diff options
-rw-r--r-- | numpy/core/src/multiarray/array_coercion.c | 164 | ||||
-rw-r--r-- | numpy/core/src/multiarray/array_coercion.h | 10 | ||||
-rw-r--r-- | numpy/core/src/multiarray/convert_datatype.c | 5 | ||||
-rw-r--r-- | numpy/core/src/multiarray/convert_datatype.h | 2 | ||||
-rw-r--r-- | numpy/core/src/multiarray/ctors.c | 3 | ||||
-rw-r--r-- | numpy/core/src/multiarray/descriptor.c | 135 | ||||
-rw-r--r-- | numpy/core/src/multiarray/descriptor.h | 23 | ||||
-rw-r--r-- | numpy/core/src/multiarray/methods.c | 15 | ||||
-rw-r--r-- | numpy/core/src/multiarray/multiarraymodule.c | 6 | ||||
-rw-r--r-- | numpy/core/src/multiarray/nditer_constr.c | 2 | ||||
-rw-r--r-- | numpy/core/tests/test_array_coercion.py | 2 | ||||
-rw-r--r-- | numpy/core/tests/test_custom_dtypes.py | 10 |
12 files changed, 243 insertions, 134 deletions
diff --git a/numpy/core/src/multiarray/array_coercion.c b/numpy/core/src/multiarray/array_coercion.c index f77a4a898..d6bee1a7b 100644 --- a/numpy/core/src/multiarray/array_coercion.c +++ b/numpy/core/src/multiarray/array_coercion.c @@ -16,6 +16,7 @@ #include "common_dtype.h" #include "dtypemeta.h" +#include "npy_argparse.h" #include "abstractdtypes.h" #include "array_coercion.h" #include "ctors.h" @@ -873,42 +874,61 @@ find_descriptor_from_array( /** * Given a dtype or DType object, find the correct descriptor to cast the - * array to. + * array to. In some places, this function is used with dtype=NULL which + * means that legacy behavior is used: The dtype instances "S0", "U0", and + * "V0" are converted to mean the DType classes instead. + * When dtype != NULL, this path is ignored, and the function does nothing + * unless descr == NULL. * * This function is identical to normal casting using only the dtype, however, * it supports inspecting the elements when the array has object dtype * (and the given datatype describes a parametric DType class). * * @param arr - * @param dtype A dtype instance or class. + * @param dtype NULL or a dtype class + * @param descr A dtype instance, if the dtype is NULL the dtype class is + * found and e.g. "S0" is converted to denote only String. * @return A concrete dtype instance or NULL */ NPY_NO_EXPORT PyArray_Descr * -PyArray_AdaptDescriptorToArray(PyArrayObject *arr, PyObject *dtype) +PyArray_AdaptDescriptorToArray( + PyArrayObject *arr, PyArray_DTypeMeta *dtype, PyArray_Descr *descr) { /* If the requested dtype is flexible, adapt it */ - PyArray_Descr *new_dtype; - PyArray_DTypeMeta *new_DType; + PyArray_Descr *new_descr; int res; - res = PyArray_ExtractDTypeAndDescriptor((PyObject *)dtype, - &new_dtype, &new_DType); - if (res < 0) { - return NULL; + if (dtype != NULL && descr != NULL) { + /* descr was given and no special logic, return (call not necessary) */ + Py_INCREF(descr); + return descr; } - if (new_dtype == NULL) { - res = find_descriptor_from_array(arr, new_DType, &new_dtype); + if (dtype == NULL) { + res = PyArray_ExtractDTypeAndDescriptor(descr, &new_descr, &dtype); if (res < 0) { - Py_DECREF(new_DType); return NULL; } - if (new_dtype == NULL) { - /* This is an object array but contained no elements, use default */ - new_dtype = NPY_DT_CALL_default_descr(new_DType); + if (new_descr != NULL) { + Py_DECREF(dtype); + return new_descr; } } - Py_DECREF(new_DType); - return new_dtype; + else { + assert(descr == NULL); /* gueranteed above */ + Py_INCREF(dtype); + } + + res = find_descriptor_from_array(arr, dtype, &new_descr); + if (res < 0) { + Py_DECREF(dtype); + return NULL; + } + if (new_descr == NULL) { + /* This is an object array but contained no elements, use