Optional[ndarray] = ...,
+) -> intp: ...
@overload
def argmin(
- a: ArrayLike, axis: int = ..., out: Optional[ndarray] = ...
-) -> Union[ndarray, intp]: ...
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
@overload
def searchsorted(
a: ArrayLike,
@@ -185,14 +165,30 @@ def searchsorted(
side: _SortSide = ...,
sorter: Optional[_ArrayLikeIntOrBool] = ..., # 1D int array
) -> ndarray: ...
-def resize(a: ArrayLike, new_shape: _ShapeLike) -> ndarray: ...
+
+def resize(
+ a: ArrayLike,
+ new_shape: _ShapeLike,
+) -> ndarray: ...
+
@overload
-def squeeze(a: _ScalarGeneric, axis: Optional[_ShapeLike] = ...) -> _ScalarGeneric: ...
+def squeeze(
+ a: _ScalarGeneric,
+ axis: Optional[_ShapeLike] = ...,
+) -> _ScalarGeneric: ...
@overload
-def squeeze(a: ArrayLike, axis: Optional[_ShapeLike] = ...) -> ndarray: ...
+def squeeze(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
def diagonal(
- a: ArrayLike, offset: int = ..., axis1: int = ..., axis2: int = ... # >= 2D array
+ a: ArrayLike,
+ offset: int = ...,
+ axis1: int = ...,
+ axis2: int = ..., # >= 2D array
) -> ndarray: ...
+
def trace(
a: ArrayLike, # >= 2D array
offset: int = ...,
@@ -200,32 +196,21 @@ def trace(
axis2: int = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
+
def ravel(a: ArrayLike, order: _OrderKACF = ...) -> ndarray: ...
+
def nonzero(a: ArrayLike) -> Tuple[ndarray, ...]: ...
+
def shape(a: ArrayLike) -> _Shape: ...
+
def compress(
condition: ArrayLike, # 1D bool array
a: ArrayLike,
axis: Optional[int] = ...,
out: Optional[ndarray] = ...,
) -> ndarray: ...
-@overload
-def clip(
- a: _Number,
- a_min: ArrayLike,
- a_max: Optional[ArrayLike],
- out: Optional[ndarray] = ...,
- **kwargs: Any,
-) -> _Number: ...
-@overload
-def clip(
- a: _Number,
- a_min: None,
- a_max: ArrayLike,
- out: Optional[ndarray] = ...,
- **kwargs: Any,
-) -> _Number: ...
+
@overload
def clip(
a: ArrayLike,
@@ -233,7 +218,7 @@ def clip(
a_max: Optional[ArrayLike],
out: Optional[ndarray] = ...,
**kwargs: Any,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
@overload
def clip(
a: ArrayLike,
@@ -241,18 +226,8 @@ def clip(
a_max: ArrayLike,
out: Optional[ndarray] = ...,
**kwargs: Any,
-) -> Union[number, ndarray]: ...
-@overload
-def sum(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- dtype: DTypeLike = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
+) -> Any: ...
+
def sum(
a: ArrayLike,
axis: _ShapeLike = ...,
@@ -261,12 +236,13 @@ def sum(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
+
@overload
def all(
a: ArrayLike,
axis: None = ...,
- out: Optional[ndarray] = ...,
+ out: None = ...,
keepdims: Literal[False] = ...,
) -> bool_: ...
@overload
@@ -275,12 +251,13 @@ def all(
axis: Optional[_ShapeLike] = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[bool_, ndarray]: ...
+) -> Any: ...
+
@overload
def any(
a: ArrayLike,
axis: None = ...,
- out: Optional[ndarray] = ...,
+ out: None = ...,
keepdims: Literal[False] = ...,
) -> bool_: ...
@overload
@@ -289,53 +266,22 @@ def any(
axis: Optional[_ShapeLike] = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[bool_, ndarray]: ...
+) -> Any: ...
+
def cumsum(
a: ArrayLike,
axis: Optional[int] = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
) -> ndarray: ...
