summaryrefslogtreecommitdiff
path: root/weave/standard_array_spec.py
diff options
context:
space:
mode:
authorEric Jones <eric@enthought.com>2002-09-12 06:54:21 +0000
committerEric Jones <eric@enthought.com>2002-09-12 06:54:21 +0000
commitd3a1627631042af2fe74620f5688d9ba99ce87cf (patch)
treebdf84561d807318f74e0ecfaf520a9aca66b74e6 /weave/standard_array_spec.py
parent6538641ccf3beb2cc304b5ee21365cb44ff6800b (diff)
downloadnumpy-d3a1627631042af2fe74620f5688d9ba99ce87cf.tar.gz
major rewrite of weave.
0. The underlying library code is significantly re-factored and simpler. There used to be a xxx_spec.py and xxx_info.py file for every group of type conversion classes. The spec file held the python code that handled the conversion and the info file had most of the C code templates that were generated. This proved pretty confusing in practice, so the two files have mostly been merged into the spec file. Also, there was quite a bit of code duplication running around. The re-factoring was able to trim the standard conversion code base (excluding blitz and accelerate stuff) by about 40%. This should be a huge maintainability and extensibility win. 1. With multiple months of using Numeric arrays, I've found some of weave's "magic variable" names unwieldy and want to change them. The following are the old declarations for an array x of Float32 type: PyArrayObject* x = convert_to_numpy(...); float* x_data = (float*) x->data; int* _Nx = x->dimensions; int* _Sx = x->strides; int _Dx = x->nd; The new declaration looks like this: PyArrayObject* x_array = convert_to_numpy(...); float* x = (float*) x->data; int* Nx = x->dimensions; int* Sx = x->strides; int Dx = x->nd; This is obviously not backward compatible, and will break some code (including a lot of mine). It also makes inline() code more readable and natural to write. 2. I've switched from CXX to Gordon McMillan's SCXX for list, tuples, and dictionaries. I like CXX pretty well, but its use of advanced C++ (templates, etc.) caused some portability problems. The SCXX library is similar to CXX but doesn't use templates at all. This, like (1) is not an API compatible change and requires repairing existing code. I have also thought about boost python, but it also makes heavy use of templates. Moving to SCXX gets rid of almost all template usage for the standard type converters which should help portability. std::complex and std::string from the STL are the only templates left. Of course blitz still uses templates in a major way so weave.blitz will continue to be hard on compilers. I've actually considered scrapping the C++ classes for list, tuples, and dictionaries, and just fall back to the standard Python C API because the classes are waaay slower than the raw API in many cases. They are also more convenient and less error prone in many cases, so I've decided to stick with them. The PyObject variable will always be made available for variable "x" under the name "py_x" for more speedy operations. You'll definitely want to use these for anything that needs to be speedy. 3. strings are converted to std::string now. I found this to be the most useful type in for strings in my code. Py::String was used previously. 4. There are a number of reference count "errors" in some of the less tested conversion codes such as instance, module, etc. I've cleaned most of these up. I put errors in quotes here because I'm actually not positive that objects passed into "inline" really need reference counting applied to them. The dictionaries passed in by inline() hold references to these objects so it doesn't seem that they could ever be garbage collected inadvertently. Variables used by ext_tools, though, definitely need the reference counting done. I don't think this is a major cost in speed, so it probably isn't worth getting rid of the ref count code. 5. Unicode objects are now supported. This was necessary to support rendering Unicode strings in the freetype wrappers for Chaco. 6. blitz++ was upgraded to the latest CVS. It compiles about twice as fast as the old blitz and looks like it supports a large number of compilers (though only gcc 2.95.3 is tested). Compile times now take about 9 seconds on my 850 MHz PIII laptop.
Diffstat (limited to 'weave/standard_array_spec.py')
-rw-r--r--weave/standard_array_spec.py215
1 files changed, 137 insertions, 78 deletions
diff --git a/weave/standard_array_spec.py b/weave/standard_array_spec.py
index 181b72f18..0509835a7 100644
--- a/weave/standard_array_spec.py
+++ b/weave/standard_array_spec.py
@@ -1,93 +1,152 @@
-from base_spec import base_converter
-from scalar_spec import numeric_to_c_type_mapping
+from c_spec import common_base_converter
+from c_spec import num_to_c_types
from Numeric import *
from types import *
import os
-import standard_array_info
-class array_converter(base_converter):
- _build_information = [standard_array_info.array_info()]
+num_typecode = {}
+num_typecode['c'] = 'PyArray_CHAR'
+num_typecode['1'] = 'PyArray_SBYTE'
+num_typecode['b'] = 'PyArray_UBYTE'
+num_typecode['s'] = 'PyArray_SHORT'
+num_typecode['i'] = 'PyArray_INT' # PyArray_INT has troubles ?? What does this note mean ??
