summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/source/reference/arrays.dtypes.rst19
1 files changed, 10 insertions, 9 deletions
diff --git a/doc/source/reference/arrays.dtypes.rst b/doc/source/reference/arrays.dtypes.rst
index 58b8080f4..e97ee3c3a 100644
--- a/doc/source/reference/arrays.dtypes.rst
+++ b/doc/source/reference/arrays.dtypes.rst
@@ -87,18 +87,18 @@ Sub-arrays always have a C-contiguous memory layout.
>>> dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))])
>>> dt['name']
- dtype('|U16')
+ dtype('<U16')
>>> dt['grades']
- dtype(('float64',(2,)))
+ dtype(('<f8', (2,)))
Items of an array of this data type are wrapped in an :ref:`array
scalar <arrays.scalars>` type that also has two fields:
>>> x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]
- ('John', [6.0, 7.0])
+ ('John', [6., 7.])
>>> x[1]['grades']
- array([ 6., 7.])
+ array([6., 7.])
>>> type(x[1])
<class 'numpy.void'>
>>> type(x[1]['grades'])
@@ -304,7 +304,7 @@ Type strings
.. admonition:: Example
>>> dt = np.dtype('uint32') # 32-bit unsigned integer
- >>> dt = np.dtype('Float64') # 64-bit floating-point number
+ >>> dt = np.dtype('float64') # 64-bit floating-point number
.. index::
triple: dtype; construction; from tuple
@@ -328,13 +328,14 @@ Type strings
The first argument is any object that can be converted into a
fixed-size data-type object. The second argument is the desired
shape of this type. If the shape parameter is 1, then the
- data-type object is equivalent to fixed dtype. If *shape* is a
- tuple, then the new dtype defines a sub-array of the given shape.
+ data-type object used to be equivalent to fixed dtype. This behaviour is
+ deprecated since NumPy 1.17 and will raise an error in the future.
+ If *shape* is a tuple, then the new dtype defines a sub-array of the given
+ shape.
.. admonition:: Example
>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array
- >>> dt = np.dtype(('U10', 1)) # 10-character string
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2 x 3 structured sub-array
.. index::
@@ -441,7 +442,7 @@ Type strings
byte position 0), ``col2`` (32-bit float at byte position 10),
and ``col3`` (integers at byte position 14):
- >>> dt = np.dtype({'col1': ('U10', 0), 'col2': (float32, 10),
+ >>> dt = np.dtype({'col1': ('U10', 0), 'col2': (np.float32, 10),
... 'col3': (int, 14)})
``(base_dtype, new_dtype)``