-@overload
-def ptp(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
-) -> _Number: ...
-@overload
-def ptp(
- a: ArrayLike,
- axis: None = ...,
- out: Optional[ndarray] = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+
def ptp(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def amax(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
-def amax(
- a: ArrayLike,
- axis: None = ...,
- out: Optional[ndarray] = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def amax(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -343,26 +289,8 @@ def amax(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def amin(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- out: Optional[ndarray] = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
-def amin(
- a: ArrayLike,
- axis: None = ...,
- out: Optional[ndarray] = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def amin(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -370,7 +298,7 @@ def amin(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
# TODO: `np.prod()``: For object arrays `initial` does not necessarily
# have to be a numerical scalar.
@@ -379,27 +307,6 @@ def amin(
# Note that the same situation holds for all wrappers around
# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
-@overload
-def prod(
- a: _Number,
- axis: Optional[_ShapeLike] = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: bool = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> _Number: ...
-@overload
-def prod(
- a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
- initial: _NumberLike_co = ...,
- where: _ArrayLikeBool = ...,
-) -> number: ...
-@overload
def prod(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -408,53 +315,33 @@ def prod(
keepdims: bool = ...,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
+
def cumprod(
a: ArrayLike,
axis: Optional[int] = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
) -> ndarray: ...
+
def ndim(a: ArrayLike) -> int: ...
+
def size(a: ArrayLike, axis: Optional[int] = ...) -> int: ...
-@overload
-def around(
- a: _Number, decimals: int = ..., out: Optional[ndarray] = ...
-) -> _Number: ...
-@overload
-def around(
- a: _NumberLike_co, decimals: int = ..., out: Optional[ndarray] = ...
-) -> number: ...
-@overload
+
def around(
- a: ArrayLike, decimals: int = ..., out: Optional[ndarray] = ...
-) -> ndarray: ...
-@overload
-def mean(
a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+ decimals: int = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
def mean(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
dtype: DTypeLike = ...,
out: Optional[ndarray] = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def std(
- a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: int = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def std(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -462,17 +349,8 @@ def std(
out: Optional[ndarray] = ...,
ddof: int = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
-@overload
-def var(
- a: ArrayLike,
- axis: None = ...,
- dtype: DTypeLike = ...,
- out: None = ...,
- ddof: int = ...,
- keepdims: Literal[False] = ...,
-) -> number: ...
-@overload
+) -> Any: ...
+
def var(
a: ArrayLike,
axis: Optional[_ShapeLike] = ...,
@@ -480,4 +358,4 @@ def var(
out: Optional[ndarray] = ...,
ddof: int = ...,
keepdims: bool = ...,
-) -> Union[number, ndarray]: ...
+) -> Any: ...
diff --git a/numpy/typing/tests/data/fail/fromnumeric.py b/numpy/typing/tests/data/fail/fromnumeric.py
index c9156895d..d8f7a5d69 100644
