diff options
| -rw-r--r-- | numpy/core/src/multiarray/textreading/tokenize.cpp | 6 | ||||
| -rw-r--r-- | numpy/core/src/npysort/binsearch.cpp | 2 | ||||
| -rw-r--r-- | numpy/core/src/npysort/radixsort.cpp | 2 | ||||
| -rw-r--r-- | numpy/core/src/npysort/selection.cpp | 10 | ||||
| -rw-r--r-- | numpy/core/src/npysort/timsort.cpp | 8 | ||||
| -rw-r--r-- | numpy/core/src/npysort/x86-qsort.dispatch.cpp | 40 | ||||
| -rw-r--r-- | numpy/core/tests/data/generate_umath_validation_data.cpp | 6 | ||||
| -rw-r--r-- | numpy/linalg/umath_linalg.cpp | 150 |
8 files changed, 112 insertions, 112 deletions
diff --git a/numpy/core/src/multiarray/textreading/tokenize.cpp b/numpy/core/src/multiarray/textreading/tokenize.cpp index b6d9f882b..b09fc3356 100644 --- a/numpy/core/src/multiarray/textreading/tokenize.cpp +++ b/numpy/core/src/multiarray/textreading/tokenize.cpp @@ -40,7 +40,7 @@ template <typename UCS> -static NPY_INLINE int +static inline int copy_to_field_buffer(tokenizer_state *ts, const UCS *chunk_start, const UCS *chunk_end) { @@ -73,7 +73,7 @@ copy_to_field_buffer(tokenizer_state *ts, } -static NPY_INLINE int +static inline int add_field(tokenizer_state *ts) { /* The previous field is done, advance to keep a NUL byte at the end */ @@ -109,7 +109,7 @@ add_field(tokenizer_state *ts) template <typename UCS> -static NPY_INLINE int +static inline int tokenizer_core(tokenizer_state *ts, parser_config *const config) { UCS *pos = (UCS *)ts->pos; diff --git a/numpy/core/src/npysort/binsearch.cpp b/numpy/core/src/npysort/binsearch.cpp index 8dd72c094..98d305910 100644 --- a/numpy/core/src/npysort/binsearch.cpp +++ b/numpy/core/src/npysort/binsearch.cpp @@ -344,7 +344,7 @@ constexpr std::array<typename binsearch_t<arg>::value_type, binsearch_t<arg>::map; template <arg_t arg> -static NPY_INLINE typename binsearch_t<arg>::function_type +static inline typename binsearch_t<arg>::function_type _get_binsearch_func(PyArray_Descr *dtype, NPY_SEARCHSIDE side) { using binsearch = binsearch_t<arg>; diff --git a/numpy/core/src/npysort/radixsort.cpp b/numpy/core/src/npysort/radixsort.cpp index 5393869ee..0e1a41c69 100644 --- a/numpy/core/src/npysort/radixsort.cpp +++ b/numpy/core/src/npysort/radixsort.cpp @@ -4,7 +4,7 @@ #include "npysort_common.h" #include "../common/numpy_tag.h" -#include <stdlib.h> +#include <cstdlib> #include <type_traits> /* diff --git a/numpy/core/src/npysort/selection.cpp b/numpy/core/src/npysort/selection.cpp index 7fd04a660..ebe188b71 100644 --- a/numpy/core/src/npysort/selection.cpp +++ b/numpy/core/src/npysort/selection.cpp @@ -39,7 +39,7 @@ introselect_(type *v, npy_intp *tosort, npy_intp num, npy_intp kth, ***************************************************************************** */ -static NPY_INLINE void +static inline void store_pivot(npy_intp pivot, npy_intp kth, npy_intp *pivots, npy_intp *npiv) { if (pivots == NULL) { @@ -104,7 +104,7 @@ inexact() * for efficient partitioning, see unguarded_partition */ template <typename Tag, bool arg, typename type> -static NPY_INLINE void +static inline void median3_swap_(type *v, npy_intp *tosort, npy_intp low, npy_intp mid, npy_intp high) { @@ -170,7 +170,7 @@ median5_(type *v, npy_intp *tosort) * lower-than-pivot [x x x x] larger-than-pivot */ template <typename Tag, bool arg, typename type> -static NPY_INLINE void +static inline void unguarded_partition_(type *v, npy_intp *tosort, const type pivot, npy_intp *ll, npy_intp *hh) { @@ -442,7 +442,7 @@ struct partition_t { }; constexpr std::array<arg_map, partition_t::taglist::size> partition_t::map; -static NPY_INLINE PyArray_PartitionFunc * +static inline PyArray_PartitionFunc * _get_partition_func(int type, NPY_SELECTKIND which) { npy_intp i; @@ -459,7 +459,7 @@ _get_partition_func(int type, NPY_SELECTKIND which) return NULL; } -static NPY_INLINE PyArray_ArgPartitionFunc * +static inline PyArray_ArgPartitionFunc * _get_argpartition_func(int type, NPY_SELECTKIND which) { npy_intp i; diff --git a/numpy/core/src/npysort/timsort.cpp b/numpy/core/src/npysort/timsort.cpp index 8bcd90061..27294af0c 100644 --- a/numpy/core/src/npysort/timsort.cpp +++ b/numpy/core/src/npysort/timsort.cpp @@ -67,7 +67,7 @@ typedef struct { } buffer_intp; /* buffer method */ -static NPY_INLINE int +static inline int resize_buffer_intp(buffer_intp *buffer, npy_intp new_size) { if (new_size <= buffer->size) { @@ -105,7 +105,7 @@ struct buffer_ { }; template <typename Tag> -static NPY_INLINE int +static inline int resize_buffer_(buffer_<Tag> *buffer, npy_intp new_size) { using type = typename Tag::type; @@ -978,7 +978,7 @@ struct string_buffer_ { }; template <typename Tag> -static NPY_INLINE int +static inline int resize_buffer_(string_buffer_<Tag> *buffer, npy_intp new_size) { using type = typename Tag::type; @@ -1873,7 +1873,7 @@ typedef struct { size_t len; } buffer_char; -static NPY_INLINE int +static inline int resize_buffer_char(buffer_char *buffer, npy_intp new_size) { if (new_size <= buffer->size) { diff --git a/numpy/core/src/npysort/x86-qsort.dispatch.cpp b/numpy/core/src/npysort/x86-qsort.dispatch.cpp index 4b01e3528..66261ad0a 100644 --- a/numpy/core/src/npysort/x86-qsort.dispatch.cpp +++ b/numpy/core/src/npysort/x86-qsort.dispatch.cpp @@ -72,7 +72,7 @@ heapsort_(type *start, npy_intp n); _mm256_or_si256(_mm256_slli_epi64((x), (k)), \ _mm256_srli_epi64((x), 64 - (k))) -static NPY_INLINE __m256i +static inline __m256i vnext(__m256i *s0, __m256i *s1) { *s1 = _mm256_xor_si256(*s0, *s1); /* modify vectors s1 and s0 */ @@ -83,7 +83,7 @@ vnext(__m256i *s0, __m256i *s1) } /* transform random numbers to the range between 0 and bound - 1 */ -static NPY_INLINE __m256i +static inline __m256i rnd_epu32(__m256i rnd_vec, __m256i bound) { __m256i even = _mm256_srli_epi64(_mm256_mul_epu32(rnd_vec, bound), 32); @@ -282,7 +282,7 @@ COEX(mm_t &a, mm_t &b) } template <typename vtype, typename zmm_t = typename vtype::zmm_t> -static NPY_INLINE zmm_t +static inline zmm_t cmp_merge(zmm_t in1, zmm_t in2, __mmask16 mask) { zmm_t min = vtype::min(in2, in1); @@ -295,7 +295,7 @@ cmp_merge(zmm_t in1, zmm_t in2, __mmask16 mask) * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg */ template <typename vtype, typename zmm_t = typename vtype::zmm_t> -static NPY_INLINE zmm_t +static inline zmm_t sort_zmm(zmm_t zmm) { zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), @@ -323,7 +323,7 @@ sort_zmm(zmm_t zmm) // Assumes zmm is bitonic and performs a recursive half cleaner template <typename vtype, typename zmm_t = typename vtype::zmm_t> -static NPY_INLINE zmm_t +static inline zmm_t bitonic_merge_zmm(zmm_t zmm) { // 1) half_cleaner[16]: compare 1-9, 2-10, 3-11 etc .. @@ -343,7 +343,7 @@ bitonic_merge_zmm(zmm_t zmm) // Assumes zmm1 and zmm2 are sorted and performs a recursive half cleaner template <typename vtype, typename zmm_t = typename vtype::zmm_t> -static NPY_INLINE void +static inline void bitonic_merge_two_zmm(zmm_t *zmm1, zmm_t *zmm2) { // 1) First step of a merging network: coex of zmm1 and zmm2 reversed @@ -358,7 +358,7 @@ bitonic_merge_two_zmm(zmm_t *zmm1, zmm_t *zmm2) // Assumes [zmm0, zmm1] and [zmm2, zmm3] are sorted and performs a recursive // half cleaner template <typename vtype, typename zmm_t = typename vtype::zmm_t> -static NPY_INLINE void +static inline void bitonic_merge_four_zmm(zmm_t *zmm) { zmm_t zmm2r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[2]); @@ -380,7 +380,7 @@ bitonic_merge_four_zmm(zmm_t *zmm) } template <typename vtype, typename zmm_t = typename vtype::zmm_t> -static NPY_INLINE void +static inline void bitonic_merge_eight_zmm(zmm_t *zmm) { zmm_t zmm4r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[4]); @@ -418,7 +418,7 @@ bitonic_merge_eight_zmm(zmm_t *zmm) } template <typename vtype, typename type_t> -static NPY_INLINE void +static inline void sort_16(type_t *arr, npy_int N) { __mmask16 load_mask = (0x0001 << N) - 0x0001; @@ -428,7 +428,7 @@ sort_16(type_t *arr, npy_int N) } template <typename vtype, typename type_t> -static NPY_INLINE void +static inline void sort_32(type_t *arr, npy_int N) { if (N <= 16) { @@ -447,7 +447,7 @@ sort_32(type_t *arr, npy_int N) } template <typename vtype, typename type_t> -static NPY_INLINE void +static inline void sort_64(type_t *arr, npy_int N) { if (N <= 32) { @@ -482,7 +482,7 @@ sort_64(type_t *arr, npy_int N) } template <typename vtype, typename type_t> -static NPY_INLINE void +static inline void sort_128(type_t *arr, npy_int N) { if (N <= 64) { @@ -545,7 +545,7 @@ sort_128(type_t *arr, npy_int N) } template <typename type_t> -static NPY_INLINE void +static inline void swap(type_t *arr, npy_intp ii, npy_intp jj) { type_t temp = arr[ii]; @@ -555,7 +555,7 @@ swap(type_t *arr, npy_intp ii, npy_intp jj) // Median of 3 strategy // template<typename type_t> -// static NPY_INLINE +// static inline // npy_intp get_pivot_index(type_t *arr, const npy_intp left, const npy_intp // right) { // return (rand() % (right + 1 - left)) + left; @@ -574,7 +574,7 @@ swap(type_t *arr, npy_intp ii, npy_intp jj) */ template <typename vtype, typename type_t> -static NPY_INLINE type_t +static inline type_t get_pivot(type_t *arr, const npy_intp left, const npy_intp right) { /* seeds for vectorized random number generator */ @@ -641,7 +641,7 @@ get_pivot(type_t *arr, const npy_intp left, const npy_intp right) * last element that is less than equal to the pivot. */ template <typename vtype, typename type_t, typename zmm_t> -static NPY_INLINE npy_int +static inline npy_int partition_vec(type_t *arr, npy_intp left, npy_intp right, const zmm_t curr_vec, const zmm_t pivot_vec, zmm_t *smallest_vec, zmm_t *biggest_vec) { @@ -661,7 +661,7 @@ partition_vec(type_t *arr, npy_intp left, npy_intp right, const zmm_t curr_vec, * last element that is less than equal to the pivot. */ template <typename vtype, typename type_t> -static NPY_INLINE npy_intp +static inline npy_intp partition_avx512(type_t *arr, npy_intp left, npy_intp right, type_t pivot, type_t *smallest, type_t *biggest) { @@ -742,7 +742,7 @@ partition_avx512(type_t *arr, npy_intp left, npy_intp right, type_t pivot, } template <typename vtype, typename type_t> -static NPY_INLINE void +static inline void qsort_(type_t *arr, npy_intp left, npy_intp right, npy_int max_iters) { /* @@ -771,7 +771,7 @@ qsort_(type_t *arr, npy_intp left, npy_intp right, npy_int max_iters) qsort_<vtype>(arr, pivot_index, right, max_iters - 1); } -static NPY_INLINE npy_intp +static inline npy_intp replace_nan_with_inf(npy_float *arr, npy_intp arrsize) { npy_intp nan_count = 0; @@ -790,7 +790,7 @@ replace_nan_with_inf(npy_float *arr, npy_intp arrsize) return nan_count; } -static NPY_INLINE void +static inline void replace_inf_with_nan(npy_float *arr, npy_intp arrsize, npy_intp nan_count) { for (npy_intp ii = arrsize - 1; nan_count > 0; --ii) { diff --git a/numpy/core/tests/data/generate_umath_validation_data.cpp b/numpy/core/tests/data/generate_umath_validation_data.cpp index 418eae670..51ee12501 100644 --- a/numpy/core/tests/data/generate_umath_validation_data.cpp +++ b/numpy/core/tests/data/generate_umath_validation_data.cpp @@ -1,10 +1,10 @@ #include <algorithm> #include <fstream> #include <iostream> -#include <math.h> +#include <cmath> #include <random> -#include <stdio.h> -#include <time.h> +#include <cstdio> +#include <ctime> #include <vector> struct ufunc { diff --git a/numpy/linalg/umath_linalg.cpp b/numpy/linalg/umath_linalg.cpp index 944f46ba7..bbeb37906 100644 --- a/numpy/linalg/umath_linalg.cpp +++ b/numpy/linalg/umath_linalg.cpp @@ -18,10 +18,10 @@ #include "npy_cblas.h" -#include <stddef.h> -#include <stdio.h> -#include <assert.h> -#include <math.h> +#include <cstddef> +#include <cstdio> +#include <cassert> +#include <cmath> #include <utility> @@ -406,7 +406,7 @@ FNAME(zgemm)(char *transa, char *transb, ***************************************************************************** */ -static NPY_INLINE int +static inline int get_fp_invalid_and_clear(void) { int status; @@ -414,7 +414,7 @@ get_fp_invalid_and_clear(void) return !!(status & NPY_FPE_INVALID); } -static NPY_INLINE void +static inline void set_fp_invalid_or_clear(int error_occurred) { if (error_occurred) { @@ -547,7 +547,7 @@ typedef struct linearize_data_struct npy_intp output_lead_dim; } LINEARIZE_DATA_t; -static NPY_INLINE void +static inline void init_linearize_data_ex(LINEARIZE_DATA_t *lin_data, npy_intp rows, npy_intp columns, @@ -562,7 +562,7 @@ init_linearize_data_ex(LINEARIZE_DATA_t *lin_data, lin_data->output_lead_dim = output_lead_dim; } -static NPY_INLINE void +static inline void init_linearize_data(LINEARIZE_DATA_t *lin_data, npy_intp rows, npy_intp columns, @@ -573,7 +573,7 @@ init_linearize_data(LINEARIZE_DATA_t *lin_data, lin_data, rows, columns, row_strides, column_strides, columns); } -static NPY_INLINE void +static inline void dump_ufunc_object(PyUFuncObject* ufunc) { TRACE_TXT("\n\n%s '%s' (%d input(s), %d output(s), %d specialization(s).