+num_typecode['l'] = 'PyArray_LONG'
+num_typecode['f'] = 'PyArray_FLOAT'
+num_typecode['d'] = 'PyArray_DOUBLE'
+num_typecode['F'] = 'PyArray_CFLOAT'
+num_typecode['D'] = 'PyArray_CDOUBLE'
+
+type_check_code = \
+"""
+class numpy_type_handler
+{
+public:
+ void conversion_numpy_check_type(PyArrayObject* arr_obj, int numeric_type,
+ const char* name)
+ {
+ // Make sure input has correct numeric type.
+ // allow character and byte to match
+ // also allow int and long to match
+ int arr_type = arr_obj->descr->type_num;
+ if ( arr_type != numeric_type &&
+ !(numeric_type == PyArray_CHAR && arr_type == PyArray_SBYTE) &&
+ !(numeric_type == PyArray_SBYTE && arr_type == PyArray_CHAR) &&
+ !(numeric_type == PyArray_INT && arr_type == PyArray_LONG) &&
+ !(numeric_type == PyArray_LONG && arr_type == PyArray_INT))
+ {
+ char* type_names[13] = {"char","unsigned byte","byte", "short", "int",
+ "long", "float", "double", "complex float",
+ "complex double", "object","ntype","unkown"};
+ char msg[500];
+ sprintf(msg,"Conversion Error: received '%s' typed array instead of '%s' typed array for variable '%s'",
+ type_names[arr_type],type_names[numeric_type],name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
- def type_match(self,value):
- return type(value) is ArrayType
+ void numpy_check_type(PyArrayObject* arr_obj, int numeric_type, const char* name)
+ {
+ // Make sure input has correct numeric type.
+ int arr_type = arr_obj->descr->type_num;
+ if ( arr_type != numeric_type &&
+ !(numeric_type == PyArray_CHAR && arr_type == PyArray_SBYTE) &&
+ !(numeric_type == PyArray_SBYTE && arr_type == PyArray_CHAR) &&
+ !(numeric_type == PyArray_INT && arr_type == PyArray_LONG) &&
+ !(numeric_type == PyArray_LONG && arr_type == PyArray_INT))
+ {
+ char* type_names[13] = {"char","unsigned byte","byte", "short", "int",
+ "long", "float", "double", "complex float",
+ "complex double", "object","ntype","unkown"};
+ char msg[500];
+ sprintf(msg,"received '%s' typed array instead of '%s' typed array for variable '%s'",
+ type_names[arr_type],type_names[numeric_type],name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
+};
- def type_spec(self,name,value):
- # factory
- new_spec = array_converter()
- new_spec.name = name
- new_spec.numeric_type = value.typecode()
- # dims not used, but here for compatibility with blitz_spec
- new_spec.dims = len(shape(value))
- return new_spec
+numpy_type_handler x__numpy_type_handler = numpy_type_handler();
+#define conversion_numpy_check_type x__numpy_type_handler.conversion_numpy_check_type
+#define numpy_check_type x__numpy_type_handler.numpy_check_type
- def declaration_code(self,templatize = 0,inline=0):
- if inline:
- code = self.inline_decl_code()
- else:
- code = self.standard_decl_code()
- return code
+"""
+
+size_check_code = \
+"""
+class numpy_size_handler
+{
+public:
+ void conversion_numpy_check_size(PyArrayObject* arr_obj, int Ndims,
+ const char* name)
+ {
+ if (arr_obj->nd != Ndims)
+ {
+ char msg[500];
+ sprintf(msg,"Conversion Error: received '%d' dimensional array instead of '%d' dimensional array for variable '%s'",
+ arr_obj->nd,Ndims,name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
- def inline_decl_code(self):
- type = numeric_to_c_type_mapping[self.numeric_type]
- name = self.name
- #dims = self.dims
- var_name = self.retrieve_py_variable(inline=1)
- templ = '// %(name)s array declaration\n' \
- 'py_%(name)s= %(var_name)s;\n' \
- 'PyArrayObject* %(name)s = convert_to_numpy(py_%(name)s,"%(name)s");\n' \
- 'conversion_numpy_check_type(%(name)s,py_type<%(type)s>::code,"%(name)s");\n' \
- 'int* _N%(name)s = %(name)s->dimensions;\n' \
- 'int* _S%(name)s = %(name)s->strides;\n' \
- 'int _D%(name)s = %(name)s->nd;\n' \