--- a/numpy/typing/tests/data/fail/fromnumeric.py
+++ b/numpy/typing/tests/data/fail/fromnumeric.py
@@ -7,17 +7,17 @@ A.setflags(write=False)
a = np.bool_(True)
-np.take(a, None) # E: No overload variant of "take" matches argument type
-np.take(a, axis=1.0) # E: No overload variant of "take" matches argument type
-np.take(A, out=1) # E: No overload variant of "take" matches argument type
-np.take(A, mode="bob") # E: No overload variant of "take" matches argument type
+np.take(a, None) # E: incompatible type
+np.take(a, axis=1.0) # E: incompatible type
+np.take(A, out=1) # E: incompatible type
+np.take(A, mode="bob") # E: incompatible type
np.reshape(a, None) # E: Argument 2 to "reshape" has incompatible type
np.reshape(A, 1, order="bob") # E: Argument "order" to "reshape" has incompatible type
-np.choose(a, None) # E: No overload variant of "choose" matches argument type
-np.choose(a, out=1.0) # E: No overload variant of "choose" matches argument type
-np.choose(A, mode="bob") # E: No overload variant of "choose" matches argument type
+np.choose(a, None) # E: incompatible type
+np.choose(a, out=1.0) # E: incompatible type
+np.choose(A, mode="bob") # E: incompatible type
np.repeat(a, None) # E: Argument 2 to "repeat" has incompatible type
np.repeat(A, 1, axis=1.0) # E: Argument "axis" to "repeat" has incompatible type
@@ -38,14 +38,14 @@ np.partition(
A, 0, order=range(5) # E: Argument "order" to "partition" has incompatible type
)
-np.argpartition( # E: No overload variant of "argpartition" matches argument type
- a, None
+np.argpartition(
+ a, None # E: incompatible type
)
-np.argpartition( # E: No overload variant of "argpartition" matches argument type
- a, 0, axis="bob"
+np.argpartition(
+ a, 0, axis="bob" # E: incompatible type
)
-np.argpartition( # E: No overload variant of "argpartition" matches argument type
- A, 0, kind="bob"
+np.argpartition(
+ A, 0, kind="bob" # E: incompatible type
)
np.argpartition(
A, 0, order=range(5) # E: Argument "order" to "argpartition" has incompatible type
@@ -93,62 +93,62 @@ np.compress(
np.clip(a, 1, 2, out=1) # E: No overload variant of "clip" matches argument type
np.clip(1, None, None) # E: No overload variant of "clip" matches argument type
-np.sum(a, axis=1.0) # E: No overload variant of "sum" matches argument type
-np.sum(a, keepdims=1.0) # E: No overload variant of "sum" matches argument type
-np.sum(a, initial=[1]) # E: No overload variant of "sum" matches argument type
+np.sum(a, axis=1.0) # E: incompatible type
+np.sum(a, keepdims=1.0) # E: incompatible type
+np.sum(a, initial=[1]) # E: incompatible type
-np.all(a, axis=1.0) # E: No overload variant of "all" matches argument type
-np.all(a, keepdims=1.0) # E: No overload variant of "all" matches argument type
-np.all(a, out=1.0) # E: No overload variant of "all" matches argument type
+np.all(a, axis=1.0) # E: No overload variant
+np.all(a, keepdims=1.0) # E: No overload variant
+np.all(a, out=1.0) # E: No overload variant
-np.any(a, axis=1.0) # E: No overload variant of "any" matches argument type
-np.any(a, keepdims=1.0) # E: No overload variant of "any" matches argument type
-np.any(a, out=1.0) # E: No overload variant of "any" matches argument type
+np.any(a, axis=1.0) # E: No overload variant
+np.any(a, keepdims=1.0) # E: No overload variant
+np.any(a, out=1.0) # E: No overload variant
-np.cumsum(a, axis=1.0) # E: Argument "axis" to "cumsum" has incompatible type
-np.cumsum(a, dtype=1.0) # E: Argument "dtype" to "cumsum" has incompatible type
