diff options
-rw-r--r-- | doc/release/1.9.0-notes.rst | 14 | ||||
-rw-r--r-- | numpy/polynomial/_polybase.py | 984 | ||||
-rw-r--r-- | numpy/polynomial/chebyshev.py | 59 | ||||
-rw-r--r-- | numpy/polynomial/hermite.py | 59 | ||||
-rw-r--r-- | numpy/polynomial/hermite_e.py | 59 | ||||
-rw-r--r-- | numpy/polynomial/laguerre.py | 59 | ||||
-rw-r--r-- | numpy/polynomial/legendre.py | 59 | ||||
-rw-r--r-- | numpy/polynomial/polynomial.py | 70 | ||||
-rw-r--r-- | numpy/polynomial/polytemplate.py | 6 | ||||
-rw-r--r-- | numpy/polynomial/polyutils.py | 57 |
10 files changed, 1360 insertions, 66 deletions
diff --git a/doc/release/1.9.0-notes.rst b/doc/release/1.9.0-notes.rst index aa0431c6e..9a97dba09 100644 --- a/doc/release/1.9.0-notes.rst +++ b/doc/release/1.9.0-notes.rst @@ -18,6 +18,7 @@ Dropped Support Future Changes ============== +* The numpy/polynomial/polytemplate.py file will be removed in 1.10.0. Compatibility notes =================== @@ -70,6 +71,13 @@ The ``doc/swig`` directory moved ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``doc/swig`` directory has been moved to ``tools/swig``. +Polynomial Classes no longer derived from PolyBase +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +This may cause problems with folks who depended on the polynomial classes +being derived from PolyBase. They are now all derived from the abstract +base class ABCPolyBase. Strictly speaking, there should be a deprecation +involved, but no external code making use of the old baseclass could be +found. New Features ============ @@ -151,6 +159,12 @@ Covariance check in ``np.random.multivariate_normal`` A ``RuntimeWarning`` warning is raised when the covariance matrix is not positive-semidefinite. +Polynomial Classes no longer template based +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The polynomial classes have been refactored to use an abstract base class +rather than a template in order to implement a common interface. This makes +importing the polynomial package faster as the classes do not need to be +compiled on import. Changes ======= diff --git a/numpy/polynomial/_polybase.py b/numpy/polynomial/_polybase.py new file mode 100644 index 000000000..4f174891a --- /dev/null +++ b/numpy/polynomial/_polybase.py @@ -0,0 +1,984 @@ +""" +Abstract base class for the various polynomial Classes. + +The ABCPolyBase class provides the methods needed to implement the common API +for the various polynomial classes. It operates as a mixin, but uses the +abc module from the stdlib, hence it is only available for Python >= 2.6. + +""" +from __future__ import division, absolute_import, print_function + +from abc import ABCMeta, abstractmethod, abstractproperty + +import numpy as np +from . import polyutils as pu + +__all__ = ['ABCPolyBase'] + +class ABCPolyBase(object): + """An abstract base class for series classes. + + ABCPolyBase provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the + methods listed below. + + .. versionadded:: 1.9.0 + + Parameters + ---------- + coef : array_like + Series coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where + ``P_i`` is the basis polynomials of degree ``i``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is the derived class domain. + window : (2,) array_like, optional + Window, see domain for its use. The default value is the + derived class window. + + Attributes + ---------- + coef : (N,) ndarray + Series coefficients in order of increasing degree. + domain : (2,) ndarray + Domain that is mapped to window. + window : (2,) ndarray + Window that domain is mapped to. + + Class Attributes + ---------------- + maxpower : int + Maximum power allowed, i.e., the largest number ``n`` such that + ``p(x)**n`` is allowed. This is to limit runaway polynomial size. + domain : (2,) ndarray + Default domain of the class. + window : (2,) ndarray + Default window of the class. + + """ + __metaclass__ = ABCMeta + + # Not hashable + __hash__ = None + + # Don't let participate in array operations. Value doesn't matter. + __array_priority__ = 1000 + + # Limit runaway size. T_n^m has degree n*m + maxpower = 100 + + @abstractproperty + def domain(self): + pass + + @abstractproperty + def window(self): + pass + + @abstractproperty + def nickname(self): + pass + + @abstractmethod + def _add(self): + pass + + @abstractmethod + def _sub(self): + pass + + @abstractmethod + def _mul(self): + pass + + @abstractmethod + def _div(self): + pass + + @abstractmethod + def _pow(self): + pass + + @abstractmethod + def _val(self): + pass + + @abstractmethod + def _int(self): + pass + + @abstractmethod + def _der(self): + pass + + @abstractmethod + def _fit(self): + pass + + @abstractmethod + def _line(self): + pass + + @abstractmethod + def _roots(self): + pass + + @abstractmethod + def _fromroots(self): + pass + + def has_samecoef(self, other): + """Check if coefficients match. + + .. versionadded:: 1.6.0 + + Parameters + ---------- + other : class instance + The other class must have the ``coef`` attribute. + + Returns + ------- + bool : boolean + True if the coefficients are the same, False otherwise. + + """ + if len(self.coef) != len(other.coef): + return False + elif not np.all(self.coef == other.coef): + return False + else: + return True + + def has_samedomain(self, other): + """Check if domains match. + + .. versionadded:: 1.6.0 + + Parameters + ---------- + other : class instance + The other class must have the ``domain`` attribute. + + Returns + ------- + bool : boolean + True if the domains are the same, False otherwise. + + """ + return np.all(self.domain == other.domain) + + def has_samewindow(self, other): + """Check if windows match. + + .. versionadded:: 1.6.0 + + Parameters + ---------- + other : class instance + The other class must have the ``window`` attribute. + + Returns + ------- + bool : boolean + True if the windows are the same, False otherwise. + + """ + return np.all(self.window == other.window) + + def has_sametype(self, other): + """Check if types match. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + other : object + Class instance. + + Returns + ------- + bool : boolean + True if other is same class as self + + """ + return isinstance(other, self.__class__) + + def __init__(self, coef, domain=None, window=None): + [coef] = pu.as_series([coef], trim=False) + self.coef = coef + + if domain is not None: + [domain] = pu.as_series([domain], trim=False) + if len(domain) != 2: + raise ValueError("Domain has wrong number of elements.") + self.domain = domain + + if window is not None: + [window] = pu.as_series([window], trim=False) + if len(window) != 2: + raise ValueError("Window has wrong number of elements.") + self.window = window + + def __repr__(self): + format = "%s(%s, %s, %s)" + coef = repr(self.coef)[6:-1] + domain = repr(self.domain)[6:-1] + window = repr(self.window)[6:-1] + name = self.__class__.__name__ + return format % (name, coef, domain, window) + + def __str__(self): + format = "%s(%s)" + coef = str(self.coef) + name = self.nickname + return format % (name, coef) + + # Pickle and copy + + def __getstate__(self): + ret = self.__dict__.copy() + ret['coef'] = self.coef.copy() + ret['domain'] = self.domain.copy() + ret['window'] = self.window.copy() + return ret + + def __setstate__(self, dict): + self.__dict__ = dict + + # Call + + def __call__(self, arg): + off, scl = pu.mapparms(self.domain, self.window) + arg = off + scl*arg + return self._val(arg, self.coef) + + def __iter__(self): + return iter(self.coef) + + def __len__(self): + return len(self.coef) + + # Numeric properties. + + def __neg__(self): + return self.__class__(-self.coef, self.domain, self.window) + + def __pos__(self): + return self + + def __add__(self, other): + if isinstance(other, ABCPolyBase): + if not self.has_sametype(other): + raise TypeError("Polynomial types differ") + elif not self.has_samedomain(other): + raise TypeError("Domains differ") + elif not self.has_samewindow(other): + raise TypeError("Windows differ") + else: + coef = self._add(self.coef, other.coef) + else: + try: + coef = self._add(self.coef, other) + except: + return NotImplemented + return self.__class__(coef, self.domain, self.window) + + def __sub__(self, other): + if isinstance(other, ABCPolyBase): + if not self.has_sametype(other): + raise TypeError("Polynomial types differ") + elif not self.has_samedomain(other): + raise TypeError("Domains differ") + elif not self.has_samewindow(other): + raise TypeError("Windows differ") + else: + coef = self._sub(self.coef, other.coef) + else: + try: + coef = self._sub(self.coef, other) + except: + return NotImplemented + return self.__class__(coef, self.domain, self.window) + + def __mul__(self, other): + if isinstance(other, ABCPolyBase): + if not self.has_sametype(other): + raise TypeError("Polynomial types differ") + elif not self.has_samedomain(other): + raise TypeError("Domains differ") + elif not self.has_samewindow(other): + raise TypeError("Windows differ") + else: + coef = self._mul(self.coef, other.coef) + else: + try: + coef = self._mul(self.coef, other) + except: + return NotImplemented + return self.__class__(coef, self.domain, self.window) + + def __div__(self, other): + # set to __floordiv__, /, for now. + return self.__floordiv__(other) + + def __truediv__(self, other): + # there is no true divide if the rhs is not a scalar, although it + # could return the first n elements of an infinite series. + # It is hard to see where n would come from, though. + if np.isscalar(other): + # this might be overly restrictive + coef = self.coef/other + return self.__class__(coef, self.domain, self.window) + else: + return NotImplemented + + def __floordiv__(self, other): + if isinstance(other, ABCPolyBase): + if not self.has_sametype(other): + raise TypeError("Polynomial types differ") + elif not self.has_samedomain(other): + raise TypeError("Domains differ") + elif not self.has_samewindow(other): + raise TypeError("Windows differ") + else: + quo, rem = self._div(self.coef, other.coef) + else: + try: + quo, rem = self._div(self.coef, other) + except: + return NotImplemented + return self.__class__(quo, self.domain, self.window) + + def __mod__(self, other): + if isinstance(other, ABCPolyBase): + if not self.has_sametype(other): + raise TypeError("Polynomial types differ") + elif not self.has_samedomain(other): + raise TypeError("Domains differ") + elif not self.has_samewindow(other): + raise TypeError("Windows differ") + else: + quo, rem = self._div(self.coef, other.coef) + else: + try: + quo, rem = self._div(self.coef, other) + except: + return NotImplemented + return self.__class__(rem, self.domain, self.window) + + def __divmod__(self, other): + if isinstance(other, self.__class__): + if not self.has_samedomain(other): + raise TypeError("Domains are not equal") + elif not self.has_samewindow(other): + raise TypeError("Windows are not equal") + else: + quo, rem = self._div(self.coef, other.coef) + else: + try: + quo, rem = self._div(self.coef, other) + except: + return NotImplemented + quo = self.__class__(quo, self.domain, self.window) + rem = self.__class__(rem, self.domain, self.window) + return quo, rem + + def __pow__(self, other): + try: + coef = self._pow(self.coef, other, maxpower = self.maxpower) + except: + raise + return self.