diff options
-rw-r--r-- | numpy/core/src/multiarray/dtypemeta.h | 6 | ||||
-rw-r--r-- | numpy/core/src/umath/dispatching.c | 4 | ||||
-rw-r--r-- | numpy/core/src/umath/ufunc_object.c | 119 | ||||
-rw-r--r-- | numpy/core/tests/test_custom_dtypes.py | 18 | ||||
-rw-r--r-- | numpy/core/tests/test_ufunc.py | 8 |
5 files changed, 116 insertions, 39 deletions
diff --git a/numpy/core/src/multiarray/dtypemeta.h b/numpy/core/src/multiarray/dtypemeta.h index 05e9e2394..2a61fe39d 100644 --- a/numpy/core/src/multiarray/dtypemeta.h +++ b/numpy/core/src/multiarray/dtypemeta.h @@ -74,9 +74,9 @@ typedef struct { #define NPY_DTYPE(descr) ((PyArray_DTypeMeta *)Py_TYPE(descr)) #define NPY_DT_SLOTS(dtype) ((NPY_DType_Slots *)(dtype)->dt_slots) -#define NPY_DT_is_legacy(dtype) ((dtype)->flags & NPY_DT_LEGACY) -#define NPY_DT_is_abstract(dtype) ((dtype)->flags & NPY_DT_ABSTRACT) -#define NPY_DT_is_parametric(dtype) ((dtype)->flags & NPY_DT_PARAMETRIC) +#define NPY_DT_is_legacy(dtype) (((dtype)->flags & NPY_DT_LEGACY) != 0) +#define NPY_DT_is_abstract(dtype) (((dtype)->flags & NPY_DT_ABSTRACT) != 0) +#define NPY_DT_is_parametric(dtype) (((dtype)->flags & NPY_DT_PARAMETRIC) != 0) /* * Macros for convenient classmethod calls, since these require diff --git a/numpy/core/src/umath/dispatching.c b/numpy/core/src/umath/dispatching.c index 9c76b40e0..8e99c0420 100644 --- a/numpy/core/src/umath/dispatching.c +++ b/numpy/core/src/umath/dispatching.c @@ -193,6 +193,10 @@ resolve_implementation_info(PyUFuncObject *ufunc, /* Unspecified out always matches (see below for inputs) */ continue; } + if (resolver_dtype == (PyArray_DTypeMeta *)Py_None) { + /* always matches */ + continue; + } if (given_dtype == resolver_dtype) { continue; } diff --git a/numpy/core/src/umath/ufunc_object.c b/numpy/core/src/umath/ufunc_object.c index 15385b624..237af81b2 100644 --- a/numpy/core/src/umath/ufunc_object.c +++ b/numpy/core/src/umath/ufunc_object.c @@ -5880,15 +5880,13 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) PyArrayObject *op2_array = NULL; PyArrayMapIterObject *iter = NULL; PyArrayIterObject *iter2 = NULL; - PyArray_Descr *dtypes[3] = {NULL, NULL, NULL}; PyArrayObject *operands[3] = {NULL, NULL, NULL}; PyArrayObject *array_operands[3] = {NULL, NULL, NULL}; - int needs_api = 0; + PyArray_DTypeMeta *signature[3] = {NULL, NULL, NULL}; + PyArray_DTypeMeta *operand_DTypes[3] = {NULL, NULL, NULL}; + PyArray_Descr *operation_descrs[3] = {NULL, NULL, NULL}; - PyUFuncGenericFunction innerloop; - void *innerloopdata; - npy_intp i; int nop; /* override vars */ @@ -5901,6 +5899,10 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) int buffersize; int errormask = 0; char * err_msg = NULL; + + PyArrayMethod_StridedLoop *strided_loop; + NpyAuxData *auxdata = NULL; + NPY_BEGIN_THREADS_DEF; if (ufunc->nin > 2) { @@ -5988,26 +5990,51 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) /* * Create dtypes array for either one or two input operands. - * The output operand is set to the first input operand + * Compare to the logic in `convert_ufunc_arguments`. + * TODO: It may be good to review some of this behaviour, since the + * operand array is special (it is written to) similar to reductions. + * Using unsafe-casting as done here, is likely not desirable. */ operands[0] = op1_array; + operand_DTypes[0] = NPY_DTYPE(PyArray_DESCR(op1_array)); + Py_INCREF(operand_DTypes[0]); + int force_legacy_promotion = 0; + int allow_legacy_promotion = NPY_DT_is_legacy(operand_DTypes[0]); + if (op2_array != NULL) { operands[1] = op2_array; - operands[2] = op1_array; + operand_DTypes[1] = NPY_DTYPE(PyArray_DESCR(op2_array)); + Py_INCREF(operand_DTypes[1]); + allow_legacy_promotion &= NPY_DT_is_legacy(operand_DTypes[1]); + operands[2] = operands[0]; + operand_DTypes[2] = operand_DTypes[0]; + Py_INCREF(operand_DTypes[2]); + nop = 3; + if (allow_legacy_promotion && ((PyArray_NDIM(op1_array) == 0) + != (PyArray_NDIM(op2_array) == 0))) { + /* both are legacy and only one is 0-D: force legacy */ + force_legacy_promotion = should_use_min_scalar(2, operands, 0, NULL); + } } else { - operands[1] = op1_array; + operands[1] = operands[0]; + operand_DTypes[1] = operand_DTypes[0]; + Py_INCREF(operand_DTypes[1]); operands[2] = NULL; nop = 2; } - if (ufunc->type_resolver(ufunc, NPY_UNSAFE_CASTING, - operands, NULL, dtypes) < 0) { + PyArrayMethodObject *ufuncimpl = promote_and_get_ufuncimpl(ufunc, + operands, signature, operand_DTypes, + force_legacy_promotion, allow_legacy_promotion); + if (ufuncimpl == NULL) { goto fail; } - if (ufunc->legacy_inner_loop_selector(ufunc, dtypes, - &innerloop, &innerloopdata, &needs_api) < 0) { + + /* Find the correct descriptors for the operation */ + if (resolve_descriptors(nop, ufunc, ufuncimpl, + operands, operation_descrs, signature, NPY_UNSAFE_CASTING) < 0) { goto fail; } @@ -6068,21 +6095,44 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) NPY_ITER_GROWINNER| NPY_ITER_DELAY_BUFALLOC, NPY_KEEPORDER, NPY_UNSAFE_CASTING, - op_flags, dtypes, + op_flags, operation_descrs, -1, NULL, NULL, buffersize); if (iter_buffer == NULL) { goto fail; } - needs_api = needs_api | NpyIter_IterationNeedsAPI(iter_buffer); - iternext = NpyIter_GetIterNext(iter_buffer, NULL); if (iternext == NULL) { NpyIter_Deallocate(iter_buffer); goto fail; } + PyArrayMethod_Context context = { + .caller = (PyObject *)ufunc, + .method = ufuncimpl, + .descriptors = operation_descrs, + }; + + NPY_ARRAYMETHOD_FLAGS flags; + /* Use contiguous strides; if there is such a loop it may be faster */ + npy_intp strides[3] = { + operation_descrs[0]->elsize, operation_descrs[1]->elsize, 0}; + if (nop == 3) { + strides[2] = operation_descrs[2]->elsize; + } + + if (ufuncimpl->get_strided_loop(&context, 1, 0, strides, + &strided_loop, &auxdata, &flags) < 0) { + goto fail; + } + int needs_api = (flags & NPY_METH_REQUIRES_PYAPI) != 0; + needs_api |= NpyIter_IterationNeedsAPI(iter_buffer); + if (!(flags & NPY_METH_NO_FLOATINGPOINT_ERRORS)) { + /* Start with the floating-point exception flags cleared */ + npy_clear_floatstatus_barrier((char*)&iter); + } + if (!needs_api) { NPY_BEGIN_THREADS; } @@ -6091,14 +6141,13 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) * Iterate over first and second operands and call ufunc * for each pair of inputs */ - i = iter->size; - while (i > 0) + int res = 0; + for (npy_intp i = iter->size; i > 0; i--) { char *dataptr[3]; char **buffer_dataptr; /* one element at a time, no stride required but read by innerloop */ - npy_intp count[3] = {1, 0xDEADBEEF, 0xDEADBEEF}; - npy_intp stride[3] = {0xDEADBEEF, 0xDEADBEEF, 0xDEADBEEF}; + npy_intp count = 1; /* * Set up data pointers for either one or two input operands. @@ -6117,14 +6166,14 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) /* Reset NpyIter data pointers which will trigger a buffer copy */ NpyIter_ResetBasePointers(iter_buffer, dataptr, &err_msg); if (err_msg) { + res = -1; break; } buffer_dataptr = NpyIter_GetDataPtrArray(iter_buffer); - innerloop(buffer_dataptr, count, stride, innerloopdata); - - if (needs_api && PyErr_Occurred()) { + res = strided_loop(&context, buffer_dataptr, &count, strides, auxdata); + if (res != 0) { break; } @@ -6138,32 +6187,35 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args) if (iter2 != NULL) { PyArray_ITER_NEXT(iter2); } - - i--; } NPY_END_THREADS; - if (err_msg) { + if (res != 0 && err_msg) { PyErr_SetString(PyExc_ValueError, err_msg); } + if (res == 0 && !