-np.cumsum(a, out=1.0) # E: Argument "out" to "cumsum" has incompatible type
+np.cumsum(a, axis=1.0) # E: incompatible type
+np.cumsum(a, dtype=1.0) # E: incompatible type
+np.cumsum(a, out=1.0) # E: incompatible type
-np.ptp(a, axis=1.0) # E: No overload variant of "ptp" matches argument type
-np.ptp(a, keepdims=1.0) # E: No overload variant of "ptp" matches argument type
-np.ptp(a, out=1.0) # E: No overload variant of "ptp" matches argument type
+np.ptp(a, axis=1.0) # E: incompatible type
+np.ptp(a, keepdims=1.0) # E: incompatible type
+np.ptp(a, out=1.0) # E: incompatible type
-np.amax(a, axis=1.0) # E: No overload variant of "amax" matches argument type
-np.amax(a, keepdims=1.0) # E: No overload variant of "amax" matches argument type
-np.amax(a, out=1.0) # E: No overload variant of "amax" matches argument type
-np.amax(a, initial=[1.0]) # E: No overload variant of "amax" matches argument type
+np.amax(a, axis=1.0) # E: incompatible type
+np.amax(a, keepdims=1.0) # E: incompatible type
+np.amax(a, out=1.0) # E: incompatible type
+np.amax(a, initial=[1.0]) # E: incompatible type
np.amax(a, where=[1.0]) # E: List item 0 has incompatible type
-np.amin(a, axis=1.0) # E: No overload variant of "amin" matches argument type
-np.amin(a, keepdims=1.0) # E: No overload variant of "amin" matches argument type
-np.amin(a, out=1.0) # E: No overload variant of "amin" matches argument type
-np.amin(a, initial=[1.0]) # E: No overload variant of "amin" matches argument type
+np.amin(a, axis=1.0) # E: incompatible type
+np.amin(a, keepdims=1.0) # E: incompatible type
+np.amin(a, out=1.0) # E: incompatible type
+np.amin(a, initial=[1.0]) # E: incompatible type
np.amin(a, where=[1.0]) # E: List item 0 has incompatible type
-np.prod(a, axis=1.0) # E: No overload variant of "prod" matches argument type
-np.prod(a, out=False) # E: No overload variant of "prod" matches argument type
-np.prod(a, keepdims=1.0) # E: No overload variant of "prod" matches argument type
-np.prod(a, initial=int) # E: No overload variant of "prod" matches argument type
-np.prod(a, where=1.0) # E: No overload variant of "prod" matches argument type
+np.prod(a, axis=1.0) # E: incompatible type
+np.prod(a, out=False) # E: incompatible type
+np.prod(a, keepdims=1.0) # E: incompatible type
+np.prod(a, initial=int) # E: incompatible type
+np.prod(a, where=1.0) # E: incompatible type
np.cumprod(a, axis=1.0) # E: Argument "axis" to "cumprod" has incompatible type
np.cumprod(a, out=False) # E: Argument "out" to "cumprod" has incompatible type
np.size(a, axis=1.0) # E: Argument "axis" to "size" has incompatible type
-np.around(a, decimals=1.0) # E: No overload variant of "around" matches argument type
-np.around(a, out=type) # E: No overload variant of "around" matches argument type
+np.around(a, decimals=1.0) # E: incompatible type
+np.around(a, out=type) # E: incompatible type
-np.mean(a, axis=1.0) # E: No overload variant of "mean" matches argument type
-np.mean(a, out=False) # E: No overload variant of "mean" matches argument type
-np.mean(a, keepdims=1.0) # E: No overload variant of "mean" matches argument type
+np.mean(a, axis=1.0) # E: incompatible type
+np.mean(a, out=False) # E: incompatible type
+np.mean(a, keepdims=1.0) # E: incompatible type
-np.std(a, axis=1.0) # E: No overload variant of "std" matches argument type
-np.std(a, out=False) # E: No overload variant of "std" matches argument type
-np.std(a, ddof='test') # E: No overload variant of "std" matches argument type
-np.std(a, keepdims=1.0) # E: No overload variant of "std" matches argument type