__class__(coef, self.domain, self.window) + + def __radd__(self, other): + try: + coef = self._add(other, self.coef) + except: + return NotImplemented + return self.__class__(coef, self.domain, self.window) + + def __rsub__(self, other): + try: + coef = self._sub(other, self.coef) + except: + return NotImplemented + return self.__class__(coef, self.domain, self.window) + + def __rmul__(self, other): + try: + coef = self._mul(other, self.coef) + except: + return NotImplemented + return self.__class__(coef, self.domain, self.window) + + def __rdiv__(self, other): + # set to __floordiv__ /. + return self.__rfloordiv__(other) + + def __rtruediv__(self, other): + # there is no true divide if the rhs is not a scalar, although it + # could return the first n elements of an infinite series. + # It is hard to see where n would come from, though. + if len(self.coef) == 1: + try: + quo, rem = self._div(other, self.coef[0]) + except: + return NotImplemented + return self.__class__(quo, self.domain, self.window) + + def __rfloordiv__(self, other): + try: + quo, rem = self._div(other, self.coef) + except: + return NotImplemented + return self.__class__(quo, self.domain, self.window) + + def __rmod__(self, other): + try: + quo, rem = self._div(other, self.coef) + except: + return NotImplemented + return self.__class__(rem, self.domain, self.window) + + def __rdivmod__(self, other): + try: + quo, rem = self._div(other, self.coef) + except: + return NotImplemented + quo = self.__class__(quo, self.domain, self.window) + rem = self.__class__(rem, self.domain, self.window) + return quo, rem + + # Enhance me + # some augmented arithmetic operations could be added here + + def __eq__(self, other): + res = isinstance(other, self.__class__) and\ + self.has_samecoef(other) and \ + self.has_samedomain(other) and\ + self.has_samewindow(other) + return res + + def __ne__(self, other): + return not self.__eq__(other) + + # + # Extra methods. + # + + def copy(self): + """Return a copy. + + Returns + ------- + new_series : series + Copy of self. + + """ + return self.__class__(self.coef, self.domain, self.window) + + def degree(self): + """The degree of the series. + + .. versionadded:: 1.5.0 + + Returns + ------- + degree : int + Degree of the series, one less than the number of coefficients. + + """ + return len(self) - 1 + + def cutdeg(self, deg): + """Truncate series to the given degree. + + Reduce the degree of the series to `deg` by discarding the + high order terms. If `deg` is greater than the current degree a + copy of the current series is returned. This can be useful in least + squares where the coefficients of the high degree terms may be very + small. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + deg : non-negative int + The series is reduced to degree `deg` by discarding the high + order terms. The value of `deg` must be a non-negative integer. + + Returns + ------- + new_series : series + New instance of series with reduced degree. + + """ + return self.truncate(deg + 1) + + def trim(self, tol=0): + """Remove trailing coefficients + + Remove trailing coefficients until a coefficient is reached whose + absolute value greater than `tol` or the beginning of the series is + reached. If all the coefficients would be removed the series is set + to ``[0]``. A new series instance is returned with the new + coefficients. The current instance remains unchanged. + + Parameters + ---------- + tol : non-negative number. + All trailing coefficients less than `tol` will be removed. + + Returns + ------- + new_series : series + Contains the new set of coefficients. + + """ + coef = pu.trimcoef(self.coef, tol) + return self.__class__(coef, self.domain, self.window) + + def truncate(self, size): + """Truncate series to length `size`. + + Reduce the series to length `size` by discarding the high + degree terms. The value of `size` must be a positive integer. This + can be useful in least squares where the coefficients of the + high degree terms may be very small. + + Parameters + ---------- + size : positive int + The series is reduced to length `size` by discarding the high + degree terms. The value of `size` must be a positive integer. + + Returns + ------- + new_series : series + New instance of series with truncated coefficients. + + """ + isize = int(size) + if isize != size or isize < 1: + raise ValueError("size must be a positive integer") + if isize >= len(self.coef): + coef = self.coef + else: + coef = self.coef[:isize] + return self.__class__(coef, self.domain, self.window) + + def convert(self, domain=None, kind=None, window=None): + """Convert series to a different kind and/or domain and/or window. + + Parameters + ---------- + domain : array_like, optional + The domain of the converted series. If the value is None, + the default domain of `kind` is used. + kind : class, optional + The polynomial series type class to which the current instance + should be converted. If kind is None, then the class of the + current instance is used. + window : array_like, optional + The window of the converted series. If the value is None, + the default window of `kind` is used. + + Returns + ------- + new_series : series + The returned class can be of different type than the current + instance and/or have a different domain and/or different + window. + + Notes + ----- + Conversion between domains and class types can result in + numerically ill defined series. + + Examples + -------- + + """ + if kind is None: + kind = self.