default */ + new_descr = NPY_DT_CALL_default_descr(dtype); + } + Py_DECREF(dtype); + return new_descr; } @@ -1380,111 +1400,25 @@ PyArray_DiscoverDTypeAndShape( } - -/** - * Check the descriptor is a legacy "flexible" DType instance, this is - * an instance which is (normally) not attached to an array, such as a string - * of length 0 or a datetime with no unit. - * These should be largely deprecated, and represent only the DType class - * for most `dtype` parameters. - * - * TODO: This function should eventually receive a deprecation warning and - * be removed. - * - * @param descr - * @return 1 if this is not a concrete dtype instance 0 otherwise - */ -static int -descr_is_legacy_parametric_instance(PyArray_Descr *descr, - PyArray_DTypeMeta *DType) -{ - if (!NPY_DT_is_legacy(DType)) { - return 0; - } - - if (PyDataType_ISUNSIZED(descr)) { - return 1; - } - /* Flexible descr with generic time unit (which can be adapted) */ - if (PyDataType_ISDATETIME(descr)) { - PyArray_DatetimeMetaData *meta; - meta = get_datetime_metadata_from_dtype(descr); - if (meta->base == NPY_FR_GENERIC) { - return 1; - } - } - return 0; -} - - -/** - * Given either a DType instance or class, (or legacy flexible instance), - * ands sets output dtype instance and DType class. Both results may be - * NULL, but if `out_descr` is set `out_DType` will always be the - * corresponding class. - * - * @param dtype - * @param out_descr - * @param out_DType - * @return 0 on success -1 on failure - */ -NPY_NO_EXPORT int -PyArray_ExtractDTypeAndDescriptor(PyObject *dtype, - PyArray_Descr **out_descr, PyArray_DTypeMeta **out_DType) -{ - *out_DType = NULL; - *out_descr = NULL; - - if (dtype != NULL) { - if (PyObject_TypeCheck(dtype, (PyTypeObject *)&PyArrayDTypeMeta_Type)) { - assert(dtype != (PyObject * )&PyArrayDescr_Type); /* not np.dtype */ - *out_DType = (PyArray_DTypeMeta *)dtype; - Py_INCREF(*out_DType); - } - else if (PyObject_TypeCheck((PyObject *)Py_TYPE(dtype), - (PyTypeObject *)&PyArrayDTypeMeta_Type)) { - *out_DType = NPY_DTYPE(dtype); - Py_INCREF(*out_DType); - if (!descr_is_legacy_parametric_instance((PyArray_Descr *)dtype, - *out_DType)) { - *out_descr = (PyArray_Descr *)dtype; - Py_INCREF(*out_descr); - } - } - else { - PyErr_SetString(PyExc_TypeError, - "dtype parameter must be a DType instance or class."); - return -1; - } - } - return 0; -} - - /* * Python API function to expose the dtype+shape discovery functionality * directly. */ NPY_NO_EXPORT PyObject * _discover_array_parameters(PyObject *NPY_UNUSED(self), - PyObject *args, PyObject *kwargs) + PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) { - static char *kwlist[] = {"obj", "dtype", NULL}; - PyObject *obj; - PyObject *dtype = NULL; - PyArray_Descr *fixed_descriptor = NULL; - PyArray_DTypeMeta *fixed_DType = NULL; + npy_dtype_info dt_info = {NULL, NULL}; npy_intp shape[NPY_MAXDIMS]; - if (!PyArg_ParseTupleAndKeywords( - args, kwargs, "O|O:_discover_array_parameters", kwlist, - &obj, &dtype)) { - return NULL; - } - - if (PyArray_ExtractDTypeAndDescriptor(dtype, - &fixed_descriptor, &fixed_DType) < 0) { + NPY_PREPARE_ARGPARSER; + if (npy_parse_arguments( + "_discover_array_parameters", args, len_args, kwnames, + "", NULL, &obj, + "|dtype", &PyArray_DTypeOrDescrConverterOptional, &dt_info, + NULL, NULL, NULL) < 0) { + /* fixed is last to parse, so never necessary to clean up */ return NULL; } @@ -1493,9 +1427,9 @@ _discover_array_parameters(PyObject *NPY_UNUSED(self), int ndim = PyArray_DiscoverDTypeAndShape( obj, NPY_MAXDIMS, shape, &coercion_cache, - fixed_DType, fixed_descriptor, (PyArray_Descr **)&out_dtype, 0); - Py_XDECREF(fixed_DType); - Py_XDECREF(fixed_descriptor); + dt_info.dtype, dt_info.descr, (PyArray_Descr **)&out_dtype, 0); + Py_XDECREF(dt_info.dtype); + Py_XDECREF(dt_info.descr); if (ndim < 0) { return NULL; } diff --git a/numpy/core/src/multiarray/array_coercion.h b/numpy/core/src/multiarray/array_coercion.h index 63d543cf7..0757c1cb8 100644 --- a/numpy/core/src/multiarray/array_coercion.h +++ b/numpy/core/src/multiarray/array_coercion.h @@ -26,7 +26,8 @@ NPY_NO_EXPORT int PyArray_Pack(PyArray_Descr *descr, char *item, PyObject *value); NPY_NO_EXPORT PyArray_Descr * -PyArray_AdaptDescriptorToArray(PyArrayObject *arr, PyObject *dtype); +PyArray_AdaptDescriptorToArray( + PyArrayObject *arr, PyArray_DTypeMeta *dtype, PyArray_Descr *descr); NPY_NO_EXPORT int PyArray_DiscoverDTypeAndShape( @@ -36,14 +37,9 @@ PyArray_DiscoverDTypeAndShape( PyArray_DTypeMeta *fixed_DType, PyArray_Descr *requested_descr, PyArray_Descr **out_descr, int never_copy); -NPY_NO_EXPORT int -PyArray_ExtractDTypeAndDescriptor(PyObject *dtype, - PyArray_Descr **out_descr, PyArray_DTypeMeta **out_DType); - NPY_NO_EXPORT PyObject * _discover_array_parameters(PyObject *NPY_UNUSED(self), - PyObject *args, PyObject *kwargs); - + PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames); /* Would make sense to inline the freeing functions everywhere */ /* Frees the coercion cache object recursively. */ diff --git a/numpy/core/src/multiarray/convert_datatype.c b/numpy/core/src/multiarray/convert_datatype.c index 67c032cc7..53db5c577 100644 --- a/numpy/core/src/multiarray/convert_datatype.c +++ b/numpy/core/src/multiarray/convert_datatype.c @@ -18,6 +18,7 @@ #include "can_cast_table.h" #include "common.h" #include "ctors.h" +#include "descriptor.h" #include "dtypemeta.h" #include "common_dtype.h" #include "scalartypes.h" @@ -330,7 +331,7 @@ PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int is_f_order) return NULL; } - Py_SETREF(dtype, PyArray_AdaptDescriptorToArray(arr, (PyObject *)dtype)); + Py_SETREF(dtype, PyArray_AdaptDescriptorToArray(arr, NULL, dtype)); if (dtype == NULL) { return NULL; } @@ -1149,7 +1150,7 @@ PyArray_CastDescrToDType(PyArray_Descr *descr, PyArray_DTypeMeta *given_DType) */ NPY_NO_EXPORT PyArray_Descr * PyArray_FindConcatenationDescriptor( - npy_intp n, PyArrayObject **arrays, PyObject *requested_dtype) + npy_intp n, PyArrayObject **arrays, PyArray_Descr *requested_dtype) { if (requested_dtype == NULL) { return PyArray_ResultType(n, arrays, 0, NULL); diff --git a/numpy/core/src/multiarray/convert_datatype.h b/numpy/core/src/multiarray/convert_datatype.h index 1a23965f8..a68c669ee 100644 --- a/numpy/core/src/multiarray/convert_datatype.h +++ b/numpy/core/src/multiarray/convert_datatype.h @@ -82,7 +82,7 @@ PyArray_CastDescrToDType(PyArray_Descr *descr, PyArray_DTypeMeta *given_DType); NPY_NO_EXPORT PyArray_Descr * PyArray_FindConcatenationDescriptor( - npy_intp n, PyArrayObject **arrays, PyObject *requested_dtype); + npy_intp n, PyArrayObject **arrays, PyArray_Descr *requested_dtype); NPY_NO_EXPORT int PyArray_AddCastingImplementation(PyBoundArrayMethodObject *meth); diff --git a/numpy/core/src/multiarray/ctors.c b/numpy/core/src/multiarray/ctors.c index fa3b103dd..38af60427 100644 --- a/numpy/core/src/multiarray/ctors.c +++ b/numpy/core/src/multiarray/ctors.c @@ -20,6 +20,7 @@ #include "common.h" #include "ctors.h" #include "convert_datatype.h" +#include "descriptor.h" #include "dtypemeta.h" #include "shape.h" #include "npy_buffer.h" @@ -1621,7 +1622,7 @@ PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth, PyArray_Descr *fixed_descriptor; PyArray_DTypeMeta *fixed_DType; - if (PyArray_ExtractDTypeAndDescriptor((PyObject *)newtype, + if (PyArray_ExtractDTypeAndDescriptor(newtype, &fixed_descriptor, &fixed_DType) < 0) { Py_XDECREF(newtype); return NULL; diff --git a/numpy/core/src/multiarray/descriptor.c b/numpy/core/src/multiarray/descriptor.c index ac8aeef1a..c4f37ee18 100644 --- a/numpy/core/src/multiarray/descriptor.c +++ b/numpy/core/src/multiarray/descriptor.c @@ -1390,6 +1390,141 @@ PyArray_DescrConverter2(PyObject *obj, PyArray_Descr **at) } } + +/** + * Check the descriptor is a legacy "flexible" DType instance, this is + * an instance which is (normally) not attached to an array, such as a string + * of length 0 or a datetime with no unit. + * These should be largely deprecated, and represent only the DType class + * for most `dtype` parameters. + * + * TODO: This function should eventually receive a deprecation warning and + * be removed. + * + * @param descr + * @return 1 if this is not a concrete dtype instance 0 otherwise + */ +static int +descr_is_legacy_parametric_instance(PyArray_Descr *descr, + PyArray_DTypeMeta *DType) +{ + if (!NPY_DT_is_legacy(DType)) { + return 0; + } + + if (PyDataType_ISUNSIZED(descr)) { + return 1; + } + /* Flexible descr with generic time unit (which can be adapted) */ + if (PyDataType_ISDATETIME(descr)) { + PyArray_DatetimeMetaData *meta; + meta = get_datetime_metadata_from_dtype(descr); + if (meta->base == NPY_FR_GENERIC) { + return 1; + } + } + return 0; +} + + +/** + * Given a descriptor (dtype instance), handles conversion of legacy flexible + * "unsized" descriptors to their DType. It returns the DType and descriptor + * both results can be NULL (if the input is). But it always sets the DType + * when a descriptor is set. + * + * @param dtype + * @param out_descr + * @param out_DType + * @return 0 on success -1 on failure + */ +NPY_NO_EXPORT int +PyArray_ExtractDTypeAndDescriptor(PyArray_Descr *dtype, + PyArray_Descr **out_descr, PyArray_DTypeMeta **out_DType) +{ + *out_DType = NULL; + *out_descr = NULL; + + if (dtype != NULL) { + *out_DType = NPY_DTYPE(dtype); + Py_INCREF(*out_DType); + if (!descr_is_legacy_parametric_instance((PyArray_Descr *)dtype, + *out_DType)) { + *out_descr = (PyArray_Descr *)dtype; + Py_INCREF(*out_descr); + } + } + return 0; +} + + +/** + * Converter function filling in an npy_dtype_info struct on success. + * + * @param obj representing a dtype instance (descriptor) or DType class. + * @param[out] npy_dtype_info filled with the DType class and dtype/descriptor + * instance. The class is always set while the instance may be NULL. + * On error, both will be NULL. + * @return 0 on failure and 1 on success (as a converter) + */ +NPY_NO_EXPORT int +PyArray_DTypeOrDescrConverterRequired(PyObject *obj, npy_dtype_info *dt_info) +{ + /* + * Allow dtype classes pass, this could also be generalized to at least + * some scalar types (right now most of these give instances or) + */ + dt_info->dtype = NULL; + dt_info->descr = NULL; + + if (PyObject_TypeCheck(obj, &PyArrayDTypeMeta_Type)) { + Py_INCREF(obj); + dt_info->dtype = (PyArray_DTypeMeta *)obj; + dt_info->descr = NULL; + return NPY_SUCCEED; + } + PyArray_Descr *descr; + if (PyArray_DescrConverter(obj, &descr) != NPY_SUCCEED) { + return NPY_FAIL; + } + /* + * The above converts e.g. "S" or "S0" to the prototype instance, we make + * it behave the same as the DType. This is not fully correct, "S0" should + * be considered an instance with actual 0 length. + * TODO: It would be nice to fix that eventually. + */ + int