+np.std(a, axis=1.0) # E: incompatible type
+np.std(a, out=False) # E: incompatible type
+np.std(a, ddof='test') # E: incompatible type
+np.std(a, keepdims=1.0) # E: incompatible type
-np.var(a, axis=1.0) # E: No overload variant of "var" matches argument type
-np.var(a, out=False) # E: No overload variant of "var" matches argument type
-np.var(a, ddof='test') # E: No overload variant of "var" matches argument type
-np.var(a, keepdims=1.0) # E: No overload variant of "var" matches argument type
+np.var(a, axis=1.0) # E: incompatible type
+np.var(a, out=False) # E: incompatible type
+np.var(a, ddof='test') # E: incompatible type
+np.var(a, keepdims=1.0) # E: incompatible type
diff --git a/numpy/typing/tests/data/reveal/fromnumeric.py b/numpy/typing/tests/data/reveal/fromnumeric.py
index 2b58f019f..bbcfbb85a 100644
--- a/numpy/typing/tests/data/reveal/fromnumeric.py
+++ b/numpy/typing/tests/data/reveal/fromnumeric.py
@@ -12,27 +12,13 @@ b = np.float32(1.0)
c = 1.0
d = np.array(1.0, dtype=np.float32) # writeable
-reveal_type(np.take(a, 0)) # E: numpy.bool_
-reveal_type(np.take(b, 0)) # E: {float32}
-reveal_type(
- np.take(c, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta]
-)
-reveal_type(
- np.take(A, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta]
-)
-reveal_type(
- np.take(B, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta]
-)
-reveal_type(
- np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray[Any, Any]]
- A, [0]
- )
-)
-reveal_type(
- np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray[Any, Any]]
- B, [0]
- )
-)
+reveal_type(np.take(a, 0)) # E: Any
+reveal_type(np.take(b, 0)) # E: Any
+reveal_type(np.take(c, 0)) # E: Any
+reveal_type(np.take(A, 0)) # E: Any
+reveal_type(np.take(B, 0)) # E: Any
+reveal_type(np.take(A, [0])) # E: Any
+reveal_type(np.take(B, [0])) # E: Any
reveal_type(np.reshape(a, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.reshape(b, 1)) # E: numpy.ndarray[Any, Any]
@@ -40,8 +26,8 @@ reveal_type(np.reshape(c, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.reshape(A, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.reshape(B, 1)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.choose(a, [True, True])) # E: numpy.bool_
-reveal_type(np.choose(A, [True, True])) # E: numpy.ndarray[Any, Any]
+reveal_type(np.choose(a, [True, True])) # E: Any
+reveal_type(np.choose(A, [True, True])) # E: Any
reveal_type(np.repeat(a, 1)) # E: numpy.ndarray[Any, Any]
reveal_type(np.repeat(b, 1)) # E: numpy.ndarray[Any, Any]
@@ -66,11 +52,11 @@ reveal_type(np.partition(c, 0, axis=None)) # E: numpy.ndarray[Any, Any]
reveal_type(np.partition(A, 0)) # E: numpy.ndarray[Any, Any]
reveal_type(np.partition(B, 0)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.argpartition(a, 0)) # E: {intp}
-reveal_type(np.argpartition(b, 0)) # E: {intp}
-reveal_type(np.argpartition(c, 0)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.argpartition(A, 0)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.argpartition(B, 0)) # E: numpy.ndarray[Any, Any]
+reveal_type(np.argpartition(a, 0)) # E: Any
+reveal_type(np.argpartition(b, 0)) # E: Any
+reveal_type(np.argpartition(c, 0)) # E: Any
+reveal_type(np.argpartition(A, 0)) # E: Any
+reveal_type(np.argpartition(B, 0)) # E: Any
reveal_type(np.sort(A, 0)) # E: numpy.ndarray[Any, Any]
reveal_type(np.sort(B, 0)) # E: numpy.ndarray[Any, Any]
@@ -80,13 +66,13 @@ reveal_type(np.argsort(B, 0)) # E: numpy.ndarray[Any, Any]
reveal_type(np.argmax(A)) # E: {intp}
reveal_type(np.argmax(B)) # E: {intp}
