diff options
| -rw-r--r-- | numpy/core/setup.py | 2 | ||||
| -rw-r--r-- | numpy/core/src/common/simd/avx512/memory.h | 6 | ||||
| -rw-r--r-- | numpy/core/src/common/simd/avx512/reorder.h | 4 | ||||
| -rw-r--r-- | numpy/core/src/npysort/x86-qsort.dispatch.c.src | 587 | ||||
| -rw-r--r-- | numpy/core/src/npysort/x86-qsort.dispatch.cpp | 835 | ||||
| -rw-r--r-- | numpy/distutils/ccompiler_opt.py | 2 |
6 files changed, 844 insertions, 592 deletions
diff --git a/numpy/core/setup.py b/numpy/core/setup.py index f6b31075d..c4222d7c0 100644 --- a/numpy/core/setup.py +++ b/numpy/core/setup.py @@ -947,7 +947,7 @@ def configuration(parent_package='',top_path=None): join('src', 'multiarray', 'usertypes.c'), join('src', 'multiarray', 'vdot.c'), join('src', 'common', 'npy_sort.h.src'), - join('src', 'npysort', 'x86-qsort.dispatch.c.src'), + join('src', 'npysort', 'x86-qsort.dispatch.cpp'), join('src', 'npysort', 'quicksort.cpp'), join('src', 'npysort', 'mergesort.cpp'), join('src', 'npysort', 'timsort.cpp'), diff --git a/numpy/core/src/common/simd/avx512/memory.h b/numpy/core/src/common/simd/avx512/memory.h index dcfb6c890..03fcb4630 100644 --- a/numpy/core/src/common/simd/avx512/memory.h +++ b/numpy/core/src/common/simd/avx512/memory.h @@ -276,7 +276,8 @@ NPY_FINLINE void npyv_storen_till_s64(npy_int64 *ptr, npy_intp stride, npy_uintp union { \ npyv_lanetype_##F_SFX from_##F_SFX; \ npyv_lanetype_##T_SFX to_##T_SFX; \ - } pun = {.from_##F_SFX = fill}; \ + } pun; \ + pun.from_##F_SFX = fill; \ return npyv_reinterpret_##F_SFX##_##T_SFX(npyv_load_till_##T_SFX( \ (const npyv_lanetype_##T_SFX *)ptr, nlane, pun.to_##T_SFX \ )); \ @@ -288,7 +289,8 @@ NPY_FINLINE void npyv_storen_till_s64(npy_int64 *ptr, npy_intp stride, npy_uintp union { \ npyv_lanetype_##F_SFX from_##F_SFX; \ npyv_lanetype_##T_SFX to_##T_SFX; \ - } pun = {.from_##F_SFX = fill}; \ + } pun; \ + pun.from_##F_SFX = fill; \ return npyv_reinterpret_##F_SFX##_##T_SFX(npyv_loadn_till_##T_SFX( \ (const npyv_lanetype_##T_SFX *)ptr, stride, nlane, pun.to_##T_SFX \ )); \ diff --git a/numpy/core/src/common/simd/avx512/reorder.h b/numpy/core/src/common/simd/avx512/reorder.h index f043004ec..c0b2477f3 100644 --- a/numpy/core/src/common/simd/avx512/reorder.h +++ b/numpy/core/src/common/simd/avx512/reorder.h @@ -214,13 +214,13 @@ NPY_FINLINE npyv_u16 npyv_rev64_u16(npyv_u16 a) NPY_FINLINE npyv_u32 npyv_rev64_u32(npyv_u32 a) { - return _mm512_shuffle_epi32(a, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm512_shuffle_epi32(a, (_MM_PERM_ENUM)_MM_SHUFFLE(2, 3, 0, 1)); } #define npyv_rev64_s32 npyv_rev64_u32 NPY_FINLINE npyv_f32 npyv_rev64_f32(npyv_f32 a) { - return _mm512_shuffle_ps(a, a, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm512_shuffle_ps(a, a, (_MM_PERM_ENUM)_MM_SHUFFLE(2, 3, 0, 1)); } #endif // _NPY_SIMD_AVX512_REORDER_H diff --git a/numpy/core/src/npysort/x86-qsort.dispatch.c.src b/numpy/core/src/npysort/x86-qsort.dispatch.c.src deleted file mode 100644 index b93c737cb..000000000 --- a/numpy/core/src/npysort/x86-qsort.dispatch.c.src +++ /dev/null @@ -1,587 +0,0 @@ -/*@targets - * $maxopt $keep_baseline avx512_skx - */ -// policy $keep_baseline is used to avoid skip building avx512_skx -// when its part of baseline features (--cpu-baseline), since -// 'baseline' option isn't specified within targets. - -#include "x86-qsort.h" -#define NPY_NO_DEPRECATED_API NPY_API_VERSION - -#ifdef NPY_HAVE_AVX512_SKX -#include <immintrin.h> -#include "numpy/npy_math.h" -#include "npy_sort.h" -#include "simd/simd.h" - - -/* - * Quicksort using AVX-512 for int, uint32 and float. The ideas and code are - * based on these two research papers: - * (1) Fast and Robust Vectorized In-Place Sorting of Primitive Types - * https://drops.dagstuhl.de/opus/volltexte/2021/13775/ - * (2) A Novel Hybrid Quicksort Algorithm Vectorized using AVX-512 on Intel Skylake - * https://arxiv.org/pdf/1704.08579.pdf - * - * High level idea: Vectorize the quicksort partitioning using AVX-512 - * compressstore instructions. The algorithm to pick the pivot is to use median of - * 72 elements picked at random. If the array size is < 128, then use - * Bitonic sorting network. Good resource for bitonic sorting network: - * http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&fn=Chapter%2027.pdf&id=8030 - * - * Refer to https://github.com/numpy/numpy/pull/20133#issuecomment-958110340 for - * potential problems when converting this code to universal intrinsics framework. - */ - -/* - * Constants used in sorting 16 elements in a ZMM registers. Based on Bitonic - * sorting network (see - * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg) - */ -#define NETWORK1 14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1 -#define NETWORK2 12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3 -#define NETWORK3 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 -#define NETWORK4 13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2 -#define NETWORK5 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -#define NETWORK6 11,10,9,8,15,14,13,12,3,2,1,0,7,6,5,4 -#define NETWORK7 7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8 -#define ZMM_MAX_FLOAT _mm512_set1_ps(NPY_INFINITYF) -#define ZMM_MAX_UINT _mm512_set1_epi32(NPY_MAX_UINT32) -#define ZMM_MAX_INT _mm512_set1_epi32(NPY_MAX_INT32) -#define SHUFFLE_MASK(a,b,c,d) (a << 6) | (b << 4) | (c << 2) | d -#define SHUFFLE_ps(ZMM, MASK) _mm512_shuffle_ps(zmm, zmm, MASK) -#define SHUFFLE_epi32(ZMM, MASK) _mm512_shuffle_epi32(zmm, MASK) - -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -/* - * Vectorized random number generator xoroshiro128+. Broken into 2 parts: - * (1) vnext generates 2 64-bit random integers - * (2) rnd_epu32 converts this to 4 32-bit random integers and bounds it to - * the length of the array - */ -#define VROTL(x, k) /* rotate each uint64_t value in vector */ \ - _mm256_or_si256(_mm256_slli_epi64((x),(k)),_mm256_srli_epi64((x),64-(k))) - -static NPY_INLINE -__m256i vnext(__m256i* s0, __m256i* s1) { - *s1 = _mm256_xor_si256(*s0, *s1); /* modify vectors s1 and s0 */ - *s0 = _mm256_xor_si256(_mm256_xor_si256(VROTL(*s0, 24), *s1), - _mm256_slli_epi64(*s1, 16)); - *s1 = VROTL(*s1, 37); - return _mm256_add_epi64(*s0, *s1); /* return random vector */ -} - -/* transform random numbers to the range between 0 and bound - 1 */ -static NPY_INLINE -__m256i rnd_epu32(__m256i rnd_vec, __m256i bound) { - __m256i even = _mm256_srli_epi64(_mm256_mul_epu32(rnd_vec, bound), 32); - __m256i odd = _mm256_mul_epu32(_mm256_srli_epi64(rnd_vec, 32), bound); - return _mm256_blend_epi32(odd, even, 0b01010101); -} - -/**begin repeat - * - * #TYPE = INT, UINT, FLOAT# - * #type = int, uint, float# - * #type_t = npy_int, npy_uint, npy_float# - * #zmm_t = __m512i, __m512i, __m512# - * #ymm_t = __m256i, __m256i, __m256# - * #vsuf1 = epi32, epu32, ps# - * #vsuf2 = epi32, epi32, ps# - * #vsuf3 = si512, si512, ps# - * #vsuf4 = s32, u32, f32# - * #CMP_GE_OP = _MM_CMPINT_NLT, _MM_CMPINT_NLT, _CMP_GE_OQ# - * #TYPE_MAX_VAL = NPY_MAX_INT32, NPY_MAX_UINT32, NPY_INFINITYF# - * #TYPE_MIN_VAL = NPY_MIN_INT32, 0, -NPY_INFINITYF# - */ - -/* - * COEX == Compare and Exchange two registers by swapping min and max values - */ -#define COEX_ZMM_@vsuf1@(a, b) { \ - @zmm_t@ temp = a; \ - a = _mm512_min_@vsuf1@(a,b); \ - b = _mm512_max_@vsuf1@(temp, b);} \ - -#define COEX_YMM_@vsuf1@(a, b){ \ - @ymm_t@ temp = a; \ - a = _mm256_min_@vsuf1@(a, b); \ - b = _mm256_max_@vsuf1@(temp, b);} \ - -static NPY_INLINE -@zmm_t@ cmp_merge_@vsuf1@(@zmm_t@ in1, @zmm_t@ in2, __mmask16 mask) -{ - @zmm_t@ min = _mm512_min_@vsuf1@(in2, in1); - @zmm_t@ max = _mm512_max_@vsuf1@(in2, in1); - return _mm512_mask_mov_@vsuf2@(min, mask, max); // 0 -> min, 1 -> max -} - -/* - * Assumes zmm is random and performs a full sorting network defined in - * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg - */ -static NPY_INLINE -@zmm_t@ sort_zmm_@vsuf1@(@zmm_t@ zmm) -{ - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(2,3,0,1)), 0xAAAA); - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(0,1,2,3)), 0xCCCC); - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(2,3,0,1)), 0xAAAA); - zmm = cmp_merge_@vsuf1@(zmm, _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK3),zmm), 0xF0F0); - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(1,0,3,2)), 0xCCCC); - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(2,3,0,1)), 0xAAAA); - zmm = cmp_merge_@vsuf1@(zmm, _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5),zmm), 0xFF00); - zmm = cmp_merge_@vsuf1@(zmm, _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK6),zmm), 0xF0F0); - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(1,0,3,2)), 0xCCCC); - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(2,3,0,1)), 0xAAAA); - return zmm; -} - -// Assumes zmm is bitonic and performs a recursive half cleaner -static NPY_INLINE -@zmm_t@ bitonic_merge_zmm_@vsuf1@(@zmm_t@ zmm) -{ - // 1) half_cleaner[16]: compare 1-9, 2-10, 3-11 etc .. - zmm = cmp_merge_@vsuf1@(zmm, _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK7),zmm), 0xFF00); - // 2) half_cleaner[8]: compare 1-5, 2-6, 3-7 etc .. - zmm = cmp_merge_@vsuf1@(zmm, _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK6),zmm), 0xF0F0); - // 3) half_cleaner[4] - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(1,0,3,2)), 0xCCCC); - // 3) half_cleaner[1] - zmm = cmp_merge_@vsuf1@(zmm, SHUFFLE_@vsuf2@(zmm, SHUFFLE_MASK(2,3,0,1)), 0xAAAA); - return zmm; -} - -// Assumes zmm1 and zmm2 are sorted and performs a recursive half cleaner -static NPY_INLINE -void bitonic_merge_two_zmm_@vsuf1@(@zmm_t@* zmm1, @zmm_t@* zmm2) -{ - // 1) First step of a merging network: coex of zmm1 and zmm2 reversed - *zmm2 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), *zmm2); - @zmm_t@ zmm3 = _mm512_min_@vsuf1@(*zmm1, *zmm2); - @zmm_t@ zmm4 = _mm512_max_@vsuf1@(*zmm1, *zmm2); - // 2) Recursive half cleaner for each - *zmm1 = bitonic_merge_zmm_@vsuf1@(zmm3); - *zmm2 = bitonic_merge_zmm_@vsuf1@(zmm4); -} - -// Assumes [zmm0, zmm1] and [zmm2, zmm3] are sorted and performs a recursive half cleaner -static NPY_INLINE -void bitonic_merge_four_zmm_@vsuf1@(@zmm_t@* zmm) -{ - @zmm_t@ zmm2r = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), zmm[2]); - @zmm_t@ zmm3r = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), zmm[3]); - @zmm_t@ zmm_t1 = _mm512_min_@vsuf1@(zmm[0], zmm3r); - @zmm_t@ zmm_t2 = _mm512_min_@vsuf1@(zmm[1], zmm2r); - @zmm_t@ zmm_t3 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), _mm512_max_@vsuf1@(zmm[1], zmm2r)); - @zmm_t@ zmm_t4 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), _mm512_max_@vsuf1@(zmm[0], zmm3r)); - @zmm_t@ zmm0 = _mm512_min_@vsuf1@(zmm_t1, zmm_t2); - @zmm_t@ zmm1 = _mm512_max_@vsuf1@(zmm_t1, zmm_t2); - @zmm_t@ zmm2 = _mm512_min_@vsuf1@(zmm_t3, zmm_t4); - @zmm_t@ zmm3 = _mm512_max_@vsuf1@(zmm_t3, zmm_t4); - zmm[0] = bitonic_merge_zmm_@vsuf1@(zmm0); - zmm[1] = bitonic_merge_zmm_@vsuf1@(zmm1); - zmm[2] = bitonic_merge_zmm_@vsuf1@(zmm2); - zmm[3] = bitonic_merge_zmm_@vsuf1@(zmm3); -} - -static NPY_INLINE -void bitonic_merge_eight_zmm_@vsuf1@(@zmm_t@* zmm) -{ - @zmm_t@ zmm4r = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), zmm[4]); - @zmm_t@ zmm5r = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), zmm[5]); - @zmm_t@ zmm6r = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), zmm[6]); - @zmm_t@ zmm7r = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), zmm[7]); - @zmm_t@ zmm_t1 = _mm512_min_@vsuf1@(zmm[0], zmm7r); - @zmm_t@ zmm_t2 = _mm512_min_@vsuf1@(zmm[1], zmm6r); - @zmm_t@ zmm_t3 = _mm512_min_@vsuf1@(zmm[2], zmm5r); - @zmm_t@ zmm_t4 = _mm512_min_@vsuf1@(zmm[3], zmm4r); - @zmm_t@ zmm_t5 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), _mm512_max_@vsuf1@(zmm[3], zmm4r)); - @zmm_t@ zmm_t6 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), _mm512_max_@vsuf1@(zmm[2], zmm5r)); - @zmm_t@ zmm_t7 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), _mm512_max_@vsuf1@(zmm[1], zmm6r)); - @zmm_t@ zmm_t8 = _mm512_permutexvar_@vsuf2@(_mm512_set_epi32(NETWORK5), _mm512_max_@vsuf1@(zmm[0], zmm7r)); - COEX_ZMM_@vsuf1@(zmm_t1, zmm_t3); - COEX_ZMM_@vsuf1@(zmm_t2, zmm_t4); - COEX_ZMM_@vsuf1@(zmm_t5, zmm_t7); - COEX_ZMM_@vsuf1@(zmm_t6, zmm_t8); - COEX_ZMM_@vsuf1@(zmm_t1, zmm_t2); - COEX_ZMM_@vsuf1@(zmm_t3, zmm_t4); - COEX_ZMM_@vsuf1@(zmm_t5, zmm_t6); - COEX_ZMM_@vsuf1@(zmm_t7, zmm_t8); - zmm[0] = bitonic_merge_zmm_@vsuf1@(zmm_t1); - zmm[1] = bitonic_merge_zmm_@vsuf1@(zmm_t2); - zmm[2] = bitonic_merge_zmm_@vsuf1@(zmm_t3); - zmm[3] = bitonic_merge_zmm_@vsuf1@(zmm_t4); - zmm[4] = bitonic_merge_zmm_@vsuf1@(zmm_t5); - zmm[5] = bitonic_merge_zmm_@vsuf1@(zmm_t6); - zmm[6] = bitonic_merge_zmm_@vsuf1@(zmm_t7); - zmm[7] = bitonic_merge_zmm_@vsuf1@(zmm_t8); -} - -static NPY_INLINE -void sort_16_@vsuf1@(@type_t@* arr, npy_int N) -{ - __mmask16 load_mask = (0x0001 << N) - 0x0001; - @zmm_t@ zmm = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask, arr); - _mm512_mask_storeu_@vsuf2@(arr, load_mask, sort_zmm_@vsuf1@(zmm)); -} - -static NPY_INLINE -void sort_32_@vsuf1@(@type_t@* arr, npy_int N) -{ - if (N <= 16) { - sort_16_@vsuf1@(arr, N); - return; - } - @zmm_t@ zmm1 = _mm512_loadu_@vsuf3@(arr); - __mmask16 load_mask = (0x0001 << (N-16)) - 0x0001; - @zmm_t@ zmm2 = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask, arr + 16); - zmm1 = sort_zmm_@vsuf1@(zmm1); - zmm2 = sort_zmm_@vsuf1@(zmm2); - bitonic_merge_two_zmm_@vsuf1@(&zmm1, &zmm2); - _mm512_storeu_@vsuf3@(arr, zmm1); - _mm512_mask_storeu_@vsuf2@(arr + 16, load_mask, zmm2); -} - -static NPY_INLINE -void sort_64_@vsuf1@(@type_t@* arr, npy_int N) -{ - if (N <= 32) { - sort_32_@vsuf1@(arr, N); - return; - } - @zmm_t@ zmm[4]; - zmm[0] = _mm512_loadu_@vsuf3@(arr); - zmm[1] = _mm512_loadu_@vsuf3@(arr + 16); - __mmask16 load_mask1 = 0xFFFF, load_mask2 = 0xFFFF; - if (N < 48) { - load_mask1 = (0x0001 << (N-32)) - 0x0001; - load_mask2 = 0x0000; - } - else if (N < 64) { - load_mask2 = (0x0001 << (N-48)) - 0x0001; - } - zmm[2] = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask1, arr + 32); - zmm[3] = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask2, arr + 48); - zmm[0] = sort_zmm_@vsuf1@(zmm[0]); - zmm[1] = sort_zmm_@vsuf1@(zmm[1]); - zmm[2] = sort_zmm_@vsuf1@(zmm[2]); - zmm[3] = sort_zmm_@vsuf1@(zmm[3]); - bitonic_merge_two_zmm_@vsuf1@(&zmm[0], &zmm[1]); - bitonic_merge_two_zmm_@vsuf1@(&zmm[2], &zmm[3]); - bitonic_merge_four_zmm_@vsuf1@(zmm); - _mm512_storeu_@vsuf3@(arr, zmm[0]); - _mm512_storeu_@vsuf3@(arr + 16, zmm[1]); - _mm512_mask_storeu_@vsuf2@(arr + 32, load_mask1, zmm[2]); - _mm512_mask_storeu_@vsuf2@(arr + 48, load_mask2, zmm[3]); -} - -static NPY_INLINE -void sort_128_@vsuf1@(@type_t@* arr, npy_int N) -{ - if (N <= 64) { - sort_64_@vsuf1@(arr, N); - return; - } - @zmm_t@ zmm[8]; - zmm[0] = _mm512_loadu_@vsuf3@(arr); - zmm[1] = _mm512_loadu_@vsuf3@(arr + 16); - zmm[2] = _mm512_loadu_@vsuf3@(arr + 32); - zmm[3] = _mm512_loadu_@vsuf3@(arr + 48); - zmm[0] = sort_zmm_@vsuf1@(zmm[0]); - zmm[1] = sort_zmm_@vsuf1@(zmm[1]); - zmm[2] = sort_zmm_@vsuf1@(zmm[2]); - zmm[3] = sort_zmm_@vsuf1@(zmm[3]); - __mmask16 load_mask1 = 0xFFFF, load_mask2 = 0xFFFF; - __mmask16 load_mask3 = 0xFFFF, load_mask4 = 0xFFFF; - if (N < 80) { - load_mask1 = (0x0001 << (N-64)) - 0x0001; - load_mask2 = 0x0000; - load_mask3 = 0x0000; - load_mask4 = 0x0000; - } - else if (N < 96) { - load_mask2 = (0x0001 << (N-80)) - 0x0001; - load_mask3 = 0x0000; - load_mask4 = 0x0000; - } - else if (N < 112) { - load_mask3 = (0x0001 << (N-96)) - 0x0001; - load_mask4 = 0x0000; - } - else { - load_mask4 = (0x0001 << (N-112)) - 0x0001; - } - zmm[4] = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask1, arr + 64); - zmm[5] = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask2, arr + 80); - zmm[6] = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask3, arr + 96); - zmm[7] = _mm512_mask_loadu_@vsuf2@(ZMM_MAX_@TYPE@, load_mask4, arr + 112); - zmm[4] = sort_zmm_@vsuf1@(zmm[4]); - zmm[5] = sort_zmm_@vsuf1@(zmm[5]); - zmm[6] = sort_zmm_@vsuf1@(zmm[6]); - zmm[7] = sort_zmm_@vsuf1@(zmm[7]); - bitonic_merge_two_zmm_@vsuf1@(&zmm[0], &zmm[1]); - bitonic_merge_two_zmm_@vsuf1@(&zmm[2], &zmm[3]); - bitonic_merge_two_zmm_@vsuf1@(&zmm[4], &zmm[5]); - bitonic_merge_two_zmm_@vsuf1@(&zmm[6], &zmm[7]); - bitonic_merge_four_zmm_@vsuf1@(zmm); - bitonic_merge_four_zmm_@vsuf1@(zmm + 4); - bitonic_merge_eight_zmm_@vsuf1@(zmm); - _mm512_storeu_@vsuf3@(arr, zmm[0]); - _mm512_storeu_@vsuf3@(arr + 16, zmm[1]); - _mm512_storeu_@vsuf3@(arr + 32, zmm[2]); - _mm512_storeu_@vsuf3@(arr + 48, zmm[3]); - _mm512_mask_storeu_@vsuf2@(arr + 64, load_mask1, zmm[4]); - _mm512_mask_storeu_@vsuf2@(arr + 80, load_mask2, zmm[5]); - _mm512_mask_storeu_@vsuf2@(arr + 96, load_mask3, zmm[6]); - _mm512_mask_storeu_@vsuf2@(arr + 112, load_mask4, zmm[7]); -} - - -static NPY_INLINE -void swap_@TYPE@(@type_t@ *arr, npy_intp ii, npy_intp jj) { - @type_t@ temp = arr[ii]; - arr[ii] = arr[jj]; - arr[jj] = temp; -} - -// Median of 3 stratergy -//static NPY_INLINE -//npy_intp get_pivot_index(@type_t@ *arr, const npy_intp left, const npy_intp right) { -// return (rand() % (right + 1 - left)) + left; -// //npy_intp middle = ((right-left)/2) + left; -// //@type_t@ a = arr[left], b = arr[middle], c = arr[right]; -// //if ((b >= a && b <= c) || (b <= a && b >= c)) -// // return middle; -// //if ((a >= b && a <= c) || (a <= b && a >= c)) -// // return left; -// //else -// // return right; -//} - -/* - * Picking the pivot: Median of 72 array elements chosen at random. - */ - -static NPY_INLINE -@type_t@ get_pivot_@vsuf1@(@type_t@ *arr, const npy_intp left, const npy_intp right) { - /* seeds for vectorized random number generator */ - __m256i s0 = _mm256_setr_epi64x(8265987198341093849, 3762817312854612374, - 1324281658759788278, 6214952190349879213); - __m256i s1 = _mm256_setr_epi64x(2874178529384792648, 