- '%(type)s* %(name)s_data = (%(type)s*) %(name)s->data;\n'
- code = templ % locals()
- return code
+ void numpy_check_size(PyArrayObject* arr_obj, int Ndims, const char* name)
+ {
+ if (arr_obj->nd != Ndims)
+ {
+ char msg[500];
+ sprintf(msg,"received '%d' dimensional array instead of '%d' dimensional array for variable '%s'",
+ arr_obj->nd,Ndims,name);
+ throw_error(PyExc_TypeError,msg);
+ }
+ }
+};
- def standard_decl_code(self):
- type = numeric_to_c_type_mapping[self.numeric_type]
- name = self.name
- templ = '// %(name)s array declaration\n' \
- 'PyArrayObject* %(name)s = convert_to_numpy(py_%(name)s,"%(name)s");\n' \
- 'conversion_numpy_check_type(%(name)s,py_type<%(type)s>::code,"%(name)s");\n' \
- 'int* _N%(name)s = %(name)s->dimensions;\n' \
- 'int* _S%(name)s = %(name)s->strides;\n' \
- 'int _D%(name)s = %(name)s->nd;\n' \
- '%(type)s* %(name)s_data = (%(type)s*) %(name)s->data;\n'
- code = templ % locals()
- return code
- #def c_function_declaration_code(self):
- # """
- # This doesn't pass the size through. That info is gonna have to
- # be redone in the c function.
- # """
- # templ_dict = {}
- # templ_dict['type'] = numeric_to_c_type_mapping[self.numeric_type]
- # templ_dict['dims'] = self.dims
- # templ_dict['name'] = self.name
- # code = 'blitz::Array<%(type)s,%(dims)d> &%(name)s' % templ_dict
- # return code
-
- def local_dict_code(self):
- code = '// for now, array "%s" is not returned as arryas are edited' \
- ' in place (should this change?)\n' % (self.name)
- return code
+numpy_size_handler x__numpy_size_handler = numpy_size_handler();
+#define conversion_numpy_check_size x__numpy_size_handler.conversion_numpy_check_size
+#define numpy_check_size x__numpy_size_handler.numpy_check_size
- def cleanup_code(self):
- # could use Py_DECREF here I think and save NULL test.
- code = "Py_XDECREF(py_%s);\n" % self.name
- return code
+"""
- def __repr__(self):
- msg = "(array:: name: %s, type: %s)" % \
- (self.name, self.numeric_type)
- return msg
+numeric_init_code = \
+"""
+Py_Initialize();
+import_array();
+PyImport_ImportModule("Numeric");
+"""
+
+class array_converter(common_base_converter):
- def __cmp__(self,other):
- #only works for equal
- return cmp(self.name,other.name) or \
- cmp(self.numeric_type,other.numeric_type) or \
- cmp(self.dims, other.dims) or \
- cmp(self.__class__, other.__class__)
+ def init_info(self):
+ common_base_converter.init_info(self)
+ self.type_name = 'numpy'
+ self.check_func = 'PyArray_Check'
+ self.c_type = 'PyArrayObject*'
+ self.to_c_return = '(PyArrayObject*) py_obj'
+ self.matching_types = [ArrayType]
+ self.headers = ['"Numeric/arrayobject.h"','<complex>','<math.h>']
+ self.support_code = [size_check_code, type_check_code]
+ self.module_init_code = [numeric_init_code]
+
+ def get_var_type(self,value):
+ return value.typecode()
+
+ def template_vars(self,inline=0):
+ res = common_base_converter.template_vars(self,inline)
+ if hasattr(self,'var_type'):
+ res['num_type'] = num_to_c_types[self.var_type]
+ res['num_typecode'] = num_typecode[self.var_type]
+ res['array_name'] = self.name + "_array"
+ return res
+
+ def declaration_code(self,templatize = 0,inline=0):
+ code = '%(py_var)s = %(var_lookup)s;\n' \
+ '%(c_type)s %(array_name)s = %(var_convert)s;\n' \
+ 'conversion_numpy_check_type(%(array_name)s,%(num_typecode)s,"%(name)s");\n' \
+ 'int* N%(name)s = %(array_name)s->dimensions;\n' \
+ 'int* S%(name)s = %(array_name)s->strides;\n' \
+ 'int D%(name)s = %(array_name)s->nd;\n' \
+ '%(num_type)s* %(name)s = (%(num_type)s*) %(array_name)s->data;\n'
+ code = code % self.template_vars(inline=inline)
+ return code
def test(level=10):
from scipy_base.testing import module_test