-reveal_type(np.argmax(A, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
-reveal_type(np.argmax(B, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
+reveal_type(np.argmax(A, axis=0)) # E: Any
+reveal_type(np.argmax(B, axis=0)) # E: Any
reveal_type(np.argmin(A)) # E: {intp}
reveal_type(np.argmin(B)) # E: {intp}
-reveal_type(np.argmin(A, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
-reveal_type(np.argmin(B, axis=0)) # E: Union[numpy.ndarray[Any, Any], {intp}]
+reveal_type(np.argmin(A, axis=0)) # E: Any
+reveal_type(np.argmin(B, axis=0)) # E: Any
reveal_type(np.searchsorted(A[0], 0)) # E: {intp}
reveal_type(np.searchsorted(B[0], 0)) # E: {intp}
@@ -108,8 +94,8 @@ reveal_type(np.squeeze(B)) # E: numpy.ndarray[Any, Any]
reveal_type(np.diagonal(A)) # E: numpy.ndarray[Any, Any]
reveal_type(np.diagonal(B)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.trace(A)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.trace(B)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.trace(A)) # E: Any
+reveal_type(np.trace(B)) # E: Any
reveal_type(np.ravel(a)) # E: numpy.ndarray[Any, Any]
reveal_type(np.ravel(b)) # E: numpy.ndarray[Any, Any]
@@ -135,39 +121,39 @@ reveal_type(np.compress([True], c)) # E: numpy.ndarray[Any, Any]
reveal_type(np.compress([True], A)) # E: numpy.ndarray[Any, Any]
reveal_type(np.compress([True], B)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.clip(a, 0, 1.0)) # E: numpy.number[Any]
-reveal_type(np.clip(b, -1, 1)) # E: {float32}
-reveal_type(np.clip(c, 0, 1)) # E: numpy.number[Any]
-reveal_type(np.clip(A, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.clip(B, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.clip(a, 0, 1.0)) # E: Any
+reveal_type(np.clip(b, -1, 1)) # E: Any
+reveal_type(np.clip(c, 0, 1)) # E: Any
+reveal_type(np.clip(A, 0, 1)) # E: Any
+reveal_type(np.clip(B, 0, 1)) # E: Any
-reveal_type(np.sum(a)) # E: numpy.number[Any]
-reveal_type(np.sum(b)) # E: {float32}
-reveal_type(np.sum(c)) # E: numpy.number[Any]
-reveal_type(np.sum(A)) # E: numpy.number[Any]
-reveal_type(np.sum(B)) # E: numpy.number[Any]
-reveal_type(np.sum(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.sum(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
+reveal_type(np.sum(a)) # E: Any
+reveal_type(np.sum(b)) # E: Any
+reveal_type(np.sum(c)) # E: Any
+reveal_type(np.sum(A)) # E: Any
+reveal_type(np.sum(B)) # E: Any
+reveal_type(np.sum(A, axis=0)) # E: Any
+reveal_type(np.sum(B, axis=0)) # E: Any
reveal_type(np.all(a)) # E: numpy.bool_
reveal_type(np.all(b)) # E: numpy.bool_
reveal_type(np.all(c)) # E: numpy.bool_
reveal_type(np.all(A)) # E: numpy.bool_
reveal_type(np.all(B)) # E: numpy.bool_
-reveal_type(np.all(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.all(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.all(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.all(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(np.all(A, axis=0)) # E: Any
+reveal_type(np.all(B, axis=0)) # E: Any
+reveal_type(np.all(A, keepdims=True)) # E: Any
+reveal_type(np.all(B, keepdims=True)) # E: Any
reveal_type(np.any(a)) # E: numpy.bool_
reveal_type(np.any(b)) # E: numpy.bool_
reveal_type(np.any(c)) # E: numpy.bool_
reveal_type(np.any(A)) # E: numpy.bool_
reveal_type(np.any(B)) # E: numpy.bool_
-reveal_type(np.any(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.any(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.any(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
-reveal_type(np.any(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]]
