diff options
-rw-r--r-- | numpy/core/fromnumeric.py | 16 | ||||
-rw-r--r-- | numpy/core/numeric.py | 8 | ||||
-rw-r--r-- | numpy/core/tests/test_api.py | 13 | ||||
-rw-r--r-- | numpy/core/tests/test_indexing.py | 13 | ||||
-rw-r--r-- | numpy/core/tests/test_multiarray.py | 37 | ||||
-rw-r--r-- | numpy/core/tests/test_nditer.py | 23 | ||||
-rw-r--r-- | numpy/core/tests/test_numeric.py | 11 | ||||
-rw-r--r-- | numpy/core/tests/test_shape_base.py | 4 | ||||
-rw-r--r-- | numpy/core/tests/test_ufunc.py | 7 | ||||
-rw-r--r-- | numpy/core/tests/test_umath.py | 7 | ||||
-rw-r--r-- | numpy/lib/polynomial.py | 5 | ||||
-rw-r--r-- | numpy/lib/scimath.py | 2 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraysetops.py | 2 | ||||
-rw-r--r-- | numpy/lib/tests/test_function_base.py | 21 | ||||
-rw-r--r-- | numpy/lib/tests/test_index_tricks.py | 31 | ||||
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 105 | ||||
-rw-r--r-- | numpy/lib/tests/test_shape_base.py | 22 | ||||
-rw-r--r-- | numpy/matrixlib/tests/test_interaction.py | 361 | ||||
-rw-r--r-- | numpy/polynomial/tests/test_polyutils.py | 9 | ||||
-rw-r--r-- | numpy/testing/tests/test_utils.py | 32 |
20 files changed, 476 insertions, 253 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py index 75bcedd81..0db5663f9 100644 --- a/numpy/core/fromnumeric.py +++ b/numpy/core/fromnumeric.py @@ -1336,10 +1336,11 @@ def diagonal(a, offset=0, axis1=0, axis2=1): Returns ------- array_of_diagonals : ndarray - If `a` is 2-D and not a `matrix`, a 1-D array of the same type as `a` - containing the diagonal is returned. If `a` is a `matrix`, a 1-D - array containing the diagonal is returned in order to maintain - backward compatibility. + If `a` is 2-D, then a 1-D array containing the diagonal and of the + same type as `a` is returned unless `a` is a `matrix`, in which case + a 1-D array rather than a (2-D) `matrix` is returned in order to + maintain backward compatibility. + If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2` are removed, and a new axis inserted at the end corresponding to the diagonal. @@ -1496,10 +1497,9 @@ def ravel(a, order='C'): Returns ------- y : array_like - If `a` is a matrix, y is a 1-D ndarray, otherwise y is an array of - the same subtype as `a`. The shape of the returned array is - ``(a.size,)``. Matrices are special cased for backward - compatibility. + y is an array of the same subtype as `a`, with shape ``(a.size,)``. + Note that matrices are special cased for backward compatibility, if `a` + is a matrix, then y is a 1-D ndarray. See Also -------- diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py index 1108d4667..cd783d242 100644 --- a/numpy/core/numeric.py +++ b/numpy/core/numeric.py @@ -489,9 +489,9 @@ def asarray(a, dtype=None, order=None): Contrary to `asanyarray`, ndarray subclasses are not passed through: - >>> issubclass(np.matrix, np.ndarray) + >>> issubclass(np.recarray, np.ndarray) True - >>> a = np.matrix([[1, 2]]) + >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a @@ -545,7 +545,7 @@ def asanyarray(a, dtype=None, order=None): Instances of `ndarray` subclasses are passed through as-is: - >>> a = np.matrix([1, 2]) + >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asanyarray(a) is a True @@ -2280,7 +2280,7 @@ def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): relative difference (`rtol` * abs(`b`)) and the absolute difference `atol` are added together to compare against the absolute difference between `a` and `b`. - + .. warning:: The default `atol` is not appropriate for comparing numbers that are much smaller than one (see Notes). diff --git a/numpy/core/tests/test_api.py b/numpy/core/tests/test_api.py index a927968a4..9755e7b36 100644 --- a/numpy/core/tests/test_api.py +++ b/numpy/core/tests/test_api.py @@ -223,22 +223,25 @@ def test_array_astype(): b = a.astype('f4', subok=0, copy=False) assert_(a is b) - a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4') + class MyNDArray(np.ndarray): + pass - # subok=True passes through a matrix + a = np.array([[0, 1, 2], [3, 4, 5]], dtype='f4').view(MyNDArray) + + # subok=True passes through a subclass b = a.astype('f4', subok=True, copy=False) assert_(a is b) # subok=True