\n", @@ -598,7 +598,7 @@ dump_ufunc_object(PyUFuncObject* ufunc) } } -static NPY_INLINE void +static inline void dump_linearize_data(const char* name, const LINEARIZE_DATA_t* params) { TRACE_TXT("\n\t%s rows: %zd columns: %zd"\ @@ -607,23 +607,23 @@ dump_linearize_data(const char* name, const LINEARIZE_DATA_t* params) params->row_strides, params->column_strides); } -static NPY_INLINE void +static inline void print(npy_float s) { TRACE_TXT(" %8.4f", s); } -static NPY_INLINE void +static inline void print(npy_double d) { TRACE_TXT(" %10.6f", d); } -static NPY_INLINE void +static inline void print(npy_cfloat c) { float* c_parts = (float*)&c; TRACE_TXT("(%8.4f, %8.4fj)", c_parts[0], c_parts[1]); } -static NPY_INLINE void +static inline void print(npy_cdouble z) { double* z_parts = (double*)&z; @@ -631,7 +631,7 @@ print(npy_cdouble z) } template<typename typ> -static NPY_INLINE void +static inline void dump_matrix(const char* name, size_t rows, size_t columns, const typ* ptr) @@ -658,12 +658,12 @@ dump_matrix(const char* name, ***************************************************************************** */ -static NPY_INLINE fortran_int +static inline fortran_int fortran_int_min(fortran_int x, fortran_int y) { return x < y ? x : y; } -static NPY_INLINE fortran_int +static inline fortran_int fortran_int_max(fortran_int x, fortran_int y) { return x > y ? x : y; } @@ -750,7 +750,7 @@ fortran_int_max(fortran_int x, fortran_int y) { #define END_OUTER_LOOP } -static NPY_INLINE void +static inline void update_pointers(npy_uint8** bases, ptrdiff_t* offsets, size_t count) { size_t i; @@ -838,7 +838,7 @@ using basetype_t = typename basetype<T>::type; /* rearranging of 2D matrices using blas */ template<typename typ> -static NPY_INLINE void * +static inline void * linearize_matrix(typ *dst, typ *src, const LINEARIZE_DATA_t* data) @@ -883,7 +883,7 @@ linearize_matrix(typ *dst, } template<typename typ> -static NPY_INLINE void * +static inline void * delinearize_matrix(typ *dst, typ *src, const LINEARIZE_DATA_t* data) @@ -932,7 +932,7 @@ using ftyp = fortran_type_t<typ>; } template<typename typ> -static NPY_INLINE void +static inline void nan_matrix(typ *dst, const LINEARIZE_DATA_t* data) { int i, j; @@ -948,7 +948,7 @@ nan_matrix(typ *dst, const LINEARIZE_DATA_t* data) } template<typename typ> -static NPY_INLINE void +static inline void zero_matrix(typ *dst, const LINEARIZE_DATA_t* data) { int i, j; @@ -965,7 +965,7 @@ zero_matrix(typ *dst, const LINEARIZE_DATA_t* data) /* identity square matrix generation */ template<typename typ> -static NPY_INLINE void +static inline void identity_matrix(typ *matrix, size_t n) { size_t i; @@ -982,7 +982,7 @@ identity_matrix(typ *matrix, size_t n) /* lower/upper triangular matrix using blas (in place) */ template<typename typ> -static NPY_INLINE void +static inline void triu_matrix(typ *matrix, size_t n) { size_t i, j; @@ -1005,7 +1005,7 @@ static npy_float npyexp(npy_float f) { return npy_expf(f);} static npy_double npyexp(npy_double d) { return npy_exp(d);} template<typename typ> -static NPY_INLINE void +static inline void slogdet_from_factored_diagonal(typ* src, fortran_int m, typ *sign, @@ -1030,7 +1030,7 @@ slogdet_from_factored_diagonal(typ* src, } template<typename typ> -static NPY_INLINE typ +static inline typ det_from_slogdet(typ sign, typ logdet) { typ result = sign * npyexp(logdet); @@ -1045,7 +1045,7 @@ npy_double npyabs(npy_cdouble z) { return npy_cabs(z);} #define IM(COMPLEX) (COMPLEX).imag template<typename typ> -static NPY_INLINE typ +static inline typ mult(typ op1, typ op2) { typ rv; @@ -1058,7 +1058,7 @@ mult(typ op1, typ op2) template<typename typ, typename basetyp> -static NPY_INLINE void +static inline