+reveal_type(np.any(A, axis=0)) # E: Any
+reveal_type(np.any(B, axis=0)) # E: Any
+reveal_type(np.any(A, keepdims=True)) # E: Any
+reveal_type(np.any(B, keepdims=True)) # E: Any
reveal_type(np.cumsum(a)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumsum(b)) # E: numpy.ndarray[Any, Any]
@@ -175,47 +161,47 @@ reveal_type(np.cumsum(c)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumsum(A)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumsum(B)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.ptp(a)) # E: numpy.number[Any]
-reveal_type(np.ptp(b)) # E: {float32}
-reveal_type(np.ptp(c)) # E: numpy.number[Any]
-reveal_type(np.ptp(A)) # E: numpy.number[Any]
-reveal_type(np.ptp(B)) # E: numpy.number[Any]
-reveal_type(np.ptp(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.ptp(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.ptp(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.ptp(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-
-reveal_type(np.amax(a)) # E: numpy.number[Any]
-reveal_type(np.amax(b)) # E: {float32}
-reveal_type(np.amax(c)) # E: numpy.number[Any]
-reveal_type(np.amax(A)) # E: numpy.number[Any]
-reveal_type(np.amax(B)) # E: numpy.number[Any]
-reveal_type(np.amax(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amax(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amax(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amax(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-
-reveal_type(np.amin(a)) # E: numpy.number[Any]
-reveal_type(np.amin(b)) # E: {float32}
-reveal_type(np.amin(c)) # E: numpy.number[Any]
-reveal_type(np.amin(A)) # E: numpy.number[Any]
-reveal_type(np.amin(B)) # E: numpy.number[Any]
-reveal_type(np.amin(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amin(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amin(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.amin(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-
-reveal_type(np.prod(a)) # E: numpy.number[Any]
-reveal_type(np.prod(b)) # E: {float32}
-reveal_type(np.prod(c)) # E: numpy.number[Any]
-reveal_type(np.prod(A)) # E: numpy.number[Any]
-reveal_type(np.prod(B)) # E: numpy.number[Any]
-reveal_type(np.prod(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.prod(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.prod(B, out=d)) # E: numpy.ndarray[Any, Any]
+reveal_type(np.ptp(a)) # E: Any
+reveal_type(np.ptp(b)) # E: Any
+reveal_type(np.ptp(c)) # E: Any
+reveal_type(np.ptp(A)) # E: Any
+reveal_type(np.ptp(B)) # E: Any
+reveal_type(np.ptp(A, axis=0)) # E: Any
+reveal_type(np.ptp(B, axis=0)) # E: Any
+reveal_type(np.ptp(A, keepdims=True)) # E: Any
+reveal_type(np.ptp(B, keepdims=True)) # E: Any
+
+reveal_type(np.amax(a)) # E: Any
+reveal_type(np.amax(b)) # E: Any
+reveal_type(np.amax(c)) # E: Any
+reveal_type(np.amax(A)) # E: Any
+reveal_type(np.amax(B)) # E: Any
+reveal_type(np.amax(A, axis=0)) # E: Any
+reveal_type(np.amax(B, axis=0)) # E: Any
+reveal_type(np.amax(A, keepdims=True)) # E: Any
+reveal_type(np.amax(B, keepdims=True)) # E: Any
+
+reveal_type(np.amin(a)) # E: Any
+reveal_type(np.amin(b)) # E: Any
+reveal_type(np.amin(c)) # E: Any
+reveal_type(np.amin(A)) # E: Any
+reveal_type(np.amin(B)) # E: Any
+reveal_type(np.amin(A, axis=0)) # E: Any
+reveal_type(np.amin(B, axis=0)) # E: Any
+reveal_type(np.amin(A, keepdims=True)) # E: Any
+reveal_type(np.amin(B, keepdims=True)) # E: Any
+
+reveal_type(np.prod(a)) # E: Any
+reveal_type(np.prod(b)) # E: Any
+reveal_type(np.prod(c)) # E: Any
+reveal_type(np.prod(A)) # E: Any