is default, and creates a subtype on a cast b = a.astype('i4', copy=False) assert_equal(a, b) - assert_equal(type(b), np.matrix) + assert_equal(type(b), MyNDArray) - # subok=False never returns a matrix + # subok=False never returns a subclass b = a.astype('f4', subok=False, copy=False) assert_equal(a, b) assert_(not (a is b)) - assert_(type(b) is not np.matrix) + assert_(type(b) is not MyNDArray) # Make sure converting from string object to fixed length string # does not truncate. diff --git a/numpy/core/tests/test_indexing.py b/numpy/core/tests/test_indexing.py index 65852e577..88f5deabc 100644 --- a/numpy/core/tests/test_indexing.py +++ b/numpy/core/tests/test_indexing.py @@ -576,19 +576,6 @@ class TestSubclasses(object): assert_(isinstance(s[[0, 1, 2]], SubClass)) assert_(isinstance(s[s > 0], SubClass)) - def test_matrix_fancy(self): - # The matrix class messes with the shape. While this is always - # weird (getitem is not used, it does not have setitem nor knows - # about fancy indexing), this tests gh-3110 - m = np.matrix([[1, 2], [3, 4]]) - - assert_(isinstance(m[[0,1,0], :], np.matrix)) - - # gh-3110. Note the transpose currently because matrices do *not* - # support dimension fixing for fancy indexing correctly. - x = np.asmatrix(np.arange(50).reshape(5,10)) - assert_equal(x[:2, np.array(-1)], x[:2, -1].T) - def test_finalize_gets_full_info(self): # Array finalize should be called on the filled array. class SubClass(np.ndarray): diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py index f3032d394..46bdc19a7 100644 --- a/numpy/core/tests/test_multiarray.py +++ b/numpy/core/tests/test_multiarray.py @@ -1745,13 +1745,6 @@ class TestMethods(object): assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) - def test_sort_matrix_none(self): - a = np.matrix([[2, 1, 0]]) - actual = np.sort(a, axis=None) - expected = np.matrix([[0, 1, 2]]) - assert_equal(actual, expected) - assert_(type(expected) is np.matrix) - def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number @@ -2497,14 +2490,6 @@ class TestMethods(object): assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) - def test_partition_matrix_none(self): - # gh-4301 - a = np.matrix([[2, 1, 0]]) - actual = np.partition(a, 1, axis=None) - expected = np.matrix([[0, 1, 2]]) - assert_equal(actual, expected) - assert_(type(expected) is np.matrix) - def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] @@ -5279,13 +5264,6 @@ class TestDot(object): assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) - def test_dot_scalar_and_matrix_of_objects(self): - # Ticket #2469 - arr = np.matrix([1, 2], dtype=object) - desired = np.matrix([[3, 6]], dtype=object) - assert_equal(np.dot(arr, 3), desired) - assert_equal(np.dot(3, arr), desired) - def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order='C'): @@ -5641,21 +5619,6 @@ class TestInner(object): assert_equal(np.inner(vec, sca), desired) assert_equal(np.inner(sca, vec), desired) - def test_inner_scalar_and_matrix(self): - for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': - sca = np.array(3, dtype=dt)[()] - arr = np.matrix([[1, 2], [3, 4]], dtype=dt) - desired = np.matrix([[3, 6], [9, 12]], dtype=dt) - assert_equal(np.inner(arr, sca), desired) - assert_equal(np.inner(sca, arr), desired) - - def test_inner_scalar_and_matrix_of_objects(self): - # Ticket #4482 - arr = np.matrix([1, 2], dtype=object) - desired = np.matrix([[3, 6]], dtype=object) - assert_equal(np.inner(arr, 3), desired) - assert_equal(np.inner(3, arr), desired) - def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give diff --git a/numpy/core/tests/test_nditer.py b/numpy/core/tests/test_nditer.py index b6b1c0f31..a0096efdb 100644 --- a/numpy/core/tests/test_nditer.py +++ b/numpy/core/tests/test_nditer.py @@ -1469,26 +1469,25 @@ def test_iter_allocate_output_types_scalar(): def test_iter_allocate_output_subtype(): # Make sure that the subtype with priority wins + class MyNDArray(np.ndarray): + __array_priority__ = 15 - # matrix vs ndarray - a = np.matrix([[1, 2], [3, 4]]) + # subclass vs ndarray + a = np.array([[1, 2], [3, 4]]).view(MyNDArray) b = np.arange(4).reshape(2, 2).T i = nditer([a, b, None], [], - [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) assert_equal(type(a), type(i.operands[2])) - assert_(type(b) != type(i.operands[2])) + assert_(type(b) is not type(i.operands[2])) assert_equal(i.operands[2].shape, (2, 2)) - # matrix always wants things to be 2D - b = np.arange(4).reshape(1, 2, 2) - assert_raises(RuntimeError, nditer, [a, b, None], [], - [['readonly'], ['readonly'], ['writeonly', 'allocate']]) - # but if subtypes are disabled, the result can still work + # If subtypes are disabled, we should get back an ndarray. i = nditer([a, b, None], [], - [['readonly'], ['readonly'], ['writeonly', 'allocate', 'no_subtype']]) + [['readonly'], ['readonly'], + ['writeonly', 'allocate', 'no_subtype']]) assert_equal(type(b), type(i.operands[2])) - assert_(type(a) != type(i.operands[2])) - assert_equal(i.operands[2].shape, (1, 2, 2)) + assert_(type(a) is not type(i.operands[2])) + assert_equal(i.operands[2].shape, (2, 2)) def test_iter_allocate_output_errors(): # Check that the iterator will throw errors for bad output allocations diff --git a/numpy/core/tests/test_numeric.py b/numpy/core/tests/test_numeric.py index 40cccd404..95e9f8497 100644 --- a/numpy/core/tests/test_numeric.py +++ b/numpy/core/tests/test_numeric.py @@ -905,7 +905,7 @@ class TestTypes(object): fi = np.finfo(dt) assert_(np.can_cast(fi.min, dt)) assert_(np.can_cast(fi.max, dt)) - + # Custom exception class to test exception propagation in fromiter class NIterError(Exception): @@ -2201,13 +2201,16 @@ class TestLikeFuncs(object): self.compare_array_value(dz, value, fill_value) # Test the 'subok' parameter - a = np.matrix([[1, 2], [3, 4]]) + class MyNDArray(np.ndarray): + pass + + a = np.array([[1, 2], [3, 4]]).view(MyNDArray) b = like_function(a, **fill_kwarg) - assert_(type(b) is np.matrix) + assert_(type(b) is MyNDArray) b = like_function(a, subok=False, **fill_kwarg) - assert_(type(b) is not np.matrix) + assert_(type(b) is not MyNDArray) def test_ones_like(self): self.check_like_function(np.ones_like, 1) diff --git a/numpy/core/tests/test_shape_base.py b/numpy/core/tests/test_shape_base.py index 1d91a651e..72b3451a4 100644 --- a/numpy/core/tests/test_shape_base.py +++ b/numpy/core/tests/test_shape_base.py @@ -364,10 +364,6 @@ def test_stack(): stack, [np.zeros((3, 3)), np.zeros(3)], axis=1) assert_raises_regex(ValueError, 'must have the same shape', stack, [np.arange(2), np.arange(3)]) - # np.matrix - m = np.matrix([[1, 2], [3, 4]]) - assert_raises_regex(ValueError, 'shape too large to be a matrix', - stack, [m, m]) class TestBlock(object): diff --git a/numpy/core/tests/test_ufunc.py b/numpy/core/tests/test_ufunc.py index fe40456d5..8479260a3 100644 --- a/numpy/core/tests/test_ufunc.py +++ b/numpy/core/tests/test_ufunc.py @@ -892,13 +892,6 @@ class TestUfunc(object): np.add.reduceat(arr, np.arange(4), out=arr, axis=-1) assert_array_equal(arr, out) - def test_object_scalar_multiply(self): - # Tickets #2469 and #4482 - arr = np.matrix([1, 2], dtype=object) - desired = np.matrix([[3, 6]], dtype=object) - assert_equal(np.multiply(arr, 3), desired) - assert_equal(np.multiply(3, arr), desired) - def test_zerosize_reduction(self): # Test with default dtype and object dtype for a in [[], np.array([], dtype=object)]: diff --git a/numpy/core/tests/test_umath.py b/numpy/core/tests/test_umath.py index 1464a9e9a..2a42b1ed1 100644 --- a/numpy/core/tests/test_umath.py +++ b/numpy/core/tests/test_umath.py @@ -1675,13 +1675,16 @@ class TestSpecialMethods(object): assert_equal(ncu.maximum(a, C()), 0) def test_ufunc_override(self): - + # check override works even with instance with high priority. class A(object): def __array_ufunc__(self, func, method, *inputs, **kwargs): return self, func, method, inputs, kwargs + class MyNDArray(np.ndarray): + __array_priority__ = 100 + a = A() - b = np.matrix([1]) + b = np.array([1]).view(MyNDArray) res0 = np.multiply(a, b) res1 = np.multiply(b, b, out=a) diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index 41b5e2f64..078608bbb 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -113,11 +113,6 @@ def poly(seq_of_zeros): >>> np.poly(P) array([ 1. , 0. , 0.16666667]) - Or a square matrix object: - - >>> np.poly(np.matrix(P)) - array([ 1. , 0. , 0.16666667]) - Note