1257248936691237653, - 7874578921548791257, 1998265912745817298); - s0 = _mm256_add_epi64(s0, _mm256_set1_epi64x(left)); - s1 = _mm256_sub_epi64(s1, _mm256_set1_epi64x(right)); - - npy_intp arrsize = right - left + 1; - __m256i bound = _mm256_set1_epi32(arrsize > INT32_MAX ? INT32_MAX : arrsize); - __m512i left_vec = _mm512_set1_epi64(left); - __m512i right_vec = _mm512_set1_epi64(right); - @ymm_t@ v[9]; - /* fill 9 vectors with random numbers */ - for (npy_int i = 0; i < 9; ++i) { - __m256i rand_64 = vnext(&s0, &s1); /* vector with 4 random uint64_t */ - __m512i rand_32 = _mm512_cvtepi32_epi64(rnd_epu32(rand_64, bound)); /* random numbers between 0 and bound - 1 */ - __m512i indices; - if (i < 5) - indices = _mm512_add_epi64(left_vec, rand_32); /* indices for arr */ - else - indices = _mm512_sub_epi64(right_vec, rand_32); /* indices for arr */ - - v[i] = _mm512_i64gather_@vsuf2@(indices, arr, sizeof(@type_t@)); - } - - /* median network for 9 elements */ - COEX_YMM_@vsuf1@(v[0], v[1]); COEX_YMM_@vsuf1@(v[2], v[3]); - COEX_YMM_@vsuf1@(v[4], v[5]); COEX_YMM_@vsuf1@(v[6], v[7]); - COEX_YMM_@vsuf1@(v[0], v[2]); COEX_YMM_@vsuf1@(v[1], v[3]); - COEX_YMM_@vsuf1@(v[4], v[6]); COEX_YMM_@vsuf1@(v[5], v[7]); - COEX_YMM_@vsuf1@(v[0], v[4]); COEX_YMM_@vsuf1@(v[1], v[2]); - COEX_YMM_@vsuf1@(v[5], v[6]); COEX_YMM_@vsuf1@(v[3], v[7]); - COEX_YMM_@vsuf1@(v[1], v[5]); COEX_YMM_@vsuf1@(v[2], v[6]); - COEX_YMM_@vsuf1@(v[3], v[5]); COEX_YMM_@vsuf1@(v[2], v[4]); - COEX_YMM_@vsuf1@(v[3], v[4]); - COEX_YMM_@vsuf1@(v[3], v[8]); - COEX_YMM_@vsuf1@(v[4], v[8]); - - // technically v[4] needs to be sorted before we pick the correct median, - // picking the 4th element works just as well for performance - @type_t@* temp = (@type_t@*) &v[4]; - - return temp[4]; -} - -/* - * Parition one ZMM register based on the pivot and returns the index of the - * last element that is less than equal to the pivot. - */ -static NPY_INLINE -npy_int partition_vec_@vsuf1@(@type_t@* arr, npy_intp left, npy_intp right, - const @zmm_t@ curr_vec, const @zmm_t@ pivot_vec, - @zmm_t@* smallest_vec, @zmm_t@* biggest_vec) -{ - /* which elements are larger than the pivot */ - __mmask16 gt_mask = _mm512_cmp_@vsuf1@_mask(curr_vec, pivot_vec, @CMP_GE_OP@); - npy_int amount_gt_pivot = _mm_popcnt_u32((npy_int)gt_mask); - _mm512_mask_compressstoreu_@vsuf2@(arr + left, _knot_mask16(gt_mask), curr_vec); - _mm512_mask_compressstoreu_@vsuf2@(arr + right - amount_gt_pivot, gt_mask, curr_vec); - *smallest_vec = _mm512_min_@vsuf1@(curr_vec, *smallest_vec); - *biggest_vec = _mm512_max_@vsuf1@(curr_vec, *biggest_vec); - return amount_gt_pivot; -} - -/* - * Parition an array based on the pivot and returns the index of the - * last element that is less than equal to the pivot. - */ -static NPY_INLINE -npy_intp partition_avx512_@vsuf1@(@type_t@* arr, npy_intp left, npy_intp right, - @type_t@ pivot, @type_t@* smallest, @type_t@* biggest) -{ - /* make array length divisible by 16 , shortening the array */ - for (npy_int i = (right - left) % 16; i > 0; --i) { - *smallest = MIN(*smallest, arr[left]); - *biggest = MAX(*biggest, arr[left]); - if (arr[left] > pivot) { - swap_@TYPE@(arr, left, --right); - } - else { - ++left; - } - } - - if(left == right) - return left; /* less than 16 elements in the array */ - - @zmm_t@ pivot_vec = _mm512_set1_@vsuf2@(pivot); - @zmm_t@ min_vec = _mm512_set1_@vsuf2@(*smallest); - @zmm_t@ max_vec = _mm512_set1_@vsuf2@(*biggest); - - if(right - left == 16) { - @zmm_t@ vec = _mm512_loadu_@vsuf3@(arr + left); - npy_int amount_gt_pivot = partition_vec_@vsuf1@(arr, left, left + 16, vec, pivot_vec, &min_vec, &max_vec); - *smallest = npyv_reducemin_@vsuf4@(min_vec); - *biggest = npyv_reducemax_@vsuf4@(max_vec); - return left + (16 - amount_gt_pivot); - } - - // first and last 16 values are partitioned at the end - @zmm_t@ vec_left = _mm512_loadu_@vsuf3@(arr + left); - @zmm_t@ vec_right = _mm512_loadu_@vsuf3@(arr + (right - 16)); - // store points of the vectors - npy_intp r_store = right - 16; - npy_intp l_store = left; - // indices for loading the elements - left += 16; - right -= 16; - while(right - left != 0) { - @zmm_t@ curr_vec; - /* - * if fewer elements are stored on the right side of the array, - * then next elements are loaded from the right side, - * otherwise from the left side - */ - if((r_store + 16) - right < left - l_store) { - right -= 16; - curr_vec = _mm512_loadu_@vsuf3@(arr + right); - } - else { - curr_vec = _mm512_loadu_@vsuf3@(arr + left); - left += 16; - } - // partition the current vector and save it on both sides of the array - npy_int amount_gt_pivot = partition_vec_@vsuf1@(arr, l_store, r_store + 16, curr_vec, pivot_vec, &min_vec, &max_vec);; - r_store -= amount_gt_pivot; l_store += (16 - amount_gt_pivot); - } - - /* partition and save vec_left and vec_right */ - npy_int amount_gt_pivot = partition_vec_@vsuf1@(arr, l_store, r_store + 16, vec_left, pivot_vec, &min_vec, &max_vec); - l_store += (16 - amount_gt_pivot); - amount_gt_pivot = partition_vec_@vsuf1@(arr, l_store, l_store + 16, vec_right, pivot_vec, &min_vec, &max_vec); - l_store += (16 - amount_gt_pivot); - *smallest = npyv_reducemin_@vsuf4@(min_vec); - *biggest = npyv_reducemax_@vsuf4@(max_vec); - return l_store; -} - -static NPY_INLINE -void qsort_@type@(@type_t@* arr, npy_intp left, npy_intp right, npy_int max_iters) -{ - /* - * Resort to heapsort if quicksort isnt making any progress - */ - if (max_iters <= 0) { - heapsort_@type@((void*)(arr + left), right + 1 - left, NULL); - return; - } - /* - * Base case: use bitonic networks to sort arrays <= 128 - */ - if (right + 1 - left <= 128) { - sort_128_@vsuf1@(arr + left, right + 1 -left); - return; - } - - @type_t@ pivot = get_pivot_@vsuf1@(arr, left, right); - @type_t@ smallest = @TYPE_MAX_VAL@; - @type_t@ biggest = @TYPE_MIN_VAL@; - npy_intp pivot_index = partition_avx512_@vsuf1@(arr, left, right+1, pivot, &smallest, &biggest); - if (pivot != smallest) - qsort_@type@(arr, left, pivot_index - 1, max_iters - 1); - if (pivot != biggest) - qsort_@type@(arr, pivot_index, right, max_iters - 1); -} -/**end repeat**/ - -static NPY_INLINE -npy_intp replace_nan_with_inf(npy_float* arr, npy_intp arrsize) -{ - npy_intp nan_count = 0; - __mmask16 loadmask = 0xFFFF; - while (arrsize > 0) { - if (arrsize < 16) { - loadmask = (0x0001 << arrsize) - 0x0001; - } - __m512 in_zmm = _mm512_maskz_loadu_ps(loadmask, arr); - __mmask16 nanmask = _mm512_cmp_ps_mask(in_zmm, in_zmm, _CMP_NEQ_UQ); - nan_count += _mm_popcnt_u32((npy_int) nanmask); - _mm512_mask_storeu_ps(arr, nanmask, ZMM_MAX_FLOAT); - arr += 16; - arrsize -= 16; - } - return nan_count; -} - -static NPY_INLINE -void replace_inf_with_nan(npy_float* arr, npy_intp arrsize, npy_intp nan_count) -{ - for (npy_intp ii = arrsize-1; nan_count > 0; --ii) { - arr[ii] = NPY_NANF; - nan_count -= 1; - } -} - -/**begin repeat - * - * #type = int, uint, float# - * #type_t = npy_int, npy_uint, npy_float# - * #FIXNAN = 0, 0, 1# - */ - -NPY_NO_EXPORT void NPY_CPU_DISPATCH_CURFX(x86_quicksort_@type@) -(void* arr, npy_intp arrsize) -{ - if (arrsize > 1) { -#if @FIXNAN@ - npy_intp nan_count = replace_nan_with_inf((@type_t@*) arr, arrsize); -#endif - qsort_@type@((@type_t@*) arr, 0, arrsize-1, 2*log2(arrsize)); -#if @FIXNAN@ - replace_inf_with_nan((@type_t@*) arr, arrsize, nan_count); -#endif - } -} -/**end repeat**/ - -#endif // NPY_HAVE_AVX512_SKX diff --git a/numpy/core/src/npysort/x86-qsort.dispatch.cpp b/numpy/core/src/npysort/x86-qsort.dispatch.cpp new file mode 100644 index 000000000..4b01e3528 --- /dev/null +++ b/numpy/core/src/npysort/x86-qsort.dispatch.cpp @@ -0,0 +1,835 @@ +/*@targets + * $maxopt $keep_baseline avx512_skx + */ +// policy $keep_baseline is used to avoid skip building avx512_skx +// when its part of baseline features (--cpu-baseline), since +// 'baseline' option isn't specified within targets. + +#include "x86-qsort.h" +#define NPY_NO_DEPRECATED_API NPY_API_VERSION + +#ifdef NPY_HAVE_AVX512_SKX +#include "numpy/npy_math.h" + +#include "npy_sort.h" +#include "numpy_tag.h" + +#include "simd/simd.h" +#include <immintrin.h> + +template <typename Tag, typename type> +NPY_NO_EXPORT int +heapsort_(type *start, npy_intp n); + +/* + * Quicksort using AVX-512 for int, uint32 and float. The ideas and code are + * based on these two research papers: + * (1) Fast and Robust Vectorized In-Place Sorting of Primitive Types + * https://drops.dagstuhl.de/opus/volltexte/2021/13775/ + * (2) A Novel Hybrid Quicksort Algorithm Vectorized using AVX-512 on Intel + * Skylake https://arxiv.org/pdf/1704.08579.pdf + * + * High level idea: Vectorize the quicksort partitioning using AVX-512 + * compressstore instructions. The algorithm to pick the pivot is to use median + * of 72 elements picked at random. If the array size is < 128, then use + * Bitonic sorting network. Good resource for bitonic sorting network: + * http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&fn=Chapter%2027.pdf&id=8030 + * + * Refer to https://github.com/numpy/numpy/pull/20133#issuecomment-958110340 + * for potential problems when converting this code to universal intrinsics + * framework. + */ + +/* + * Constants used in sorting 16 elements in a ZMM registers. Based on Bitonic + * sorting network (see + * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg) + */ +#define NETWORK1 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1 +#define NETWORK2 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3 +#define NETWORK3 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7 +#define NETWORK4 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2 +#define NETWORK5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 +#define NETWORK6 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5, 4 +#define NETWORK7 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 +#define ZMM_MAX_FLOAT _mm512_set1_ps(NPY_INFINITYF) +#define ZMM_MAX_UINT _mm512_set1_epi32(NPY_MAX_UINT32) +#define ZMM_MAX_INT _mm512_set1_epi32(NPY_MAX_INT32) +#define SHUFFLE_MASK(a, b, c, d) (a << 6) | (b << 4) | (c << 2) | d +#define SHUFFLE_ps(ZMM, MASK) _mm512_shuffle_ps(zmm, zmm, MASK) +#define SHUFFLE_epi32(ZMM, MASK) _mm512_shuffle_epi32(zmm, MASK) + +#define MAX(x, y) (((x) > (y)) ? (x) : (y)) +#define MIN(x, y) (((x) < (y)) ? (x) : (y)) + +/* + * Vectorized random number generator xoroshiro128+. Broken into 2 parts: + * (1) vnext generates 2 64-bit random integers + * (2) rnd_epu32 converts this to 4 32-bit random integers and bounds it to + * the length of the array + */ +#define VROTL(x, k) /* rotate each uint64_t value in vector */ \ + _mm256_or_si256(_mm256_slli_epi64((x), (k)), \ + _mm256_srli_epi64((x), 64 - (k))) + +static NPY_INLINE __m256i +vnext(__m256i *s0, __m256i *s1) +{ + *s1 = _mm256_xor_si256(*s0, *s1); /* modify vectors s1 and s0 */ + *s0 = _mm256_xor_si256(_mm256_xor_si256(VROTL(*s0, 24), *s1), + _mm256_slli_epi64(*s1, 16)); + *s1 = VROTL(*s1, 37); + return _mm256_add_epi64(*s0, *s1); /* return random vector */ +} + +/* transform random numbers to the range between 0 and bound - 1 */ +static NPY_INLINE __m256i +rnd_epu32(__m256i rnd_vec, __m256i bound) +{ + __m256i even = _mm256_srli_epi64(_mm256_mul_epu32(rnd_vec, bound), 32); + __m256i odd = _mm256_mul_epu32(_mm256_srli_epi64(rnd_vec, 32), bound); + return _mm256_blend_epi32(odd, even, 0b01010101); +} + +template <typename type> +struct vector; + +template <> +struct vector<npy_int> { + using tag = npy::int_tag; + using type_t = npy_int; + using zmm_t = __m512i; + using ymm_t = __m256i; + + static type_t type_max() { return NPY_MAX_INT32; } + static type_t type_min() { return NPY_MIN_INT32; } + static zmm_t zmm_max() { return _mm512_set1_epi32(type_max()); } + + static __mmask16 ge(zmm_t x, zmm_t y) + { + return _mm512_cmp_epi32_mask(x, y, _MM_CMPINT_NLT); + } + template <int scale> + static ymm_t i64gather(__m512i index, void const *base) + { + return _mm512_i64gather_epi32(index, base, scale); + } + static zmm_t loadu(void const *mem) { return _mm512_loadu_si512(mem); } + static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_epi32(x, y); } + static void mask_compressstoreu(void *mem, __mmask16 mask, zmm_t x) + { + return _mm512_mask_compressstoreu_epi32(mem, mask, x); + } + static zmm_t mask_loadu(zmm_t x, __mmask16 mask, void const *mem) + { + return _mm512_mask_loadu_epi32(x, mask, mem); + } + static zmm_t mask_mov(zmm_t x, __mmask16 mask, zmm_t y) + { + return _mm512_mask_mov_epi32(x, mask, y); + } + static void mask_storeu(void *mem, __mmask16 mask, zmm_t x) + { + return _mm512_mask_storeu_epi32(mem, mask, x); + } + static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_epi32(x, y); } + static zmm_t permutexvar(__m512i idx, zmm_t zmm) + { + return _mm512_permutexvar_epi32(idx, zmm); + } + static type_t reducemax(zmm_t v) { return npyv_reducemax_s32(v); } + static type_t reducemin(zmm_t v) { return npyv_reducemin_s32(v); } + static zmm_t set1(type_t v) { return _mm512_set1_epi32(v); } + template<__mmask16 mask> + static zmm_t shuffle(zmm_t zmm) + { + return _mm512_shuffle_epi32(zmm, (_MM_PERM_ENUM)mask); + } + static void storeu(void *mem, zmm_t x) + { + return _mm512_storeu_si512(mem, x); + } + + static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_epi32(x, y); } + static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_epi32(x, y); } +}; +template <> +struct vector<npy_uint> { + using