+reveal_type(np.prod(B)) # E: Any
+reveal_type(np.prod(A, axis=0)) # E: Any
+reveal_type(np.prod(B, axis=0)) # E: Any
+reveal_type(np.prod(A, keepdims=True)) # E: Any
+reveal_type(np.prod(B, keepdims=True)) # E: Any
+reveal_type(np.prod(b, out=d)) # E: Any
+reveal_type(np.prod(B, out=d)) # E: Any
reveal_type(np.cumprod(a)) # E: numpy.ndarray[Any, Any]
reveal_type(np.cumprod(b)) # E: numpy.ndarray[Any, Any]
@@ -235,44 +221,44 @@ reveal_type(np.size(c)) # E: int
reveal_type(np.size(A)) # E: int
reveal_type(np.size(B)) # E: int
-reveal_type(np.around(a)) # E: numpy.number[Any]
-reveal_type(np.around(b)) # E: {float32}
-reveal_type(np.around(c)) # E: numpy.number[Any]
-reveal_type(np.around(A)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.around(B)) # E: numpy.ndarray[Any, Any]
-
-reveal_type(np.mean(a)) # E: numpy.number[Any]
-reveal_type(np.mean(b)) # E: numpy.number[Any]
-reveal_type(np.mean(c)) # E: numpy.number[Any]
-reveal_type(np.mean(A)) # E: numpy.number[Any]
-reveal_type(np.mean(B)) # E: numpy.number[Any]
-reveal_type(np.mean(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.mean(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.mean(B, out=d)) # E: numpy.ndarray[Any, Any]
-
-reveal_type(np.std(a)) # E: numpy.number[Any]
-reveal_type(np.std(b)) # E: numpy.number[Any]
-reveal_type(np.std(c)) # E: numpy.number[Any]
-reveal_type(np.std(A)) # E: numpy.number[Any]
-reveal_type(np.std(B)) # E: numpy.number[Any]
-reveal_type(np.std(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.std(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.std(B, out=d)) # E: numpy.ndarray[Any, Any]
-
-reveal_type(np.var(a)) # E: numpy.number[Any]
-reveal_type(np.var(b)) # E: numpy.number[Any]
-reveal_type(np.var(c)) # E: numpy.number[Any]
-reveal_type(np.var(A)) # E: numpy.number[Any]
-reveal_type(np.var(B)) # E: numpy.number[Any]
-reveal_type(np.var(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]]
-reveal_type(np.var(b, out=d)) # E: numpy.ndarray[Any, Any]
-reveal_type(np.var(B, out=d)) # E: numpy.ndarray[Any, Any]
+reveal_type(np.around(a)) # E: Any
+reveal_type(np.around(b)) # E: Any
+reveal_type(np.around(c)) # E: Any
+reveal_type(np.around(A)) # E: Any
+reveal_type(np.around(B)) # E: Any
+
+reveal_type(np.mean(a)) # E: Any
+reveal_type(np.mean(b)) # E: Any
+reveal_type(np.mean(c)) # E: Any
+reveal_type(np.mean(A)) # E: Any
+reveal_type(np.mean(B)) # E: Any
+reveal_type(np.mean(A, axis=0)) # E: Any
+reveal_type(np.mean(B, axis=0)) # E: Any
+reveal_type(np.mean(A, keepdims=True)) # E: Any
+reveal_type(np.mean(B, keepdims=True)) # E: Any
+reveal_type(np.mean(b, out=d)) # E: Any
+reveal_type(np.mean(B, out=d)) # E: Any
+
+reveal_type(np.std(a)) # E: Any
+reveal_type(np.std(b)) # E: Any
+reveal_type(np.std(c)) # E: Any
+reveal_type(np.std(A)) # E: Any
+reveal_type(np.std(B)) # E: Any
+reveal_type(np.std(A, axis=0)) # E: Any
+reveal_type(np.std(B, axis=0)) # E: Any
+reveal_type(np.std(A, keepdims=True)) # E: Any
+reveal_type(np.std(B, keepdims=True)) # E: Any
+reveal_type(np.std(b, out=d)) # E: Any
+reveal_type(np.std(B, out=d)) # E: Any
+
+reveal_type(np.var(a)) # E: Any
+reveal_type(np.var(b)) # E: Any
+reveal_type(np.var(c)) # E: Any
+reveal_type(np.var(A)) # E: Any
+reveal_type(np.var(B)) # E: Any
+reveal_type(np.var(A, axis=0)) # E: Any
+reveal_type(np.var(B, axis=0)) # E: Any
+reveal_type(np.var(A, keepdims=True)) # E: Any
+reveal_type(np.var(B, keepdims=True)) # E: Any
+reveal_type(np.var(b, out=d)) # E: Any
+reveal_type(np.var(B, out=d)) # E: Any