diff options
| -rw-r--r-- | numpy/ma/core.py | 91 | ||||
| -rw-r--r-- | numpy/ma/extras.py | 92 |
2 files changed, 90 insertions, 93 deletions
diff --git a/numpy/ma/core.py b/numpy/ma/core.py index 95692bc52..dcec82773 100644 --- a/numpy/ma/core.py +++ b/numpy/ma/core.py @@ -7767,97 +7767,6 @@ def _mask_propagate(a, axis): return a -# Needed by dot, so move here from extras.py. It will still be exported -# from extras.py for compatibility. -def mask_rowcols(a, axis=None): - """ - Mask rows and/or columns of a 2D array that contain masked values. - - Mask whole rows and/or columns of a 2D array that contain - masked values. The masking behavior is selected using the - `axis` parameter. - - - If `axis` is None, rows *and* columns are masked. - - If `axis` is 0, only rows are masked. - - If `axis` is 1 or -1, only columns are masked. - - Parameters - ---------- - a : array_like, MaskedArray - The array to mask. If not a MaskedArray instance (or if no array - elements are masked), the result is a MaskedArray with `mask` set - to `nomask` (False). Must be a 2D array. - axis : int, optional - Axis along which to perform the operation. If None, applies to a - flattened version of the array. - - Returns - ------- - a : MaskedArray - A modified version of the input array, masked depending on the value - of the `axis` parameter. - - Raises - ------ - NotImplementedError - If input array `a` is not 2D. - - See Also - -------- - mask_rows : Mask rows of a 2D array that contain masked values. - mask_cols : Mask cols of a 2D array that contain masked values. - masked_where : Mask where a condition is met. - - Notes - ----- - The input array's mask is modified by this function. - - Examples - -------- - >>> import numpy.ma as ma - >>> a = np.zeros((3, 3), dtype=int) - >>> a[1, 1] = 1 - >>> a - array([[0, 0, 0], - [0, 1, 0], - [0, 0, 0]]) - >>> a = ma.masked_equal(a, 1) - >>> a - masked_array( - data=[[0, 0, 0], - [0, --, 0], - [0, 0, 0]], - mask=[[False, False, False], - [False, True, False], - [False, False, False]], - fill_value=1) - >>> ma.mask_rowcols(a) - masked_array( - data=[[0, --, 0], - [--, --, --], - [0, --, 0]], - mask=[[False, True, False], - [ True, True, True], - [False, True, False]], - fill_value=1) - - """ - a = array(a, subok=False) - if a.ndim != 2: - raise NotImplementedError("mask_rowcols works for 2D arrays only.") - m = getmask(a) - # Nothing is masked: return a - if m is nomask or not m.any(): - return a - maskedval = m.nonzero() - a._mask = a._mask.copy() - if not axis: - a[np.unique(maskedval[0])] = masked - if axis in [None, 1, -1]: - a[:, np.unique(maskedval[1])] = masked - return a - - # Include masked dot here to avoid import problems in getting it from # extras.py. Note that it is not included in __all__, but rather exported # from extras in order to avoid backward compatibility problems. diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py index 4abe2107a..8a6246c36 100644 --- a/numpy/ma/extras.py +++ b/numpy/ma/extras.py @@ -27,8 +27,7 @@ from . import core as ma from .core import ( MaskedArray, MAError, add, array, asarray, concatenate, filled, count, getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or, - nomask, ones, sort, zeros, getdata, get_masked_subclass, dot, - mask_rowcols + nomask, ones, sort, zeros, getdata, get_masked_subclass, dot ) import numpy as np @@ -955,6 +954,95 @@ def compress_cols(a): return compress_rowcols(a, 1) +def mask_rowcols(a, axis=None): + """ + Mask rows and/or columns of a 2D array that contain masked values. + + Mask whole rows and/or columns of a 2D array that contain + masked values. The masking behavior is selected using the + `axis` parameter. + + - If `axis` is None, rows *and* columns are masked. + - If `axis` is 0, only rows are masked. + - If `axis` is 1 or -1, only columns are masked. + + Parameters + ---------- + a : array_like, MaskedArray + The array to mask. If not a MaskedArray instance (or if no array + elements are masked), the result is a MaskedArray with `mask` set + to `nomask` (False). Must be a 2D array. + axis : int, optional + Axis along which to perform the operation. If None, applies to a + flattened version of the array. + + Returns + ------- + a : MaskedArray + A modified version of the input array, masked depending on the value + of the `axis` parameter. + + Raises + ------ + NotImplementedError + If input array `a` is not 2D. + + See Also + -------- + mask_rows : Mask rows of a 2D array that contain masked values. + mask_cols : Mask cols of a 2D array that contain masked values. + masked_where : Mask where a condition is met. + + Notes + ----- + The input array's mask is modified by this function. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + >>> ma.mask_rowcols(a) + masked_array( + data=[[0, --, 0], + [--, --, --], + [0, --, 0]], + mask=[[False, True, False], + [ True, True, True], + [False, True, False]], + fill_value=1) + + """ + a = array(a, subok=False) + if a.ndim != 2: + raise NotImplementedError("mask_rowcols works for 2D arrays only.") + m = getmask(a) + # Nothing is masked: return a + if m is nomask or not m.any(): + return a + maskedval = m.nonzero() + a._mask = a._mask.copy() + if not axis: + a[np.unique(maskedval[0])] = masked + if axis in [None, 1, -1]: + a[:, np.unique(maskedval[1])] = masked + return a + + def mask_rows(a, axis=np._NoValue): """ Mask rows of a 2D array that contain masked values. |