how in all cases the leading coefficient is always 1. """ diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py index e07caf805..f1838fee6 100644 --- a/numpy/lib/scimath.py +++ b/numpy/lib/scimath.py @@ -555,7 +555,7 @@ def arctanh(x): -------- >>> np.set_printoptions(precision=4) - >>> np.emath.arctanh(np.matrix(np.eye(2))) + >>> np.emath.arctanh(np.eye(2)) array([[ Inf, 0.], [ 0., Inf]]) >>> np.emath.arctanh([1j]) diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index 76c36c53e..984a3b15e 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -74,8 +74,6 @@ class TestSetOps(object): assert_array_equal([1,7,8], ediff1d(two_elem, to_end=[7,8])) assert_array_equal([7,1], ediff1d(two_elem, to_begin=7)) assert_array_equal([5,6,1], ediff1d(two_elem, to_begin=[5,6])) - assert(isinstance(ediff1d(np.matrix(1)), np.matrix)) - assert(isinstance(ediff1d(np.matrix(1), to_begin=1), np.matrix)) def test_isin(self): # the tests for in1d cover most of isin's behavior diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index 5dc96775b..4103a9eb3 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -287,9 +287,6 @@ class TestAverage(object): assert_almost_equal(y5.mean(0), average(y5, 0)) assert_almost_equal(y5.mean(1), average(y5, 1)) - y6 = np.matrix(rand(5, 5)) - assert_array_equal(y6.mean(0), average(y6, 0)) - def test_weights(self): y = np.arange(10) w = np.arange(10) @@ -357,14 +354,6 @@ class TestAverage(object): assert_equal(type(np.average(a)), subclass) assert_equal(type(np.average(a, weights=w)), subclass) - # also test matrices - a = np.matrix([[1,2],[3,4]]) - w = np.matrix([[1,2],[3,4]]) - - r = np.average(a, axis=0, weights=w) - assert_equal(type(r), np.matrix) - assert_equal(r, [[2.5, 10.0/3]]) - def test_upcasting(self): types = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] @@ -1623,16 +1612,6 @@ class TestTrapz(object): xm = np.ma.array(x, mask=mask) assert_almost_equal(trapz(y, xm), r) - def test_matrix(self): - # Test to make sure matrices give the same answer as ndarrays - x = np.linspace(0, 5) - y = x * x - r = trapz(y, x) - mx = np.matrix(x) - my = np.matrix(y) - mr = trapz(my, mx) - assert_almost_equal(mr, r) - class TestSinc(object): diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py index f934e952a..089a7589a 100644 --- a/numpy/lib/tests/test_index_tricks.py +++ b/numpy/lib/tests/test_index_tricks.py @@ -184,37 +184,6 @@ class TestConcatenator(object): assert_array_equal(d[:5, :], b) assert_array_equal(d[5:, :], c) - def test_matrix(self): - a = [1, 2] - b = [3, 4] - - ab_r = np.r_['r', a, b] - ab_c = np.r_['c', a, b] - - assert_equal(type(ab_r), np.matrix) - assert_equal(type(ab_c), np.matrix) - - assert_equal(np.array(ab_r), [[1,2,3,4]]) - assert_equal(np.array(ab_c), [[1],[2],[3],[4]]) - - assert_raises(ValueError, lambda: np.r_['rc', a, b]) - - def test_matrix_scalar(self): - r = np.r_['r', [1, 2], 3] - assert_equal(type(r), np.matrix) - assert_equal(np.array(r), [[1,2,3]]) - - def test_matrix_builder(self): - a = np.array([1]) - b = np.array([2]) - c = np.array([3]) - d = np.array([4]) - actual = np.r_['a, b; c, d'] - expected = np.bmat([[a, b], [c, d]]) - - assert_equal(actual, expected) - assert_equal(type(actual), type(expected)) - def test_0d(self): assert_equal(r_[0, np.array(1), 2], [0, 1, 2]) assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3]) diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py index 42e221506..504372faf 100644 --- a/numpy/lib/tests/test_nanfunctions.py +++ b/numpy/lib/tests/test_nanfunctions.py @@ -113,42 +113,46 @@ class TestNanFunctions_MinMax(object): for f in self.nanfuncs: assert_(f(0.) == 0.) - def test_matrices(self): + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + # Check that it works and that type and # shape are preserved - mat = np.matrix(np.eye(3)) + mine = np.eye(3).view(MyNDArray) for f in self.nanfuncs: - res = f(mat, axis=0) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (1, 3)) - res = f(mat, axis=1) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (3, 1)) - res = f(mat) - assert_(np.isscalar(res)) + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine) + assert_(res.shape == ()) + # check that rows of nan are