diff options
author | Julian Taylor <jtaylor.debian@googlemail.com> | 2013-06-07 19:22:51 +0200 |
---|---|---|
committer | Julian Taylor <jtaylor.debian@googlemail.com> | 2013-06-08 20:44:05 +0200 |
commit | 9d5884b0acf935401f0f8e64912b98abc73f62c3 (patch) | |
tree | ead794dec512d321c01b3527ba90a431988d3bbd /numpy | |
parent | abad5e3a753a2d0f5bbd7bdf4e8769cf9a4ef02d (diff) | |
download | numpy-9d5884b0acf935401f0f8e64912b98abc73f62c3.tar.gz |
ENH: Vectorize float absolute operation with sse2
fabs on x86 can be implemented by masking out the sign bit.
Obtaining such a bit pattern is best done by a bitwise not on the
negative zero.
This is the same operation the compiler will convert fabs to on amd64.
Improves performance by ~1.7/3.5 for float/double for cached data
and ~1.4/1.1 for non-cached data.
If one simplifies the loops gcc could also autovectorize it but with all
hints its almost the same code length and slightly worse assembly.
The code can easily be extended to support AVX by changing vpre and
vtype to 256.
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/core/src/umath/loops.c.src | 55 | ||||
-rw-r--r-- | numpy/core/tests/test_umath.py | 26 |
2 files changed, 76 insertions, 5 deletions
diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src index de78904bb..e15909029 100644 --- a/numpy/core/src/umath/loops.c.src +++ b/numpy/core/src/umath/loops.c.src @@ -1302,8 +1302,11 @@ TIMEDELTA_mm_d_divide(char **args, npy_intp *dimensions, npy_intp *steps, void * * #type = npy_float, npy_double# * #TYPE = FLOAT, DOUBLE# * #scalarf = npy_sqrtf, npy_sqrt# + * #c = f, # * #vtype = __m128, __m128d# + * #vpre = _mm, _mm# * #vsuf = ps, pd# +* #vtype = __m128, __m128d# */ #ifdef HAVE_EMMINTRIN_H @@ -1335,6 +1338,40 @@ sse2_sqrt_@TYPE@(char **args, npy_intp *dimensions, npy_intp *steps) } +static void +sse2_absolute_@TYPE@(char **args, npy_intp *dimensions, npy_intp *steps) +{ + /* + * get 0x7FFFFFFF mask (everything but signbit set) + * float & ~mask will remove the sign + * this is equivalent to how the compiler implements fabs on amd64 + */ + const @vtype@ mask = @vpre@_set1_@vsuf@(-0.@c@); + + UNARY_LOOP_BLOCK_ALIGN_OUT(@type@, 16) { + const @type@ tmp = ip1[i] > 0 ? ip1[i]: -ip1[i]; + /* add 0 to clear -0.0 */ + op1[i] = tmp + 0; + } + if (npy_is_aligned(&ip1[i], 16)) { + UNARY_LOOP_BLOCKED(@type@, 16) { + @vtype@ a = @vpre@_load_@vsuf@(&ip1[i]); + @vpre@_store_@vsuf@(&op1[i], @vpre@_andnot_@vsuf@(mask, a)); + } + } + else { + UNARY_LOOP_BLOCKED(@type@, 16) { + @vtype@ a = @vpre@_loadu_@vsuf@(&ip1[i]); + @vpre@_store_@vsuf@(&op1[i], @vpre@_andnot_@vsuf@(mask, a)); + } + } + UNARY_LOOP_BLOCKED_END { + const @type@ tmp = ip1[i] > 0 ? ip1[i]: -ip1[i]; + /* add 0 to clear -0.0 */ + op1[i] = tmp + 0; + } +} + #endif @@ -1582,11 +1619,19 @@ NPY_NO_EXPORT void NPY_NO_EXPORT void @TYPE@_absolute(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func)) { - UNARY_LOOP { - const @type@ in1 = *(@type@ *)ip1; - const @type@ tmp = in1 > 0 ? in1 : -in1; - /* add 0 to clear -0.0 */ - *((@type@ *)op1) = tmp + 0; +#if defined HAVE_EMMINTRIN_H && defined NPY_HAVE_SIMD_@TYPE@ + if (IS_BLOCKABLE_UNARY(sizeof(@type@), 16)) { + sse2_absolute_@TYPE@(args, dimensions, steps); + } + else +#endif + { + UNARY_LOOP { + const @type@ in1 = *(@type@ *)ip1; + const @type@ tmp = in1 > 0 ? in1 : -in1; + /* add 0 to clear -0.0 */ + *((@type@ *)op1) = tmp + 0; + } } } diff --git a/numpy/core/tests/test_umath.py b/numpy/core/tests/test_umath.py index 586b64636..6bbb15e6b 100644 --- a/numpy/core/tests/test_umath.py +++ b/numpy/core/tests/test_umath.py @@ -687,6 +687,32 @@ class TestSign(TestCase): np.seterr(**olderr) +class TestAbsolute(TestCase): + def test_abs_blocked(self): + "simd tests on abs" + for dt in [np.float32, np.float64]: + for out, inp, msg in gen_alignment_data(dtype=dt, type='unary', + max_size=17): + tgt = [ncu.absolute(i) for i in inp] + np.absolute(inp, out=out) + assert_equal(out, tgt, err_msg=msg) + self.assertTrue((out >= 0).all()) + + prev = np.geterr() + # will throw invalid flag depending on compiler optimizations + np.seterr(invalid='ignore') + for v in [np.nan, -np.inf, np.inf]: + for i in range(inp.size): + d = np.arange(inp.size, dtype=dt) + inp[:] = -d + inp[i] = v + d[i] = -v if v == -np.inf else v + assert_array_equal(np.abs(inp), d, err_msg=msg) + np.abs(inp, out=out) + assert_array_equal(out, d, err_msg=msg) + np.seterr(invalid=prev['invalid']) + + class TestSpecialMethods(TestCase): def test_wrap(self): class with_wrap(object): |