__class__ + if domain is None: + domain = kind.domain + if window is None: + window = kind.window + return self(kind.identity(domain, window=window)) + + def mapparms(self): + """Return the mapping parameters. + + The returned values define a linear map ``off + scl*x`` that is + applied to the input arguments before the series is evaluated. The + map depends on the ``domain`` and ``window``; if the current + ``domain`` is equal to the ``window`` the resulting map is the + identity. If the coefficients of the series instance are to be + used by themselves outside this class, then the linear function + must be substituted for the ``x`` in the standard representation of + the base polynomials. + + Returns + ------- + off, scl : float or complex + The mapping function is defined by ``off + scl*x``. + + Notes + ----- + If the current domain is the interval ``[l1, r1]`` and the window + is ``[l2, r2]``, then the linear mapping function ``L`` is + defined by the equations:: + + L(l1) = l2 + L(r1) = r2 + + """ + return pu.mapparms(self.domain, self.window) + + def integ(self, m=1, k=[], lbnd=None): + """Integrate. + + Return a series instance that is the definite integral of the + current series. + + Parameters + ---------- + m : non-negative int + The number of integrations to perform. + k : array_like + Integration constants. The first constant is applied to the + first integration, the second to the second, and so on. The + list of values must less than or equal to `m` in length and any + missing values are set to zero. + lbnd : Scalar + The lower bound of the definite integral. + + Returns + ------- + new_series : series + A new series representing the integral. The domain is the same + as the domain of the integrated series. + + """ + off, scl = self.mapparms() + if lbnd is None: + lbnd = 0 + else: + lbnd = off + scl*lbnd + coef = self._int(self.coef, m, k, lbnd, 1./scl) + return self.__class__(coef, self.domain, self.window) + + def deriv(self, m=1): + """Differentiate. + + Return a series instance of that is the derivative of the current + series. + + Parameters + ---------- + m : non-negative int + The number of integrations to perform. + + Returns + ------- + new_series : series + A new series representing the derivative. The domain is the same + as the domain of the differentiated series. + + """ + off, scl = self.mapparms() + coef = self._der(self.coef, m, scl) + return self.__class__(coef, self.domain, self.window) + + def roots(self): + """Return the roots of the series polynomial. + + Compute the roots for the series. Note that the accuracy of the + roots decrease the further outside the domain they lie. + + Returns + ------- + roots : ndarray + Array containing the roots of the series. + + """ + roots = self._roots(self.coef) + return pu.mapdomain(roots, self.window, self.domain) + + def linspace(self, n=100, domain=None): + """Return x, y values at equally spaced points in domain. + + Returns the x, y values at `n` linearly spaced points across the + domain. Here y is the value of the polynomial at the points x. By + default the domain is the same as that of the series instance. + This method is intended mostly as a plotting aid. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + n : int, optional + Number of point pairs to return. The default value is 100. + domain : {None, array_like}, optional + If not None, the specified domain is used instead of that of + the calling instance. It should be of the form ``[beg,end]``. + The default is None which case the class domain is used. + + Returns + ------- + x, y : ndarray + x is equal to linspace(self.domain[0], self.domain[1], n) and + y is the series evaluated at element of x. + + """ + if domain is None: + domain = self.domain + x = np.linspace(domain[0], domain[1], n) + y = self(x) + return x, y + + + + @classmethod + def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None, + window=None): + """Least squares fit to data. + + Return a series instance that is the least squares fit to the data + `y` sampled at `x`. The domain of the returned instance can be + specified and this will often result in a superior fit with less + chance of ill conditioning. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int + Degree of the fitting polynomial. + domain : {None, [beg, end], []}, optional + Domain to use for the returned series. If ``None``, + then a minimal domain that covers the points `x` is chosen. If + ``[]`` the class domain is used. The default value was the + class domain in NumPy 1.4 and ``None`` in later versions. + The ``[]`` option was added in numpy 1.5.0. + rcond : float, optional + Relative condition number of the fit. Singular values smaller + than this relative to the largest singular value will be + ignored. The default value is len(x)*eps, where eps is the + relative precision of the float type, about 2e-16 in most + cases. + full : bool, optional + Switch determining nature of return value. When it is False + (the default) just the coefficients are returned, when True + diagnostic information from the singular value decomposition is + also returned. + w : array_like, shape (M,), optional + Weights. If not None the contribution of each point + ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the + weights are chosen so that the errors of the products + ``w[i]*y[i]`` all have the same variance. The default value is + None. + + .. versionadded:: 1.5.0 + window : {[beg, end]}, optional + Window to use for the returned series. The default + value is the default class domain + + .. versionadded:: 1.6.0 + + Returns + ------- + new_series : series + A series that represents the least squares fit to the data and + has the domain specified in the call. + + [resid, rank, sv, rcond] : list + These values are only returned if `full` = True + + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. + + """ + if domain is None: + domain = pu.getdomain(x) + elif domain == []: + domain = cls.domain + + if window is None: + window = cls.window + + xnew = pu.mapdomain(x, domain, window) + res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full) + if full: + [coef, status] = res + return cls(coef, domain=domain, window=window), status + else: + coef = res + return cls(coef, domain=domain, window=window) + + @classmethod + def fromroots(cls, roots, domain=[], window=None): + """Return series instance that has the specified roots. + + Returns a series representing the product + ``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a + list of roots. + + Parameters + ---------- + roots : array_like + List of roots. + domain : {[], None, array_like}, optional + Domain for the resulting series. If None the domain is the + interval from the smallest root to the largest. If [] the + domain is the class domain. The default is []. + window : {None, array_like}, optional + Window for the returned series. If None the class window is + used. The default is None. + + Returns + ------- + new_series : series + Series with the specified roots. + + """ + [roots] = pu.as_series([roots], trim=False) + if domain is None: + domain = pu.getdomain(roots) + elif domain == []: + domain = cls.domain + + if window is None: + window = cls.window + + deg = len(roots) + off, scl = pu.mapparms(domain, window) + rnew = off + scl*roots + coef = cls._fromroots(rnew) / scl**deg + return cls(coef, domain=domain, window=window) + + @classmethod + def identity(cls, domain=None, window=None): + """Identity function. + + If ``p`` is the returned series, then ``p(x) == x`` for all + values of x. + + Parameters + ---------- + domain : {None, array_like}, optional + If given, the array must be of the form ``[beg, end]``, where + ``beg`` and ``end`` are the endpoints of the domain. If None is + given then the class domain is used. The default is None. + window : {None, array_like}, optional + If given, the resulting array must be if the form + ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of + the window. If None is given then the class window is used. The + default is None. + + Returns + ------- + new_series : series + Series of representing the identity. + + """ + if domain is None: + domain = cls.domain + if window is None: + window = cls.window + off, scl = pu.mapparms(window, domain) + coef = cls._line(off, scl) + return cls(coef, domain, window) + + @classmethod + def basis(cls, deg, domain=None, window=None): + """Series basis polynomial of degree `deg`. + + Returns the series representing the basis polynomial of degree `deg`. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + deg : int + Degree of the basis polynomial for the series. Must be >= 0. + domain : {None, array_like}, optional + If given, the array must be of the form ``[beg, end]``, where + ``beg`` and ``end`` are the endpoints of the domain. If None is + given then the class domain is used. The default is None. + window : {None, array_like}, optional + If given, the resulting array must be if the form + ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of + the window. If None is given then the class window is used. The + default is None. + + Returns + ------- + new_series : series + A series with the coefficient of the `deg` term set to one and + all others zero. + + """ + if domain is None: + domain = cls.domain + if window is None: + window = cls.window + ideg = int(deg) + + if ideg != deg or ideg < 0: + raise ValueError("deg must be non-negative integer") + return cls([0]*ideg + [1], domain, window) + + @classmethod + def cast(cls, series, domain=None, window=None): + """Convert series to series of this class. + + The `series` is expected to be an instance of some polynomial + series of one of the types supported by by the numpy.polynomial + module, but could be some other class that supports the convert + method. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + series : series + The series instance to be converted. + domain : {None, array_like}, optional + If given, the array must be of the form ``[beg, end]``, where + ``beg`` and ``end`` are the endpoints of the domain. If None is + given then the class domain is used. The default is None. + window : {None, array_like}, optional + If given, the resulting array must be if the form + ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of + the window. If None is given then the class window is used. The + default is None. + + Returns + ------- + new_series : series + A series of the same kind as the calling class and equal to + `series` when evaluated. + + See Also + -------- + convert : similar instance method + + """ + if domain is None: + domain = cls.domain + if window is None: + window = cls.window + return series.convert(domain, cls, window) diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py index 6a2394382..ec3fde2f8 100644 --- a/numpy/polynomial/chebyshev.py +++ b/numpy/polynomial/chebyshev.py @@ -87,11 +87,12 @@ References """ from __future__ import division, absolute_import, print_function +import warnings import numpy as np import numpy.linalg as la + from . import polyutils as pu -import warnings -from .polytemplate import polytemplate +from ._polybase import ABCPolyBase __all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd', 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', @@ -1646,10 +1647,15 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): the coefficients for the data in column k of `y` are in column `k`. - [residuals, rank, singular_values, rcond] : present