(flags & NPY_METH_NO_FLOATINGPOINT_ERRORS)) { + /* NOTE: We could check float errors even when `res < 0` */ + res = _check_ufunc_fperr(errormask, NULL, "at"); + } + NPY_AUXDATA_FREE(auxdata); NpyIter_Deallocate(iter_buffer); Py_XDECREF(op2_array); Py_XDECREF(iter); Py_XDECREF(iter2); - for (i = 0; i < 3; i++) { - Py_XDECREF(dtypes[i]); + for (int i = 0; i < 3; i++) { + Py_XDECREF(operation_descrs[i]); Py_XDECREF(array_operands[i]); } /* - * An error should only be possible if needs_api is true, but this is not - * strictly correct for old-style ufuncs (e.g. `power` released the GIL - * but manually set an Exception). + * An error should only be possible if needs_api is true or `res != 0`, + * but this is not strictly correct for old-style ufuncs + * (e.g. `power` released the GIL but manually set an Exception). */ - if (PyErr_Occurred()) { + if (res != 0 || PyErr_Occurred()) { return NULL; } else { @@ -6178,10 +6230,11 @@ fail: Py_XDECREF(op2_array); Py_XDECREF(iter); Py_XDECREF(iter2); - for (i = 0; i < 3; i++) { - Py_XDECREF(dtypes[i]); + for (int i = 0; i < 3; i++) { + Py_XDECREF(operation_descrs[i]); Py_XDECREF(array_operands[i]); } + NPY_AUXDATA_FREE(auxdata); return NULL; } diff --git a/numpy/core/tests/test_custom_dtypes.py b/numpy/core/tests/test_custom_dtypes.py index e502a87ed..6bcc45d6b 100644 --- a/numpy/core/tests/test_custom_dtypes.py +++ b/numpy/core/tests/test_custom_dtypes.py @@ -117,18 +117,36 @@ class TestSFloat: match="the resolved dtypes are not compatible"): np.multiply.reduce(a) + def test_basic_ufunc_at(self): + float_a = np.array([1., 2., 3.]) + b = self._get_array(2.) + + float_b = b.view(np.float64).copy() + np.multiply.at(float_b, [1, 1, 1], float_a) + np.multiply.at(b, [1, 1, 1], float_a) + + assert_array_equal(b.view(np.float64), float_b) + def test_basic_multiply_promotion(self): float_a = np.array([1., 2., 3.]) b = self._get_array(2.) res1 = float_a * b res2 = b * float_a + # one factor is one, so we get the factor of b: assert res1.dtype == res2.dtype == b.dtype expected_view = float_a * b.view(np.float64) assert_array_equal(res1.view(np.float64), expected_view) assert_array_equal(res2.view(np.float64), expected_view) + # Check that promotion works when `out` is used: + np.multiply(b, float_a, out=res2) + with pytest.raises(TypeError): + # The promoter accepts this (maybe it should not), but the SFloat + # result cannot be cast to integer: + np.multiply(b, float_a, out=np.arange(3)) + def test_basic_addition(self): a = self._get_array(2.) b = self._get_array(4.) diff --git a/numpy/core/tests/test_ufunc.py b/numpy/core/tests/test_ufunc.py index 4b06c8668..ef0bac957 100644 --- a/numpy/core/tests/test_ufunc.py +++ b/numpy/core/tests/test_ufunc.py @@ -2397,14 +2397,16 @@ def test_reduce_casterrors(offset): @pytest.mark.parametrize("method", [np.add.accumulate, np.add.reduce, - pytest.param(lambda x: np.add.reduceat(x, [0]), id="reduceat")]) -def test_reducelike_floaterrors(method): - # adding inf and -inf creates an invalid float and should give a warning + pytest.param(lambda x: np.add.reduceat(x, [0]), id="reduceat"), + pytest.param(lambda x: np.log.at(x, [2]), id="at")]) +def test_ufunc_methods_floaterrors(method): + # adding inf and -inf (or log(-inf) creates an invalid float and warns arr = np.array([np.inf, 0, -np.inf]) with np.errstate(all="warn"): with pytest.warns(RuntimeWarning, match="invalid value"): method(arr) + arr = np.array([np.inf, 0, -np.inf]) with np.errstate(all="raise"): with pytest.raises(FloatingPointError): method(arr) |