summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2018-12-24 08:41:35 +0200
committerGitHub <noreply@github.com>2018-12-24 08:41:35 +0200
commitdf9992f09dc529f53f2d943c0057b94fa62b62d3 (patch)
tree0c7ed6a4546665bcc9be78e42dbe0ba1124cbc17 /numpy
parente2694759a21c948aa5be26a7e4ac65b7b8b8a8da (diff)
parent75939e55bee57e2689a72e6f507dd3a6818dcb48 (diff)
downloadnumpy-df9992f09dc529f53f2d943c0057b94fa62b62d3.tar.gz
Merge pull request #12333 from tuelwer/master
DOC: update description of the Dirichlet distribution
Diffstat (limited to 'numpy')
-rw-r--r--numpy/random/mtrand/mtrand.pyx28
1 files changed, 20 insertions, 8 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index e4a401b24..2a6daa88c 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -4673,8 +4673,9 @@ cdef class RandomState:
Draw `size` samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
- generalization of a Beta distribution. Dirichlet pdf is the conjugate
- prior of a multinomial in Bayesian inference.
+ generalization of a Beta distribution. The Dirichlet distribution
+ is a conjugate prior of a multinomial distribution in Bayesian
+ inference.
Parameters
----------
@@ -4698,13 +4699,24 @@ cdef class RandomState:
Notes
-----
- .. math:: X \\approx \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i}
- Uses the following property for computation: for each dimension,
- draw a random sample y_i from a standard gamma generator of shape
- `alpha_i`, then
- :math:`X = \\frac{1}{\\sum_{i=1}^k{y_i}} (y_1, \\ldots, y_n)` is
- Dirichlet distributed.
+ The Dirichlet distribution is a distribution over vectors
+ :math:`x` that fulfil the conditions :math:`x_i>0` and
+ :math:`\\sum_{i=1}^k x_i = 1`.
+
+ The probability density function :math:`p` of a
+ Dirichlet-distributed random vector :math:`X` is
+ proportional to
+
+ .. math:: p(x) \\propto \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i},
+
+ where :math:`\\alpha` is a vector containing the positive
+ concentration parameters.
+
+ The method uses the following property for computation: let :math:`Y`
+ be a random vector which has components that follow a standard gamma
+ distribution, then :math:`X = \\frac{1}{\\sum_{i=1}^k{Y_i}} Y`
+ is Dirichlet-distributed
References
----------