when `full` = True - Residuals of the least-squares fit, the effective rank of the - scaled Vandermonde matrix and its singular values, and the - specified value of `rcond`. For more details, see `linalg.lstsq`. + [residuals, rank, singular_values, rcond] : list + These values are only returned if `full` = True + + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. Warns ----- @@ -2012,4 +2018,43 @@ def chebpts2(npts): # Chebyshev series class # -exec(polytemplate.substitute(name='Chebyshev', nick='cheb', domain='[-1,1]')) +class Chebyshev(ABCPolyBase): + """A Chebyshev series class. + + The Chebyshev class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + methods listed below. + + Parameters + ---------- + coef : array_like + Chebyshev coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1, 1]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1, 1]. + + .. versionadded:: 1.6.0 + + """ + # Virtual Functions + _add = staticmethod(chebadd) + _sub = staticmethod(chebsub) + _mul = staticmethod(chebmul) + _div = staticmethod(chebdiv) + _pow = staticmethod(chebpow) + _val = staticmethod(chebval) + _int = staticmethod(chebint) + _der = staticmethod(chebder) + _fit = staticmethod(chebfit) + _line = staticmethod(chebline) + _roots = staticmethod(chebroots) + _fromroots = staticmethod(chebfromroots) + + # Virtual properties + nickname = 'cheb' + domain = np.array(chebdomain) + window = np.array(chebdomain) diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py index 4140acfb7..7d2aa38a2 100644 --- a/numpy/polynomial/hermite.py +++ b/numpy/polynomial/hermite.py @@ -59,11 +59,12 @@ See also """ from __future__ import division, absolute_import, print_function +import warnings import numpy as np import numpy.linalg as la + from . import polyutils as pu -import warnings -from .polytemplate import polytemplate +from ._polybase import ABCPolyBase __all__ = ['hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline', 'hermadd', 'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow', @@ -1416,10 +1417,15 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): the coefficients for the data in column k of `y` are in column `k`. - [residuals, rank, singular_values, rcond] : present when `full` = True - Residuals of the least-squares fit, the effective rank of the - scaled Vandermonde matrix and its singular values, and the - specified value of `rcond`. For more details, see `linalg.lstsq`. + [residuals, rank, singular_values, rcond] : list + These values are only returned if `full` = True + + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. Warns ----- @@ -1747,4 +1753,43 @@ def hermweight(x): # Hermite series class # -exec(polytemplate.substitute(name='Hermite', nick='herm', domain='[-1,1]')) +class Hermite(ABCPolyBase): + """An Hermite series class. + + The Hermite class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed in the `ABCPolyBase` documentation. + + Parameters + ---------- + coef : array_like + Laguerre coefficients in order of increasing degree, i.e, + ``(1, 2, 3)`` gives ``1*H_0(x) + 2*H_1(X) + 3*H_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1, 1]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1, 1]. + + .. versionadded:: 1.6.0 + + """ + # Virtual Functions + _add = staticmethod(hermadd) + _sub = staticmethod(hermsub) + _mul = staticmethod(hermmul) + _div = staticmethod(hermdiv) + _pow = staticmethod(hermpow) + _val = staticmethod(hermval) + _int = staticmethod(hermint) + _der = staticmethod(hermder) + _fit = staticmethod(hermfit) + _line = staticmethod(hermline) + _roots = staticmethod(hermroots) + _fromroots = staticmethod(hermfromroots) + + # Virtual properties + nickname = 'herm' + domain = np.array(hermdomain) + window = np.array(hermdomain) diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py index 735ca9470..c3a789809 100644 --- a/numpy/polynomial/hermite_e.py +++ b/numpy/polynomial/hermite_e.py @@ -59,11 +59,12 @@ See also """ from __future__ import division, absolute_import, print_function +import warnings import numpy as np import numpy.linalg as la + from . import polyutils as pu -import warnings -from .polytemplate import polytemplate +from ._polybase import ABCPolyBase __all__ = ['hermezero', 'hermeone', 'hermex', 'hermedomain', 'hermeline', 'hermeadd', 'hermesub', 'hermemulx', 'hermemul', 'hermediv', 'hermpow', @@ -1412,10 +1413,15 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): the coefficients for the data in column k of `y` are in column `k`. - [residuals, rank, singular_values, rcond] : present when `full` = True - Residuals of the least-squares fit, the effective rank of the - scaled Vandermonde matrix and its singular values, and the - specified value of `rcond`. For more details, see `linalg.lstsq`. + [residuals, rank, singular_values, rcond] : list + These values are only returned if `full` = True + + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. Warns ----- @@ -1743,4 +1749,43 @@ def hermeweight(x): # HermiteE series class # -exec(polytemplate.substitute(name='HermiteE', nick='herme', domain='[-1,1]')) +class HermiteE(ABCPolyBase): + """An HermiteE series class. + + The HermiteE class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed in the `ABCPolyBase` documentation. + + Parameters + ---------- + coef : array_like + Laguerre coefficients in order of increasing degree, i.e, + ``(1, 2, 3)`` gives ``1*He_0(x) + 2*He_1(X) + 3*He_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1, 1]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1, 1]. + + .. versionadded:: 1.6.0 + + """ + # Virtual Functions + _add = staticmethod(hermeadd) + _sub = staticmethod(hermesub) + _mul = staticmethod(hermemul) + _div = staticmethod(hermediv) + _pow = staticmethod(hermepow) + _val = staticmethod(hermeval) + _int = staticmethod(hermeint) + _der = staticmethod(hermeder) + _fit = staticmethod(hermefit) + _line = staticmethod(hermeline) + _roots = staticmethod(hermeroots) + _fromroots = staticmethod(hermefromroots) + + # Virtual properties + nickname = 'herme' + domain = np.array(hermedomain) + window = np.array(hermedomain) diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py index b7ffe9b0c..bf44dc5f4 100644 --- a/numpy/polynomial/laguerre.py +++ b/numpy/polynomial/laguerre.py @@ -59,11 +59,12 @@ See also """ from __future__ import division, absolute_import, print_function +import warnings import numpy as np import numpy.linalg as la + from . import polyutils as pu -import warnings -from .polytemplate import polytemplate +from ._polybase import ABCPolyBase __all__ = ['lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd', 'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', @@ -1415,10 +1416,15 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): the coefficients for the data in column k of `y` are in column `k`. - [residuals, rank, singular_values, rcond] : present when `full` = True - Residuals of the least-squares fit, the effective rank of the - scaled Vandermonde matrix and its singular values, and the - specified value of `rcond`. For more details, see `linalg.lstsq`. + [residuals, rank, singular_values, rcond] : list + These values are only returned if `full` = True + + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. Warns ----- @@ -1739,4 +1745,43 @@ def lagweight(x): # Laguerre series class # -exec(polytemplate.substitute(name='Laguerre', nick='lag', domain='[-1,1]')) +class Laguerre(ABCPolyBase): + """A Laguerre series class. + + The Laguerre class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed in the `ABCPolyBase` documentation. + + Parameters + ---------- + coef : array_like + Laguerre coefficients in order of increasing degree, i.e, + ``(1, 2, 3)`` gives ``1*L_0(x) + 2*L_1(X) + 3*L_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [0, 1]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [0, 1]. + + .. versionadded:: 1.6.0 + + """ + # Virtual Functions + _add = staticmethod(lagadd) + _sub = staticmethod(lagsub) + _mul = staticmethod(lagmul) + _div = staticmethod(lagdiv) + _pow = staticmethod(lagpow) + _val = staticmethod(lagval) + _int = staticmethod(lagint) + _der = staticmethod(lagder) + _fit = staticmethod(lagfit) + _line = staticmethod(lagline) + _roots = staticmethod(lagroots) + _fromroots = staticmethod(lagfromroots) + + # Virtual properties + nickname = 'lag' + domain = np.array(lagdomain) + window = np.array(lagdomain) diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py index 8d89c8412..a54262823 100644 --- a/numpy/polynomial/legendre.py +++ b/numpy/polynomial/legendre.py @@ -83,11 +83,12 @@ numpy.polynomial.hermite_e """ from __future__ import division, absolute_import, print_function +import warnings import numpy as np import numpy.linalg as la + from . import polyutils as pu -import warnings -from .polytemplate import polytemplate +from ._polybase import ABCPolyBase __all__ = ['legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', @@ -1447,10 +1448,15 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): the coefficients for the data in column k of `y` are in column `k`. - [residuals, rank, singular_values, rcond] : present when `full` = True - Residuals of the least-squares fit, the effective rank of the - scaled Vandermonde matrix and its singular values, and the - specified value of `rcond`. For more details, see `linalg.lstsq`. + [residuals, rank, singular_values, rcond] : list + These values are only returned if `full` = True + + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. Warns ----- @@ -1765,4 +1771,43 @@ def legweight(x): # Legendre series class # -exec(polytemplate.substitute(name='Legendre', nick='leg', domain='[-1,1]')) +class Legendre(ABCPolyBase): + """A Legendre series class. + + The Legendre class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed in the `ABCPolyBase` documentation. + + Parameters + ---------- + coef : array_like + Legendre coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1, 1]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1, 1]. + + .. versionadded:: 1.6.0 + + """ + # Virtual Functions + _add = staticmethod(legadd) + _sub = staticmethod(legsub) + _mul = staticmethod(legmul) + _div = staticmethod(legdiv) + _pow = staticmethod(legpow) + _val = staticmethod(legval) + _int = staticmethod(legint) + _der = staticmethod(legder) + _fit = staticmethod(legfit) + _line = staticmethod(legline) + _roots = staticmethod(legroots) + _fromroots = staticmethod(legfromroots) + + # Virtual properties + nickname = 'leg' + domain = np.array(legdomain) + window = np.array(legdomain) diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py index c30fc6d0c..97f4fd148 100644 --- a/numpy/polynomial/polynomial.py +++ b/numpy/polynomial/polynomial.py @@ -61,11 +61,12 @@ __all__ = ['polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d', 'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d'] +import warnings import numpy as np import numpy.linalg as la + from . import polyutils as pu -import warnings -from .polytemplate import polytemplate +from ._polybase import ABCPolyBase polytrim = pu.trimcoef @@ -823,7 +824,7 @@ def polyval2d(x, y, c): Notes ----- - .. versionadded::1.7.0 + .. versionadded:: 1.7.0 """ try: @@ -883,7 +884,7 @@ def polygrid2d(x, y, c): Notes ----- - .. versionadded::1.7.0 + .. versionadded:: 