diff options
-rw-r--r-- | numpy/core/src/common/simd/avx512/arithmetic.h | 224 |
1 files changed, 222 insertions, 2 deletions
diff --git a/numpy/core/src/common/simd/avx512/arithmetic.h b/numpy/core/src/common/simd/avx512/arithmetic.h index 450da7ea5..29e1af7e8 100644 --- a/numpy/core/src/common/simd/avx512/arithmetic.h +++ b/numpy/core/src/common/simd/avx512/arithmetic.h @@ -107,6 +107,226 @@ NPY_FINLINE __m512i npyv_mul_u8(__m512i a, __m512i b) // TODO: after implment Packs intrins /*************************** + * Integer Division + ***************************/ +// See simd/intdiv.h for more clarification +// divide each unsigned 8-bit element by divisor +NPY_FINLINE npyv_u8 npyv_divc_u8(npyv_u8 a, const npyv_u8x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + const __m128i shf2 = _mm512_castsi512_si128(divisor.val[2]); +#ifdef NPY_HAVE_AVX512BW + const __m512i shf1b = _mm512_set1_epi8(0xFFU >> _mm_cvtsi128_si32(shf1)); + const __m512i shf2b = _mm512_set1_epi8(0xFFU >> _mm_cvtsi128_si32(shf2)); + // high part of unsigned multiplication + __m512i mulhi_odd = _mm512_mulhi_epu16(a, divisor.val[0]); + __m512i mulhi_even = _mm512_mulhi_epu16(_mm512_slli_epi16(a, 8), divisor.val[0]); + mulhi_even = _mm512_srli_epi16(mulhi_even, 8); + __m512i mulhi = _mm512_mask_mov_epi8(mulhi_even, 0xAAAAAAAAAAAAAAAA, mulhi_odd); + // floor(a/d) = (mulhi + ((a-mulhi) >> sh1)) >> sh2 + __m512i q = _mm512_sub_epi8(a, mulhi); + q = _mm512_and_si512(_mm512_srl_epi16(q, shf1), shf1b); + q = _mm512_add_epi8(mulhi, q); + q = _mm512_and_si512(_mm512_srl_epi16(q, shf2), shf2b); + return q; +#else + const __m256i bmask = _mm256_set1_epi32(0xFF00FF00); + const __m256i shf1b = _mm256_set1_epi8(0xFFU >> _mm_cvtsi128_si32(shf1)); + const __m256i shf2b = _mm256_set1_epi8(0xFFU >> _mm_cvtsi128_si32(shf2)); + const __m512i shf2bw= npyv512_combine_si256(shf2b, shf2b); + const __m256i mulc = npyv512_lower_si256(divisor.val[0]); + //// lower 256-bit + __m256i lo_a = npyv512_lower_si256(a); + // high part of unsigned multiplication + __m256i mulhi_odd = _mm256_mulhi_epu16(lo_a, mulc); + __m256i mulhi_even = _mm256_mulhi_epu16(_mm256_slli_epi16(lo_a, 8), mulc); + mulhi_even = _mm256_srli_epi16(mulhi_even, 8); + __m256i mulhi = _mm256_blendv_epi8(mulhi_even, mulhi_odd, bmask); + // floor(a/d) = (mulhi + ((a-mulhi) >> sh1)) >> sh2 + __m256i lo_q = _mm256_sub_epi8(lo_a, mulhi); + lo_q = _mm256_and_si256(_mm256_srl_epi16(lo_q, shf1), shf1b); + lo_q = _mm256_add_epi8(mulhi, lo_q); + lo_q = _mm256_srl_epi16(lo_q, shf2); // no sign extend + + //// higher 256-bit + __m256i hi_a = npyv512_higher_si256(a); + // high part of unsigned multiplication + mulhi_odd = _mm256_mulhi_epu16(hi_a, mulc); + mulhi_even = _mm256_mulhi_epu16(_mm256_slli_epi16(hi_a, 8), mulc); + mulhi_even = _mm256_srli_epi16(mulhi_even, 8); + mulhi = _mm256_blendv_epi8(mulhi_even, mulhi_odd, bmask); + // floor(a/d) = (mulhi + ((a-mulhi) >> sh1)) >> sh2 + __m256i hi_q = _mm256_sub_epi8(hi_a, mulhi); + hi_q = _mm256_and_si256(_mm256_srl_epi16(hi_q, shf1), shf1b); + hi_q = _mm256_add_epi8(mulhi, hi_q); + hi_q = _mm256_srl_epi16(hi_q, shf2); // no sign extend + return _mm512_and_si512(npyv512_combine_si256(lo_q, hi_q), shf2bw); // extend sign +#endif +} +// divide each signed 8-bit element by divisor (round towards zero) +NPY_FINLINE npyv_s16 npyv_divc_s16(npyv_s16 a, const npyv_s16x3 divisor); +NPY_FINLINE npyv_s8 npyv_divc_s8(npyv_s8 a, const npyv_s8x3 divisor) +{ + __m512i divc_even = npyv_divc_s16(npyv_shri_s16(npyv_shli_s16(a, 8), 8), divisor); + __m512i divc_odd = npyv_divc_s16(npyv_shri_s16(a, 8), divisor); + divc_odd = npyv_shli_s16(divc_odd, 8); +#ifdef NPY_HAVE_AVX512BW + return _mm512_mask_mov_epi8(divc_even, 0xAAAAAAAAAAAAAAAA, divc_odd); +#else + const __m512i bmask = _mm512_set1_epi32(0x00FF00FF); + return npyv_select_u8(bmask, divc_even, divc_odd); +#endif +} +// divide each unsigned 16-bit element by divisor +NPY_FINLINE npyv_u16 npyv_divc_u16(npyv_u16 a, const npyv_u16x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + const __m128i shf2 = _mm512_castsi512_si128(divisor.val[2]); + // floor(a/d) = (mulhi + ((a-mulhi) >> sh1)) >> sh2 + #define NPYV__DIVC_U16(RLEN, A, MULC, R) \ + mulhi = _mm##RLEN##_mulhi_epu16(A, MULC); \ + R = _mm##RLEN##_sub_epi16(A, mulhi); \ + R = _mm##RLEN##_srl_epi16(R, shf1); \ + R = _mm##RLEN##_add_epi16(mulhi, R); \ + R = _mm##RLEN##_srl_epi16(R, shf2); + +#ifdef NPY_HAVE_AVX512BW + __m512i mulhi, q; + NPYV__DIVC_U16(512, a, divisor.val[0], q) + return q; +#else + const __m256i m = npyv512_lower_si256(divisor.val[0]); + __m256i lo_a = npyv512_lower_si256(a); + __m256i hi_a = npyv512_higher_si256(a); + + __m256i mulhi, lo_q, hi_q; + NPYV__DIVC_U16(256, lo_a, m, lo_q) + NPYV__DIVC_U16(256, hi_a, m, hi_q) + return npyv512_combine_si256(lo_q, hi_q); +#endif + #undef NPYV__DIVC_U16 +} +// divide each signed 16-bit element by divisor (round towards zero) +NPY_FINLINE npyv_s16 npyv_divc_s16(npyv_s16 a, const npyv_s16x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + // q = ((a + mulhi) >> sh1) - XSIGN(a) + // trunc(a/d) = (q ^ dsign) - dsign + #define NPYV__DIVC_S16(RLEN, A, MULC, DSIGN, R) \ + mulhi = _mm##RLEN##_mulhi_epi16(A, MULC); \ + R = _mm##RLEN##_sra_epi16(_mm##RLEN##_add_epi16(A, mulhi), shf1); \ + R = _mm##RLEN##_sub_epi16(R, _mm##RLEN##_srai_epi16(A, 15)); \ + R = _mm##RLEN##_sub_epi16(_mm##RLEN##_xor_si##RLEN(R, DSIGN), DSIGN); + +#ifdef NPY_HAVE_AVX512BW + __m512i mulhi, q; + NPYV__DIVC_S16(512, a, divisor.val[0], divisor.val[2], q) + return q; +#else + const __m256i m = npyv512_lower_si256(divisor.val[0]); + const __m256i dsign = npyv512_lower_si256(divisor.val[2]); + __m256i lo_a = npyv512_lower_si256(a); + __m256i hi_a = npyv512_higher_si256(a); + + __m256i mulhi, lo_q, hi_q; + NPYV__DIVC_S16(256, lo_a, m, dsign, lo_q) + NPYV__DIVC_S16(256, hi_a, m, dsign, hi_q) + return npyv512_combine_si256(lo_q, hi_q); +#endif + #undef NPYV__DIVC_S16 +} +// divide each unsigned 32-bit element by divisor +NPY_FINLINE npyv_u32 npyv_divc_u32(npyv_u32 a, const npyv_u32x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + const __m128i shf2 = _mm512_castsi512_si128(divisor.val[2]); + // high part of unsigned multiplication + __m512i mulhi_even = _mm512_srli_epi64(_mm512_mul_epu32(a, divisor.val[0]), 32); + __m512i mulhi_odd = _mm512_mul_epu32(_mm512_srli_epi64(a, 32), divisor.val[0]); + __m512i mulhi = _mm512_mask_mov_epi32(mulhi_even, 0xAAAA, mulhi_odd); + // floor(a/d) = (mulhi + ((a-mulhi) >> sh1)) >> sh2 + __m512i q = _mm512_sub_epi32(a, mulhi); + q = _mm512_srl_epi32(q, shf1); + q = _mm512_add_epi32(mulhi, q); + q = _mm512_srl_epi32(q, shf2); + return q; +} +// divide each signed 32-bit element by divisor (round towards zero) +NPY_FINLINE npyv_s32 npyv_divc_s32(npyv_s32 a, const npyv_s32x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + // high part of signed multiplication + __m512i mulhi_even = _mm512_srli_epi64(_mm512_mul_epi32(a, divisor.val[0]), 32); + __m512i mulhi_odd = _mm512_mul_epi32(_mm512_srli_epi64(a, 32), divisor.val[0]); + __m512i mulhi = _mm512_mask_mov_epi32(mulhi_even, 0xAAAA, mulhi_odd); + // q = ((a + mulhi) >> sh1) - XSIGN(a) + // trunc(a/d) = (q ^ dsign) - dsign + __m512i q = _mm512_sra_epi32(_mm512_add_epi32(a, mulhi), shf1); + q = _mm512_sub_epi32(q, _mm512_srai_epi32(a, 31)); + q = _mm512_sub_epi32(_mm512_xor_si512(q, divisor.val[2]), divisor.val[2]); + return q; +} +// returns the high 64 bits of unsigned 64-bit multiplication +// xref https://stackoverflow.com/a/28827013 +NPY_FINLINE npyv_u64 npyv__mullhi_u64(npyv_u64 a, npyv_u64 b) +{ + __m512i lomask = npyv_setall_s64(0xffffffff); + __m512i a_hi = _mm512_srli_epi64(a, 32); // a0l, a0h, a1l, a1h + __m512i b_hi = _mm512_srli_epi64(b, 32); // b0l, b0h, b1l, b1h + // compute partial products + __m512i w0 = _mm512_mul_epu32(a, b); // a0l*b0l, a1l*b1l + __m512i w1 = _mm512_mul_epu32(a, b_hi); // a0l*b0h, a1l*b1h + __m512i w2 = _mm512_mul_epu32(a_hi, b); // a0h*b0l, a1h*b0l + __m512i w3 = _mm512_mul_epu32(a_hi, b_hi); // a0h*b0h, a1h*b1h + // sum partial products + __m512i w0h = _mm512_srli_epi64(w0, 32); + __m512i s1 = _mm512_add_epi64(w1, w0h); + __m512i s1l = _mm512_and_si512(s1, lomask); + __m512i s1h = _mm512_srli_epi64(s1, 32); + + __m512i s2 = _mm512_add_epi64(w2, s1l); + __m512i s2h = _mm512_srli_epi64(s2, 32); + + __m512i hi = _mm512_add_epi64(w3, s1h); + hi = _mm512_add_epi64(hi, s2h); + return hi; +} +// divide each unsigned 64-bit element by a divisor +NPY_FINLINE npyv_u64 npyv_divc_u64(npyv_u64 a, const npyv_u64x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + const __m128i shf2 = _mm512_castsi512_si128(divisor.val[2]); + // high part of unsigned multiplication + __m512i mulhi = npyv__mullhi_u64(a, divisor.val[0]); + // floor(a/d) = (mulhi + ((a-mulhi) >> sh1)) >> sh2 + __m512i q = _mm512_sub_epi64(a, mulhi); + q = _mm512_srl_epi64(q, shf1); + q = _mm512_add_epi64(mulhi, q); + q = _mm512_srl_epi64(q, shf2); + return q; +} +// divide each unsigned 64-bit element by a divisor (round towards zero) +NPY_FINLINE npyv_s64 npyv_divc_s64(npyv_s64 a, const npyv_s64x3 divisor) +{ + const __m128i shf1 = _mm512_castsi512_si128(divisor.val[1]); + // high part of unsigned multiplication + __m512i mulhi = npyv__mullhi_u64(a, divisor.val[0]); + // convert unsigned to signed high multiplication + // mulhi - ((a < 0) ? m : 0) - ((m < 0) ? a : 0); + __m512i asign = _mm512_srai_epi64(a, 63); + __m512i msign = _mm512_srai_epi64(divisor.val[0], 63); + __m512i m_asign = _mm512_and_si512(divisor.val[0], asign); + __m512i a_msign = _mm512_and_si512(a, msign); + mulhi = _mm512_sub_epi64(mulhi, m_asign); + mulhi = _mm512_sub_epi64(mulhi, a_msign); + // q = ((a + mulhi) >> sh1) - XSIGN(a) + // trunc(a/d) = (q ^ dsign) - dsign + __m512i q = _mm512_sra_epi64(_mm512_add_epi64(a, mulhi), shf1); + q = _mm512_sub_epi64(q, asign); + q = _mm512_sub_epi64(_mm512_xor_si512(q, divisor.val[2]), divisor.val[2]); + return q; +} +/*************************** * Division ***************************/ // TODO: emulate integer division @@ -136,11 +356,11 @@ NPY_FINLINE __m512i npyv_mul_u8(__m512i a, __m512i b) * 2- shuff(cross) /add /shuff(cross) /add /shuff /add /shuff /add /extract * 3- _mm512_reduce_add_ps/pd * The first one is been widely used by many projects - * + * * the second one is used by Intel Compiler, maybe because the * latency of hadd increased by (2-3) starting from Skylake-X which makes two * extra shuffles(non-cross) cheaper. check https://godbolt.org/z/s3G9Er for more info. - * + * * The third one is almost the same as the second one but only works for * intel compiler/GCC 7.1/Clang 4, we still need to support older GCC. ***************************/ |