summaryrefslogtreecommitdiff
path: root/scipy/weave/standard_array_spec.py
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2005-09-26 20:20:16 +0000
committerTravis Oliphant <oliphant@enthought.com>2005-09-26 20:20:16 +0000
commit45d01a4be1c4221132ba46d687e6af3a8df3329b (patch)
treece3be5290e918def7c7187e747c5460193b0ca85 /scipy/weave/standard_array_spec.py
parentccd1c3db37672627aa4fe0fdb5437f5dddc0fe86 (diff)
downloadnumpy-45d01a4be1c4221132ba46d687e6af3a8df3329b.tar.gz
Moved weave
Diffstat (limited to 'scipy/weave/standard_array_spec.py')
-rw-r--r--scipy/weave/standard_array_spec.py157
1 files changed, 157 insertions, 0 deletions
diff --git a/scipy/weave/standard_array_spec.py b/scipy/weave/standard_array_spec.py
new file mode 100644
index 000000000..261aeb3a5
--- /dev/null
+++ b/scipy/weave/standard_array_spec.py
@@ -0,0 +1,157 @@
+from c_spec import common_base_converter
+from c_spec import num_to_c_types
+from scipy.base import *
+from types import *
+import os
+
+
+num_typecode = {}
+num_typecode['b'] = 'PyArray_SBYTE'
+num_typecode['B'] = 'PyArray_UBYTE'
+num_typecode['h'] = 'PyArray_SHORT'
+num_typecode['H'] = 'PyArray_USHORT'
+num_typecode['i'] = 'PyArray_INT' # PyArray_INT has troubles ?? What does this note mean ??
+num_typecode['I'] = 'PyArray_UINT'
+num_typecode['l'] = 'PyArray_LONG'
+num_typecode['f'] = 'PyArray_FLOAT'
+num_typecode['d'] = 'PyArray_DOUBLE'
+num_typecode['F'] = 'PyArray_CFLOAT'
+num_typecode['D'] = 'PyArray_CDOUBLE'
+
+type_check_code = \
+"""
+class numpy_type_handler
+{
+public:
+ void conversion_numpy_check_type(PyArrayObject* arr_obj, int numeric_type,
+ const char* name)
+ {
+ // Make sure input has correct numeric type.
+ // allow character and byte to match
+ // also allow int and long to match
+ int arr_type = arr_obj->descr->type_num;
+ if ( arr_type != numeric_type &&
+ !(numeric_type == PyArray_CHAR && arr_type == PyArray_SBYTE) &&
+ !(numeric_type == PyArray_SBYTE && arr_type == PyArray_CHAR) &&
+ !(numeric_type == PyArray_INT && arr_type == PyArray_LONG) &&
+ !(numeric_type == PyArray_LONG && arr_type == PyArray_INT))
+ {
+
+ char* type_names[20] = {"char","unsigned byte","byte", "short", "unsigned short",
+ "int", "unsigned int", "long", "float", "double",
+ "complex float","complex double", "object","ntype",
+ "unkown"};
+ char msg[500];
+ sprintf(msg,"Conversion Error: received '%s' typed array instead of '%s' typed array for variable '%s'",
+ type_names[arr_type],type_names[numeric_type],name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
+
+ void numpy_check_type(PyArrayObject* arr_obj, int numeric_type, const char* name)
+ {
+ // Make sure input has correct numeric type.
+ int arr_type = arr_obj->descr->type_num;
+ if ( arr_type != numeric_type &&
+ !(numeric_type == PyArray_CHAR && arr_type == PyArray_SBYTE) &&
+ !(numeric_type == PyArray_SBYTE && arr_type == PyArray_CHAR) &&
+ !(numeric_type == PyArray_INT && arr_type == PyArray_LONG) &&
+ !(numeric_type == PyArray_LONG && arr_type == PyArray_INT))
+ {
+ char* type_names[20] = {"char","unsigned byte","byte", "short",
+ "unsigned short", "int", "unsigned int",
+ "long", "float", "double",
+ "complex float", "complex double",
+ "object","ntype","unkown"};
+ char msg[500];
+ sprintf(msg,"received '%s' typed array instead of '%s' typed array for variable '%s'",
+ type_names[arr_type],type_names[numeric_type],name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
+};
+
+numpy_type_handler x__numpy_type_handler = numpy_type_handler();
+#define conversion_numpy_check_type x__numpy_type_handler.conversion_numpy_check_type
+#define numpy_check_type x__numpy_type_handler.numpy_check_type
+
+"""
+
+size_check_code = \
+"""
+class numpy_size_handler
+{
+public:
+ void conversion_numpy_check_size(PyArrayObject* arr_obj, int Ndims,
+ const char* name)
+ {
+ if (arr_obj->nd != Ndims)
+ {
+ char msg[500];
+ sprintf(msg,"Conversion Error: received '%d' dimensional array instead of '%d' dimensional array for variable '%s'",
+ arr_obj->nd,Ndims,name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
+
+ void numpy_check_size(PyArrayObject* arr_obj, int Ndims, const char* name)
+ {
+ if (arr_obj->nd != Ndims)
+ {
+ char msg[500];
+ sprintf(msg,"received '%d' dimensional array instead of '%d' dimensional array for variable '%s'",
+ arr_obj->nd,Ndims,name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
+};
+
+numpy_size_handler x__numpy_size_handler = numpy_size_handler();
+#define conversion_numpy_check_size x__numpy_size_handler.conversion_numpy_check_size
+#define numpy_check_size x__numpy_size_handler.numpy_check_size
+
+"""
+
+numeric_init_code = \
+"""
+Py_Initialize();
+import_array();
+PyImport_ImportModule("scipy");
+"""
+
+class array_converter(common_base_converter):
+
+ def init_info(self):
+ common_base_converter.init_info(self)
+ self.type_name = 'numpy'
+ self.check_func = 'PyArray_Check'
+ self.c_type = 'PyArrayObject*'
+ self.return_type = 'PyArrayObject*'
+ self.to_c_return = '(PyArrayObject*) py_obj'
+ self.matching_types = [ArrayType]
+ self.headers = ['"scipy/arrayobject.h"',
+ '<complex>','<math.h>']
+ self.support_code = [size_check_code, type_check_code]
+ self.module_init_code = [numeric_init_code]
+
+ def get_var_type(self,value):
+ return value.dtypechar
+
+ def template_vars(self,inline=0):
+ res = common_base_converter.template_vars(self,inline)
+ if hasattr(self,'var_type'):
+ res['num_type'] = num_to_c_types[self.var_type]
+ res['num_typecode'] = num_typecode[self.var_type]
+ res['array_name'] = self.name + "_array"
+ return res
+
+ def declaration_code(self,templatize = 0,inline=0):
+ code = '%(py_var)s = %(var_lookup)s;\n' \
+ '%(c_type)s %(array_name)s = %(var_convert)s;\n' \
+ 'conversion_numpy_check_type(%(array_name)s,%(num_typecode)s,"%(name)s");\n' \
+ 'int* N%(name)s = %(array_name)s->dimensions;\n' \
+ 'int* S%(name)s = %(array_name)s->strides;\n' \
+ 'int D%(name)s = %(array_name)s->nd;\n' \
+ '%(num_type)s* %(name)s = (%(num_type)s*) %(array_name)s->data;\n'
+ code = code % self.template_vars(inline=inline)
+ return code