1.7.0 """ c = polyval(x, c) @@ -936,7 +937,7 @@ def polyval3d(x, y, z, c): Notes ----- - .. versionadded::1.7.0 + .. versionadded:: 1.7.0 """ try: @@ -1000,7 +1001,7 @@ def polygrid3d(x, y, z, c): Notes ----- - .. versionadded::1.7.0 + .. versionadded:: 1.7.0 """ c = polyval(x, c) @@ -1173,7 +1174,7 @@ def polyvander3d(x, y, z, deg) : Notes ----- - .. versionadded::1.7.0 + .. versionadded:: 1.7.0 """ ideg = [int(d) for d in deg] @@ -1249,12 +1250,16 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): the coefficients in column `k` of `coef` represent the polynomial fit to the data in `y`'s `k`-th column. - [residuals, rank, singular_values, rcond] : present when `full` == True - Sum of the squared residuals (SSR) of the least-squares fit; the - effective rank of the scaled Vandermonde matrix; its singular - values; and the specified value of `rcond`. For more information, - see `linalg.lstsq`. + [residuals, rank, singular_values, rcond] : list + These values are only returned if `full` = True + resid -- sum of squared residuals of the least squares fit + rank -- the numerical rank of the scaled Vandermonde matrix + sv -- singular values of the scaled Vandermonde matrix + rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. + Raises ------ RankWarning @@ -1490,4 +1495,43 @@ def polyroots(c): # polynomial class # -exec(polytemplate.substitute(name='Polynomial', nick='poly', domain='[-1,1]')) +class Polynomial(ABCPolyBase): + """A power series class. + + The Polynomial class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed in the `ABCPolyBase` documentation. + + Parameters + ---------- + coef : array_like + Polynomial coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1, 1]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1, 1]. + + .. versionadded:: 1.6.0 + + """ + # Virtual Functions + _add = staticmethod(polyadd) + _sub = staticmethod(polysub) + _mul = staticmethod(polymul) + _div = staticmethod(polydiv) + _pow = staticmethod(polypow) + _val = staticmethod(polyval) + _int = staticmethod(polyint) + _der = staticmethod(polyder) + _fit = staticmethod(polyfit) + _line = staticmethod(polyline) + _roots = staticmethod(polyroots) + _fromroots = staticmethod(polyfromroots) + + # Virtual properties + nickname = 'poly' + domain = np.array(polydomain) + window = np.array(polydomain) diff --git a/numpy/polynomial/polytemplate.py b/numpy/polynomial/polytemplate.py index f315915d6..eeacf24fb 100644 --- a/numpy/polynomial/polytemplate.py +++ b/numpy/polynomial/polytemplate.py @@ -13,6 +13,12 @@ from __future__ import division, absolute_import, print_function import string import sys +import warnings + +from numpy import ModuleDeprecationWarning + +warnings.warn("The polytemplate module will be removed in Numpy 1.10.0.", + ModuleDeprecationWarning) polytemplate = string.Template(''' from __future__ import division, absolute_import, print_function diff --git a/numpy/polynomial/polyutils.py b/numpy/polynomial/polyutils.py index 63743bb40..99f508521 100644 --- a/numpy/polynomial/polyutils.py +++ b/numpy/polynomial/polyutils.py @@ -1,41 +1,53 @@ """ -Utililty objects for the polynomial modules. +Utililty classes and functions for the polynomial modules. This module provides: error and warning objects; a polynomial base class; and some routines used in both the `polynomial` and `chebyshev` modules. Error objects ------------- -- `PolyError` -- base class for this sub-package's errors. -- `PolyDomainError` -- raised when domains are "mismatched." + +.. autosummary:: + :toctree: generated/ + + PolyError base class for this sub-package's errors. + PolyDomainError raised when domains are mismatched. Warning objects --------------- -- `RankWarning` -- raised by a least-squares fit when a rank-deficient - matrix is encountered. + +.. autosummary:: + :toctree: generated/ + + RankWarning raised in least-squares fit for rank-deficient matrix. Base class ---------- -- `PolyBase` -- The base class for the `Polynomial` and `Chebyshev` - classes. + +.. autosummary:: + :toctree: generated/ + + PolyBase Obsolete base class for the polynomial classes. Do not use. Functions --------- -- `as_series` -- turns a list of array_likes into 1-D arrays of common - type. -- `trimseq` -- removes trailing zeros. -- `trimcoef` -- removes trailing coefficients that are less than a given - magnitude (thereby removing the corresponding terms). -- `getdomain` -- returns a domain appropriate for a given set of abscissae. -- `mapdomain` -- maps points between domains. -- `mapparms` -- parameters of the linear map between domains. + +.. autosummary:: + :toctree: generated/ + + as_series convert list of array_likes into 1-D arrays of common type. + trimseq remove trailing zeros. + trimcoef remove small trailing coefficients. + getdomain return the domain appropriate for a given set of abscissae. + mapdomain maps points between domains. + mapparms parameters of the linear map between domains. """ from __future__ import division, absolute_import, print_function -__all__ = ['RankWarning', 'PolyError', 'PolyDomainError', 'PolyBase', - 'as_series', 'trimseq', 'trimcoef', 'getdomain', 'mapdomain', - 'mapparms'] +__all__ = ['RankWarning', 'PolyError', 'PolyDomainError', 'as_series', + 'trimseq', 'trimcoef', 'getdomain', 'mapdomain', 'mapparms', + 'PolyBase'] import warnings import numpy as np @@ -67,6 +79,15 @@ class PolyDomainError(PolyError) : # class PolyBase(object) : + """ + Base class for all polynomial types. + + Deprecated in numpy 1.9.0, use the abstract + ABCPolyBase class instead. Note that the latter + reguires a number of virtual functions to be + implemented. + + """ pass # |