dealt with for subclasses (#4628) - mat[1] = np.nan + mine[1] = np.nan for f in self.nanfuncs: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') - res = f(mat, axis=0) - assert_(isinstance(res, np.matrix)) + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) assert_(not np.any(np.isnan(res))) assert_(len(w) == 0) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') - res = f(mat, axis=1) - assert_(isinstance(res, np.matrix)) - assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) - and not np.isnan(res[2, 0])) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(np.isnan(res[1]) and not np.isnan(res[0]) + and not np.isnan(res[2])) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') - res = f(mat) - assert_(np.isscalar(res)) + res = f(mine) + assert_(res.shape == ()) assert_(res != np.nan) assert_(len(w) == 0) @@ -209,19 +213,22 @@ class TestNanFunctions_ArgminArgmax(object): for f in self.nanfuncs: assert_(f(0.) == 0.) - def test_matrices(self): + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + # Check that it works and that type and # shape are preserved - mat = np.matrix(np.eye(3)) + mine = np.eye(3).view(MyNDArray) for f in self.nanfuncs: - res = f(mat, axis=0) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (1, 3)) - res = f(mat, axis=1) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (3, 1)) - res = f(mat) - assert_(np.isscalar(res)) + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine) + assert_(res.shape == ()) class TestNanFunctions_IntTypes(object): @@ -381,19 +388,27 @@ class SharedNanFunctionsTestsMixin(object): for f in self.nanfuncs: assert_(f(0.) == 0.) - def test_matrices(self): + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + # Check that it works and that type and # shape are preserved - mat = np.matrix(np.eye(3)) + array = np.eye(3) + mine = array.view(MyNDArray) for f in self.nanfuncs: - res = f(mat, axis=0) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (1, 3)) - res = f(mat, axis=1) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (3, 1)) - res = f(mat) - assert_(np.isscalar(res)) + expected_shape = f(array, axis=0).shape + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + expected_shape = f(array, axis=1).shape + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + expected_shape = f(array).shape + res = f(mine) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin): @@ -481,18 +496,6 @@ class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin): res = f(d, axis=axis) assert_equal(res.shape, (3, 5, 7, 11)) - def test_matrices(self): - # Check that it works and that type and - # shape are preserved - mat = np.matrix(np.eye(3)) - for f in self.nanfuncs: - for axis in np.arange(2): - res = f(mat, axis=axis) - assert_(isinstance(res, np.matrix)) - assert_(res.shape == (3, 3)) - res = f(mat) - assert_(res.shape == (1, 3*3)) - def test_result_values(self): for axis in (-2, -1, 0, 1, None): tgt = np.cumprod(_ndat_ones, axis=axis) diff --git a/numpy/lib/tests/test_shape_base.py b/numpy/lib/tests/test_shape_base.py index 0e86fbb19..a35d90b70 100644 --- a/numpy/lib/tests/test_shape_base.py +++ b/numpy/lib/tests/test_shape_base.py @@ -29,19 +29,21 @@ class TestApplyAlongAxis(object): [[27, 30, 33], [36, 39, 42], [45, 48, 51]]) def test_preserve_subclass(self): - # this test is particularly malicious because matrix - # refuses to become 1d def double(row): return row * 2 - m = np.matrix([[0, 1], [2, 3]]) - expected = np.matrix([[0, 2], [4, 6]]) + + class MyNDArray(np.ndarray): + pass + + m = np.array([[0, 1], [2, 3]]).view(MyNDArray) + expected = np.array([[0, 2], [4, 6]]).view(MyNDArray) result = apply_along_axis(double, 0, m) - assert_(isinstance(result, np.matrix)) + assert_(isinstance(result, MyNDArray)) assert_array_equal(result, expected) result = apply_along_axis(double, 1, m) - assert_(isinstance(result, np.matrix)) + assert_(isinstance(result, MyNDArray)) assert_array_equal(result, expected) def test_subclass(self): @@ -492,16 +494,10 @@ class TestSqueeze(object): class TestKron(object): def test_return_type(self): - a = np.ones([2, 2]) - m = np.asmatrix(a) - assert_equal(type(kron(a, a)), np.ndarray) - assert_equal(type(kron(m, m)), np.matrix) - assert_equal(type(kron(a, m)), np.matrix) - assert_equal(type(kron(m, a)), np.matrix) - class