void slogdet_from_factored_diagonal(typ* src, fortran_int m, typ *sign, @@ -1085,7 +1085,7 @@ slogdet_from_factored_diagonal(typ* src, } template<typename typ, typename basetyp> -static NPY_INLINE typ +static inline typ det_from_slogdet(typ sign, basetyp logdet) { typ tmp; @@ -1103,7 +1103,7 @@ det_from_slogdet(typ sign, basetyp logdet) * det computes sign * exp(slogdet). */ template<typename typ, typename basetyp> -static NPY_INLINE void +static inline void slogdet_single_element(fortran_int m, typ* src, fortran_int* pivots, @@ -1248,7 +1248,7 @@ struct EIGH_PARAMS_t { fortran_int LDA; } ; -static NPY_INLINE fortran_int +static inline fortran_int call_evd(EIGH_PARAMS_t<npy_float> *params) { fortran_int rv; @@ -1259,7 +1259,7 @@ call_evd(EIGH_PARAMS_t<npy_float> *params) &rv); return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_evd(EIGH_PARAMS_t<npy_double> *params) { fortran_int rv; @@ -1277,7 +1277,7 @@ call_evd(EIGH_PARAMS_t<npy_double> *params) * Handles buffer allocation */ template<typename typ> -static NPY_INLINE int +static inline int init_evd(EIGH_PARAMS_t<typ>* params, char JOBZ, char UPLO, fortran_int N, scalar_trait) { @@ -1350,7 +1350,7 @@ init_evd(EIGH_PARAMS_t<typ>* params, char JOBZ, char UPLO, } -static NPY_INLINE fortran_int +static inline fortran_int call_evd(EIGH_PARAMS_t<npy_cfloat> *params) { fortran_int rv; @@ -1363,7 +1363,7 @@ call_evd(EIGH_PARAMS_t<npy_cfloat> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_evd(EIGH_PARAMS_t<npy_cdouble> *params) { fortran_int rv; @@ -1377,7 +1377,7 @@ call_evd(EIGH_PARAMS_t<npy_cdouble> *params) } template<typename typ> -static NPY_INLINE int +static inline int init_evd(EIGH_PARAMS_t<typ> *params, char JOBZ, char UPLO, @@ -1470,7 +1470,7 @@ error: */ template<typename typ> -static NPY_INLINE void +static inline void release_evd(EIGH_PARAMS_t<typ> *params) { /* allocated memory in A and WORK */ @@ -1481,7 +1481,7 @@ release_evd(EIGH_PARAMS_t<typ> *params) template<typename typ> -static NPY_INLINE void +static inline void eigh_wrapper(char JOBZ, char UPLO, char**args, @@ -1611,7 +1611,7 @@ struct GESV_PARAMS_t fortran_int LDB; }; -static NPY_INLINE fortran_int +static inline fortran_int call_gesv(GESV_PARAMS_t<fortran_real> *params) { fortran_int rv; @@ -1623,7 +1623,7 @@ call_gesv(GESV_PARAMS_t<fortran_real> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesv(GESV_PARAMS_t<fortran_doublereal> *params) { fortran_int rv; @@ -1635,7 +1635,7 @@ call_gesv(GESV_PARAMS_t<fortran_doublereal> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesv(GESV_PARAMS_t<fortran_complex> *params) { fortran_int rv; @@ -1647,7 +1647,7 @@ call_gesv(GESV_PARAMS_t<fortran_complex> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesv(GESV_PARAMS_t<fortran_doublecomplex> *params) { fortran_int rv; @@ -1665,7 +1665,7 @@ call_gesv(GESV_PARAMS_t<fortran_doublecomplex> *params) * Handles buffer allocation */ template<typename ftyp> -static NPY_INLINE int +static inline int init_gesv(GESV_PARAMS_t<ftyp> *params, fortran_int N, fortran_int NRHS) { npy_uint8 *mem_buff = NULL; @@ -1700,7 +1700,7 @@ init_gesv(GESV_PARAMS_t<ftyp> *params, fortran_int N, fortran_int NRHS) } template<typename ftyp> -static NPY_INLINE void +static inline void release_gesv(GESV_PARAMS_t<ftyp> *params) { /* memory block base is in A */ @@ -1835,7 +1835,7 @@ struct POTR_PARAMS_t }; -static NPY_INLINE fortran_int +static inline fortran_int call_potrf(POTR_PARAMS_t<fortran_real> *params) { fortran_int rv; @@ -1845,7 +1845,7 @@ call_potrf(POTR_PARAMS_t<fortran_real> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_potrf(POTR_PARAMS_t<fortran_doublereal> *params) { fortran_int rv; @@ -1855,7 +1855,7 @@ call_potrf(POTR_PARAMS_t<fortran_doublereal> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_potrf(POTR_PARAMS_t<fortran_complex> *params) { fortran_int rv; @@ -1865,7 +1865,7 @@ call_potrf(POTR_PARAMS_t<fortran_complex> *params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_potrf(POTR_PARAMS_t<fortran_doublecomplex> *params) { fortran_int rv; @@ -1876,7 +1876,7 @@ call_potrf(POTR_PARAMS_t<fortran_doublecomplex> *params) } template<typename ftyp> -static NPY_INLINE int +static inline int init_potrf(POTR_PARAMS_t<ftyp> *params, char UPLO, fortran_int N) { npy_uint8 *mem_buff = NULL; @@ -1905,7 +1905,7 @@ init_potrf(POTR_PARAMS_t<ftyp> *params, char UPLO, fortran_int N) } template<typename ftyp> -static NPY_INLINE void +static inline void release_potrf(POTR_PARAMS_t<ftyp> *params) { /* memory block base in A */ @@ -1982,7 +1982,7 @@ struct GEEV_PARAMS_t { }; template<typename typ> -static NPY_INLINE void +static inline void dump_geev_params(const char *name, GEEV_PARAMS_t<typ>* params) { TRACE_TXT("\n%s\n" @@ -2028,7 +2028,7 @@ dump_geev_params(const char *name, GEEV_PARAMS_t<typ>* params) "JOBVR", params->JOBVR); } -static NPY_INLINE fortran_int +static inline fortran_int call_geev(GEEV_PARAMS_t<float>* params) { fortran_int rv; @@ -2042,7 +2042,7 @@ call_geev(GEEV_PARAMS_t<float>* params) return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_geev(GEEV_PARAMS_t<double>* params) { fortran_int rv; @@ -2058,7 +2058,7 @@ call_geev(GEEV_PARAMS_t<double>* params) template<typename typ> -static NPY_INLINE int +static inline int init_geev(GEEV_PARAMS_t<typ> *params, char jobvl, char jobvr, fortran_int n, scalar_trait) { @@ -2142,7 +2142,7 @@ scalar_trait) } template<typename complextyp, typename typ> -static NPY_INLINE void +static inline void mk_complex_array_from_real(complextyp *c, const typ *re, size_t n) { size_t iter; @@ -2153,7 +2153,7 @@ mk_complex_array_from_real(complextyp *c, const typ *re, size_t n) } template<typename complextyp, typename typ> -static NPY_INLINE void +static inline void mk_complex_array(complextyp *c, const typ *re, const typ *im, @@ -2167,7 +2167,7 @@ mk_complex_array(complextyp *c, } template<typename complextyp, typename typ> -static NPY_INLINE void +static inline void mk_complex_array_conjugate_pair(complextyp *c, const typ *r, size_t n) @@ -2191,7 +2191,7 @@ mk_complex_array_conjugate_pair(complextyp *c, * n is so that the order of the matrix is n by n */ template<typename complextyp, typename typ> -static NPY_INLINE void +static inline void mk_geev_complex_eigenvectors(complextyp *c, const typ *r, const typ *i, @@ -2218,7 +2218,7 @@ mk_geev_complex_eigenvectors(complextyp *c, template<typename complextyp, typename typ> -static NPY_INLINE void +static inline void process_geev_results(GEEV_PARAMS_t<typ> *params, scalar_trait) { /* REAL versions of geev need the results to be translated @@ -2239,7 +2239,7 @@ process_geev_results(GEEV_PARAMS_t<typ> *params, scalar_trait) } -static