res = PyArray_ExtractDTypeAndDescriptor( + descr, &dt_info->descr, &dt_info->dtype); + Py_DECREF(descr); + if (res < 0) { + return NPY_FAIL; + } + return NPY_SUCCEED; +} + + +/** + * Converter function filling in an npy_dtype_info struct on success. It + * accepts `None` and does nothing in that case (user must initialize to + * NULL anyway). + * + * @param obj None or obj representing a dtype instance (descr) or DType class. + * @param[out] npy_dtype_info filled with the DType class and dtype/descriptor + * instance. If `obj` is None, is not modified. Otherwise the class + * is always set while the instance may be NULL. + * On error, both will be NULL. + * @return 0 on failure and 1 on success (as a converter) + */ +NPY_NO_EXPORT int +PyArray_DTypeOrDescrConverterOptional(PyObject *obj, npy_dtype_info *dt_info) +{ + if (obj == Py_None) { + /* caller must have initialized for the optional version */ + return NPY_SUCCEED; + } + return PyArray_DTypeOrDescrConverterRequired(obj, dt_info); +} + /** * Get a dtype instance from a python type */ diff --git a/numpy/core/src/multiarray/descriptor.h b/numpy/core/src/multiarray/descriptor.h index 7e6f212f2..b14edc3aa 100644 --- a/numpy/core/src/multiarray/descriptor.h +++ b/numpy/core/src/multiarray/descriptor.h @@ -1,6 +1,29 @@ #ifndef NUMPY_CORE_SRC_MULTIARRAY_DESCRIPTOR_H_ #define NUMPY_CORE_SRC_MULTIARRAY_DESCRIPTOR_H_ + +/* + * In some API calls we wish to allow users to pass a DType class or a + * dtype instances with different meanings. + * This struct is mainly used for the argument parsing in + * `PyArray_DTypeOrDescrConverter`. + */ +typedef struct { + PyArray_DTypeMeta *dtype; + PyArray_Descr *descr; +} npy_dtype_info; + + +NPY_NO_EXPORT int +PyArray_DTypeOrDescrConverterOptional(PyObject *, npy_dtype_info *dt_info); + +NPY_NO_EXPORT int +PyArray_DTypeOrDescrConverterRequired(PyObject *, npy_dtype_info *dt_info); + +NPY_NO_EXPORT int +PyArray_ExtractDTypeAndDescriptor(PyArray_Descr *dtype, + PyArray_Descr **out_descr, PyArray_DTypeMeta **out_DType); + NPY_NO_EXPORT PyObject *arraydescr_protocol_typestr_get( PyArray_Descr *, void *); NPY_NO_EXPORT PyObject *arraydescr_protocol_descr_get( diff --git a/numpy/core/src/multiarray/methods.c b/numpy/core/src/multiarray/methods.c index 56225eb52..f518f3a02 100644 --- a/numpy/core/src/multiarray/methods.c +++ b/numpy/core/src/multiarray/methods.c @@ -21,6 +21,7 @@ #include "ctors.h" #include "calculation.h" #include "convert_datatype.h" +#include "descriptor.h" #include "item_selection.h" #include "conversion_utils.h" #include "shape.h" @@ -851,29 +852,35 @@ static PyObject * array_astype(PyArrayObject *self, PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) { - PyArray_Descr *dtype = NULL; /* * TODO: UNSAFE default for compatibility, I think * switching to SAME_KIND by default would be good. */ + npy_dtype_info dt_info; NPY_CASTING casting = NPY_UNSAFE_CASTING; NPY_ORDER order = NPY_KEEPORDER; _PyArray_CopyMode forcecopy = 1; int subok = 1; + NPY_PREPARE_ARGPARSER; if (npy_parse_arguments("astype", args, len_args, kwnames, - "dtype", &PyArray_DescrConverter, &dtype, + "dtype", &PyArray_DTypeOrDescrConverterRequired, &dt_info, "|order", &PyArray_OrderConverter, &order, "|casting", &PyArray_CastingConverter, &casting, "|subok", &PyArray_PythonPyIntFromInt, &subok, "|copy", &PyArray_CopyConverter, &forcecopy, NULL, NULL, NULL) < 0) { - Py_XDECREF(dtype); + Py_XDECREF(dt_info.descr); + Py_XDECREF(dt_info.dtype); return NULL; } /* If it is not a concrete dtype instance find the best one for the array */ - Py_SETREF(dtype, PyArray_AdaptDescriptorToArray(self, (PyObject *)dtype)); + PyArray_Descr *dtype; + + dtype = PyArray_AdaptDescriptorToArray(self, dt_info.dtype, dt_info.descr); + Py_XDECREF(dt_info.descr); + Py_DECREF(dt_info.dtype); if (dtype == NULL) { return NULL; } diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c index 4fa58c4df..e85f8affa 100644 --- a/numpy/core/src/multiarray/multiarraymodule.c +++ b/numpy/core/src/multiarray/multiarraymodule.c @@ -473,7 +473,7 @@ PyArray_ConcatenateArrays(int narrays, PyArrayObject **arrays, int axis, /* Get the priority subtype for the array */ PyTypeObject *subtype = PyArray_GetSubType(narrays, arrays); PyArray_Descr *descr = PyArray_FindConcatenationDescriptor( - narrays, arrays, (PyObject *)dtype); + narrays, arrays, dtype); if (descr == NULL) { return NULL; } @@ -589,7 +589,7 @@ PyArray_ConcatenateFlattenedArrays(int narrays, PyArrayObject **arrays, PyTypeObject *subtype = PyArray_GetSubType(narrays, arrays); PyArray_Descr *descr = PyArray_FindConcatenationDescriptor( - narrays, arrays, (PyObject *)dtype); + narrays, arrays, dtype); if (descr == NULL) { return NULL; } @@ -4614,7 +4614,7 @@ static struct PyMethodDef array_module_methods[] = { {"set_legacy_print_mode", (PyCFunction)set_legacy_print_mode, METH_VARARGS, NULL}, {"_discover_array_parameters", (PyCFunction)_discover_array_parameters, - METH_VARARGS | METH_KEYWORDS, NULL}, + METH_FASTCALL | METH_KEYWORDS, NULL}, {"_get_castingimpl", (PyCFunction)_get_castingimpl, METH_VARARGS | METH_KEYWORDS, NULL}, {"_get_experimental_dtype_api", (PyCFunction)_get_experimental_dtype_api, diff --git a/numpy/core/src/multiarray/nditer_constr.c b/numpy/core/src/multiarray/nditer_constr.c index 0ed475c5b..6ae098356 100644 --- a/numpy/core/src/multiarray/nditer_constr.c +++ b/numpy/core/src/multiarray/nditer_constr.c @@ -1133,7 +1133,7 @@ npyiter_prepare_one_operand(PyArrayObject **op, if (op_request_dtype != NULL) { /* We just have a borrowed reference to op_request_dtype */ Py_SETREF(*op_dtype, PyArray_AdaptDescriptorToArray( - *op, (PyObject *)op_request_dtype)); + *op, NULL, op_request_dtype)); if (*op_dtype == NULL) { return 0; } diff --git a/numpy/core/tests/test_array_coercion.py b/numpy/core/tests/test_array_coercion.py index fa3468179..0ba736c05 100644 --- a/numpy/core/tests/test_array_coercion.py +++ b/numpy/core/tests/test_array_coercion.py @@ -163,6 +163,8 @@ class TestStringDiscovery: assert np.array(arr, dtype="S").dtype == expected # Check that .astype() behaves identical assert arr.astype("S").dtype == expected + # The DType class is accepted by `.astype()` + assert arr.astype(type(np.dtype("S"))).dtype == expected @pytest.mark.parametrize("obj", [object(), 1.2, 10**43, None, "string"], diff --git a/numpy/core/tests/test_custom_dtypes.py b/numpy/core/tests/test_custom_dtypes.py index 5d01fc49d..186906f5a 100644 --- a/numpy/core/tests/test_custom_dtypes.py +++ b/numpy/core/tests/test_custom_dtypes.py @@ -219,6 +219,16 @@ class TestSFloat: expected = np.hypot.reduce(float_equiv, keepdims=True) assert res.view(np.float64) * 2 == expected + def test_astype_class(self): + # Very simple test that we accept `.astype()` also on the class. + # ScaledFloat always returns the default descriptor, but it does + # check the relevant code paths. + arr = np.array([1., 2., 3.], dtype=object) + + res = arr.astype(SF) # passing the class class + expected = arr.astype(SF(1.)) # above will have discovered 1. scaling + assert_array_equal(res.view(np.float64), expected.view(np.float64)) + def test_type_pickle(): # can't actually unpickle, but we can pickle (if in namespace) |