myarray(np.ndarray): __array_priority__ = 0.0 + a = np.ones([2, 2]) ma = myarray(a.shape, a.dtype, a.data) assert_equal(type(kron(a, a)), np.ndarray) assert_equal(type(kron(ma, ma)), myarray) diff --git a/numpy/matrixlib/tests/test_interaction.py b/numpy/matrixlib/tests/test_interaction.py new file mode 100644 index 000000000..fefb159c6 --- /dev/null +++ b/numpy/matrixlib/tests/test_interaction.py @@ -0,0 +1,361 @@ +"""Tests of interaction of matrix with other parts of numpy. + +Note that tests with MaskedArray and linalg are done in separate files. +""" +from __future__ import division, absolute_import, print_function + +import textwrap +import warnings + +import numpy as np +from numpy.testing import (assert_, assert_equal, assert_raises, + assert_raises_regex, assert_array_equal, + assert_almost_equal, assert_array_almost_equal) + + +def test_fancy_indexing(): + # The matrix class messes with the shape. While this is always + # weird (getitem is not used, it does not have setitem nor knows + # about fancy indexing), this tests gh-3110 + # 2018-04-29: moved here from core.tests.test_index. + m = np.matrix([[1, 2], [3, 4]]) + + assert_(isinstance(m[[0, 1, 0], :], np.matrix)) + + # gh-3110. Note the transpose currently because matrices do *not* + # support dimension fixing for fancy indexing correctly. + x = np.asmatrix(np.arange(50).reshape(5, 10)) + assert_equal(x[:2, np.array(-1)], x[:2, -1].T) + + +def test_polynomial_mapdomain(): + # test that polynomial preserved matrix subtype. + # 2018-04-29: moved here from polynomial.tests.polyutils. + dom1 = [0, 4] + dom2 = [1, 3] + x = np.matrix([dom1, dom1]) + res = np.polynomial.polyutils.mapdomain(x, dom1, dom2) + assert_(isinstance(res, np.matrix)) + + +def test_sort_matrix_none(): + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.sort(a, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_partition_matrix_none(): + # gh-4301 + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.partition(a, 1, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_dot_scalar_and_matrix_of_objects(): + # Ticket #2469 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.dot(arr, 3), desired) + assert_equal(np.dot(3, arr), desired) + + +def test_inner_scalar_and_matrix(): + # 2018-04-29: moved here from core.tests.test_multiarray + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + sca = np.array(3, dtype=dt)[()] + arr = np.matrix([[1, 2], [3, 4]], dtype=dt) + desired = np.matrix([[3, 6], [9, 12]], dtype=dt) + assert_equal(np.inner(arr, sca), desired) + assert_equal(np.inner(sca, arr), desired) + + +def test_inner_scalar_and_matrix_of_objects(): + # Ticket #4482 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.inner(arr, 3), desired) + assert_equal(np.inner(3, arr), desired) + + +def test_iter_allocate_output_subtype(): + # Make sure that the subtype with priority wins + # 2018-04-29: moved here from core.tests.test_nditer, given the + # matrix specific shape test. + + # matrix vs ndarray + a = np.matrix([[1, 2], [3, 4]]) + b = np.arange(4).reshape(2, 2).T + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + assert_(type(i.operands[2]) is np.matrix) + assert_(type(i.operands[2]) is not np.ndarray) + assert_equal(i.operands[2].shape, (2, 2)) + + # matrix always wants things to be 2D + b = np.arange(4).reshape(1, 2, 2) + assert_raises(RuntimeError, np.nditer, [a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + # but if subtypes are disabled, the result can still work + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], + ['writeonly', 'allocate', 'no_subtype']]) + assert_(type(i.operands[2]) is np.ndarray) + assert_(type(i.operands[2]) is not np.matrix) + assert_equal(i.operands[2].shape, (1, 2, 2)) + + +def like_function(): + # 2018-04-29: moved here from core.tests.test_numeric + a = np.matrix([[1, 2], [3, 4]]) + for like_function in np.zeros_like, np.ones_like, np.empty_like: + b = like_function(a) + assert_(type(b) is np.matrix) + + c = like_function(a, subok=False) + assert_(type(c) is not np.matrix) + + +def test_array_astype(): + # 2018-04-29: copied here from core.tests.test_api + # subok=True passes through a matrix + a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4') + b = a.astype('f4', subok=True, copy=False) + assert_(a is b) + + # subok=True is default, and creates a subtype on a cast + b = a.astype('i4', copy=False) + assert_equal(a, b) + assert_equal(type(b), np.matrix) + + # subok=False never returns a matrix + b = a.astype('f4', subok=False, copy=False) + assert_equal(a, b) + assert_(not (a is b)) + assert_(type(b) is not np.matrix) + + +def test_stack(): + # 2018-04-29: copied here from core.tests.test_shape_base + # check np.matrix cannot be stacked + m = np.matrix([[1, 2], [3, 4]]) + assert_raises_regex(ValueError, 'shape too large to be a matrix', + np.stack, [m, m]) + + +def test_object_scalar_multiply(): + # Tickets #2469 and #4482 + # 2018-04-29: moved here from core.tests.test_ufunc + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.multiply(arr, 3), desired) + assert_equal(np.multiply(3, arr), desired) + + +def test_nanfunctions_matrices(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in [np.nanmin, np.nanmax]: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + # check that rows of nan are dealt with for subclasses (#4628) + mat[1] = np.nan + for f in [np.nanmin, np.nanmax]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(not np.any(np.isnan(res))) + assert_(len(w) == 0) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) + and not np.isnan(res[2, 0])) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat) + assert_(np.isscalar(res)) + assert_(res != np.nan) + assert_(len(w) == 0) + + +def test_nanfunctions_matrices_general(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod, + np.nanmean, np.nanvar, np.nanstd): + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + + for f in np.nancumsum, np.nancumprod: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3*3)) + + +def test_average_matrix(): + # 2018-04-29: moved here from core.tests.test_function_base. + y = np.matrix(np.random.rand(5, 5)) + assert_array_equal(y.mean(0), np.average(y, 0)) + + a = np.matrix([[1, 2], [3, 4]]) + w = np.matrix([[1, 2], [3, 4]]) + + r = np.average(a, axis=0, weights=w) + assert_equal(type(r), np.matrix) + assert_equal(r, [[2.5, 10.0/3]]) + + +def test_trapz_matrix(): + # Test to make sure matrices give the same answer as ndarrays + # 2018-04-29: moved here from core.tests.test_function_base. + x = np.linspace(0, 5) + y = x * x + r = np.trapz(y, x) + mx = np.matrix(x) + my = np.matrix(y) + mr = np.trapz(my, mx) + assert_almost_equal(mr, r) + + +def test_ediff1d_matrix(): + # 2018-04-29: moved here from core.tests.test_arraysetops. + assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix)) + assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix)) + + +def test_apply_along_axis_matrix(): + # this test is particularly malicious because matrix + # refuses to become 1d + # 2018-04-29: moved here from core.tests.test_shape_base. + def double(row): + return row * 2 + + m = np.matrix([[0, 1], [2, 3]]) + expected = np.matrix([[0, 2], [4, 6]]) + + result = np.apply_along_axis(double, 0, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + result = np.apply_along_axis(double, 1, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + +def test_kron_matrix(): + # 2018-04-29: moved here from core.tests.test_shape_base. + a = np.ones([2, 2]) + m = np.asmatrix(a) + assert_equal(type(np.kron(a, a)), np.ndarray) + assert_equal(type(np.kron(m, m)), np.matrix) + assert_equal(type(np.kron(a, m)), np.matrix) + assert_equal(type(np.kron(m, a)), np.matrix) + + +class TestConcatenatorMatrix(object): + # 2018-04-29: moved here from core.tests.test_index_tricks. + def test_matrix(self): + a = [1, 2] + b = [3, 4] + + ab_r = np.r_['r', a, b] + ab_c = np.r_['c', a, b] + + assert_equal(type(ab_r), np.matrix) + assert_equal(type(ab_c), np.matrix) + + assert_equal(np.array(ab_r), [[1, 2, 3, 4]]) + assert_equal(np.array(ab_c), [[1], [2], [3], [4]]) + + assert_raises(ValueError, lambda: np.r_['rc', a, b]) + + def test_matrix_scalar(self): + r = np.r_['r', [1, 2], 3] + assert_equal(type(r), np.matrix) + assert_equal(np.array(r), [[1, 2, 3]]) + + def test_matrix_builder(self): + a = np.array([1]) + b = np.array([2]) + c = np.array([3]) + d = np.array([4]) + actual = np.r_['a, b; c, d'] + expected = np.bmat([[a, b], [c, d]]) + + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + +def test_array_equal_error_message_matrix(): + # 2018-04-29: moved here from testing.tests.test_utils. + try: + assert_equal(np.array([1, 2]), np.matrix([1, 2])) + except AssertionError as e: + msg = str(e) + msg2 = msg.replace("shapes (2L,), (1L, 2L)", "shapes (2,), (1, 2)") + msg_reference = textwrap.dedent("""\ + + Arrays are not equal + + (shapes (2,), (1, 2) mismatch) + x: array([1, 2]) + y: matrix([[1, 2]])""") + try: + assert_equal(msg, msg_reference) + except AssertionError: + assert_equal(msg2, msg_reference) + else: + raise AssertionError("Did not raise") + + +def test_array_almost_equal_matrix(): + # Matrix slicing keeps things 2-D, while array does not necessarily. + # See gh-8452. + # 2018-04-29: moved here from testing.tests.test_utils. + m1 = np.matrix([[1., 2.]]) + m2 = np.matrix([[1., np.nan]]) + m3 = np.matrix([[1., -np.inf]]) + m4 = np.matrix([[np.nan, np.inf]]) + m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) + for assert_func in assert_array_almost_equal, assert_almost_equal: + for m in m1, m2, m3, m4, m5: + assert_func(m, m) + a = np.array(m) + assert_func(a, m) + assert_func(m, a) diff --git a/numpy/polynomial/tests/test_polyutils.py b/numpy/polynomial/tests/test_polyutils.py index 32ea55716..801c558cc 100644 --- a/numpy/polynomial/tests/test_polyutils.py +++ b/numpy/polynomial/tests/test_polyutils.py @@ -63,7 +63,7 @@ class TestDomain(object): dom1 = [0, 4] dom2 = [1, 3] tgt = dom2 - res = pu. mapdomain(dom1, dom1, dom2) + res = pu.mapdomain(dom1, dom1, dom2) assert_almost_equal(res, tgt) # test for complex values @@ -83,11 +83,14 @@ class TestDomain(object): assert_almost_equal(res, tgt) # test that subtypes are preserved. + class MyNDArray(np.ndarray): + pass + dom1 = [0, 4] dom2 = [1, 3] - x = np.matrix([dom1, dom1]) + x = np.array([dom1, dom1]).view(MyNDArray) res = pu.mapdomain(x, dom1, dom2) - assert_(isinstance(res, np.matrix)) + assert_(isinstance(res, MyNDArray)) def test_mapparms(self): # test for real values diff --git a/numpy/testing/tests/test_utils.py b/numpy/testing/tests/test_utils.py index 0592e62f8..c9e8384c2 100644 --- a/numpy/testing/tests/test_utils.py +++ b/numpy/testing/tests/test_utils.py @@ -286,7 +286,7 @@ class TestEqual(TestArrayEqual): def test_error_message(self): try: - self._assert_func(np.array([1, 2]), np.matrix([1, 2])) + self._assert_func(np.array([1, 2]), np.array([[1, 2]])) except AssertionError as e: msg = str(e) msg2 = msg.replace("shapes (2L,), (1L, 2L)", "shapes (2,), (1, 2)") @@ -296,7 +296,7 @@ class TestEqual(TestArrayEqual): (shapes (2,), (1, 2) mismatch) x: array([1, 2]) - y: matrix([[1, 2]])""") + y: array([[1, 2]])""") try: assert_equal(msg, msg_reference) except AssertionError: @@ -366,20 +366,6 @@ class TestArrayAlmostEqual(_GenericTest): self._assert_func(b, a) self._assert_func(b, b) - def test_matrix(self): - # Matrix slicing keeps things 2-D, while array does not necessarily. - # See gh-8452. - m1 = np.matrix([[1., 2.]]) - m2 = np.matrix([[1., np.nan]]) - m3 = np.matrix([[1., -np.inf]]) - m4 = np.matrix([[np.nan, np.inf]]) - m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) - for m in m1, m2, m3, m4, m5: - self._assert_func(m, m) - a = np.array(m) - self._assert_func(a, m) - self._assert_func(m, a) - def test_subclass_that_cannot_be_bool(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having @@ -479,20 +465,6 @@ class TestAlmostEqual(_GenericTest): # remove anything that's not the array string assert_equal(str(e).split('%)\n ')[1], b) - def test_matrix(self): - # Matrix slicing keeps things 2-D, while array does not necessarily. - # See gh-8452. - m1 = np.matrix([[1., 2.]]) - m2 = np.matrix([[1., np.nan]]) - m3 = np.matrix([[1., -np.inf]]) - m4 = np.matrix([[np.nan, np.inf]]) - m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) - for m in m1, m2, m3, m4, m5: - self._assert_func(m, m) - a = np.array(m) - self._assert_func(a, m) - self._assert_func(m, a) - def test_subclass_that_cannot_be_bool(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having |