NPY_INLINE fortran_int +static inline fortran_int call_geev(GEEV_PARAMS_t<fortran_complex>* params) { fortran_int rv; @@ -2254,7 +2254,7 @@ call_geev(GEEV_PARAMS_t<fortran_complex>* params) &rv); return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_geev(GEEV_PARAMS_t<fortran_doublecomplex>* params) { fortran_int rv; @@ -2271,7 +2271,7 @@ call_geev(GEEV_PARAMS_t<fortran_doublecomplex>* params) } template<typename ftyp> -static NPY_INLINE int +static inline int init_geev(GEEV_PARAMS_t<ftyp>* params, char jobvl, char jobvr, @@ -2353,7 +2353,7 @@ using realtyp = basetype_t<ftyp>; } template<typename complextyp, typename typ> -static NPY_INLINE void +static inline void process_geev_results(GEEV_PARAMS_t<typ> *NPY_UNUSED(params), complex_trait) { /* nothing to do here, complex versions are ready to copy out */ @@ -2362,7 +2362,7 @@ process_geev_results(GEEV_PARAMS_t<typ> *NPY_UNUSED(params), complex_trait) template<typename typ> -static NPY_INLINE void +static inline void release_geev(GEEV_PARAMS_t<typ> *params) { free(params->WORK); @@ -2371,7 +2371,7 @@ release_geev(GEEV_PARAMS_t<typ> *params) } template<typename fctype, typename ftype> -static NPY_INLINE void +static inline void eig_wrapper(char JOBVL, char JOBVR, char**args, @@ -2515,7 +2515,7 @@ struct GESDD_PARAMS_t template<typename ftyp> -static NPY_INLINE void +static inline void dump_gesdd_params(const char *name, GESDD_PARAMS_t<ftyp> *params) { @@ -2558,7 +2558,7 @@ dump_gesdd_params(const char *name, "JOBZ", ' ', params->JOBZ); } -static NPY_INLINE int +static inline int compute_urows_vtcolumns(char jobz, fortran_int m, fortran_int n, fortran_int *urows, fortran_int *vtcolumns) @@ -2587,7 +2587,7 @@ compute_urows_vtcolumns(char jobz, return 1; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesdd(GESDD_PARAMS_t<fortran_real> *params) { fortran_int rv; @@ -2601,7 +2601,7 @@ call_gesdd(GESDD_PARAMS_t<fortran_real> *params) &rv); return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesdd(GESDD_PARAMS_t<fortran_doublereal> *params) { fortran_int rv; @@ -2617,7 +2617,7 @@ call_gesdd(GESDD_PARAMS_t<fortran_doublereal> *params) } template<typename ftyp> -static NPY_INLINE int +static inline int init_gesdd(GESDD_PARAMS_t<ftyp> *params, char jobz, fortran_int m, @@ -2715,7 +2715,7 @@ init_gesdd(GESDD_PARAMS_t<ftyp> *params, return 0; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesdd(GESDD_PARAMS_t<fortran_complex> *params) { fortran_int rv; @@ -2730,7 +2730,7 @@ call_gesdd(GESDD_PARAMS_t<fortran_complex> *params) &rv); return rv; } -static NPY_INLINE fortran_int +static inline fortran_int call_gesdd(GESDD_PARAMS_t<fortran_doublecomplex> *params) { fortran_int rv; @@ -2747,7 +2747,7 @@ call_gesdd(GESDD_PARAMS_t<fortran_doublecomplex> *params) } template<typename ftyp> -static NPY_INLINE int +static inline int init_gesdd(GESDD_PARAMS_t<ftyp> *params, char jobz, fortran_int m, @@ -2853,7 +2853,7 @@ using frealtyp = basetype_t<ftyp>; } template<typename typ> -static NPY_INLINE void +static inline void release_gesdd(GESDD_PARAMS_t<typ>* params) { /* A and WORK contain allocated blocks */ @@ -2863,7 +2863,7 @@ release_gesdd(GESDD_PARAMS_t<typ>* params) } template<typename typ> -static NPY_INLINE void +static inline void svd_wrapper(char JOBZ, char **args, npy_intp const *dimensions, |