tag = npy::uint_tag; + using type_t = npy_uint; + using zmm_t = __m512i; + using ymm_t = __m256i; + + static type_t type_max() { return NPY_MAX_UINT32; } + static type_t type_min() { return 0; } + static zmm_t zmm_max() { return _mm512_set1_epi32(type_max()); } + + template<int scale> + static ymm_t i64gather(__m512i index, void const *base) + { + return _mm512_i64gather_epi32(index, base, scale); + } + static __mmask16 ge(zmm_t x, zmm_t y) + { + return _mm512_cmp_epu32_mask(x, y, _MM_CMPINT_NLT); + } + static zmm_t loadu(void const *mem) { return _mm512_loadu_si512(mem); } + static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_epu32(x, y); } + static void mask_compressstoreu(void *mem, __mmask16 mask, zmm_t x) + { + return _mm512_mask_compressstoreu_epi32(mem, mask, x); + } + static zmm_t mask_loadu(zmm_t x, __mmask16 mask, void const *mem) + { + return _mm512_mask_loadu_epi32(x, mask, mem); + } + static zmm_t mask_mov(zmm_t x, __mmask16 mask, zmm_t y) + { + return _mm512_mask_mov_epi32(x, mask, y); + } + static void mask_storeu(void *mem, __mmask16 mask, zmm_t x) + { + return _mm512_mask_storeu_epi32(mem, mask, x); + } + static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_epu32(x, y); } + static zmm_t permutexvar(__m512i idx, zmm_t zmm) + { + return _mm512_permutexvar_epi32(idx, zmm); + } + static type_t reducemax(zmm_t v) { return npyv_reducemax_u32(v); } + static type_t reducemin(zmm_t v) { return npyv_reducemin_u32(v); } + static zmm_t set1(type_t v) { return _mm512_set1_epi32(v); } + template<__mmask16 mask> + static zmm_t shuffle(zmm_t zmm) + { + return _mm512_shuffle_epi32(zmm, (_MM_PERM_ENUM)mask); + } + static void storeu(void *mem, zmm_t x) + { + return _mm512_storeu_si512(mem, x); + } + + static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_epu32(x, y); } + static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_epu32(x, y); } +}; +template <> +struct vector<npy_float> { + using tag = npy::float_tag; + using type_t = npy_float; + using zmm_t = __m512; + using ymm_t = __m256; + + static type_t type_max() { return NPY_INFINITYF; } + static type_t type_min() { return -NPY_INFINITYF; } + static zmm_t zmm_max() { return _mm512_set1_ps(type_max()); } + + static __mmask16 ge(zmm_t x, zmm_t y) + { + return _mm512_cmp_ps_mask(x, y, _CMP_GE_OQ); + } + template<int scale> + static ymm_t i64gather(__m512i index, void const *base) + { + return _mm512_i64gather_ps(index, base, scale); + } + static zmm_t loadu(void const *mem) { return _mm512_loadu_ps(mem); } + static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_ps(x, y); } + static void mask_compressstoreu(void *mem, __mmask16 mask, zmm_t x) + { + return _mm512_mask_compressstoreu_ps(mem, mask, x); + } + static zmm_t mask_loadu(zmm_t x, __mmask16 mask, void const *mem) + { + return _mm512_mask_loadu_ps(x, mask, mem); + } + static zmm_t mask_mov(zmm_t x, __mmask16 mask, zmm_t y) + { + return _mm512_mask_mov_ps(x, mask, y); + } + static void mask_storeu(void *mem, __mmask16 mask, zmm_t x) + { + return _mm512_mask_storeu_ps(mem, mask, x); + } + static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_ps(x, y); } + static zmm_t permutexvar(__m512i idx, zmm_t zmm) + { + return _mm512_permutexvar_ps(idx, zmm); + } + static type_t reducemax(zmm_t v) { return npyv_reducemax_f32(v); } + static type_t reducemin(zmm_t v) { return npyv_reducemin_f32(v); } + static zmm_t set1(type_t v) { return _mm512_set1_ps(v); } + template<__mmask16 mask> + static zmm_t shuffle(zmm_t zmm) + { + return _mm512_shuffle_ps(zmm, zmm, (_MM_PERM_ENUM)mask); + } + static void storeu(void *mem, zmm_t x) { return _mm512_storeu_ps(mem, x); } + + static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_ps(x, y); } + static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_ps(x, y); } +}; + +/* + * COEX == Compare and Exchange two registers by swapping min and max values + */ +template <typename vtype, typename mm_t> +void +COEX(mm_t &a, mm_t &b) +{ + mm_t temp = a; + a = vtype::min(a, b); + b = vtype::max(temp, b); +} + +template <typename vtype, typename zmm_t = typename vtype::zmm_t> +static NPY_INLINE zmm_t +cmp_merge(zmm_t in1, zmm_t in2, __mmask16 mask) +{ + zmm_t min = vtype::min(in2, in1); + zmm_t max = vtype::max(in2, in1); + return vtype::mask_mov(min, mask, max); // 0 -> min, 1 -> max +} + +/* + * Assumes zmm is random and performs a full sorting network defined in + * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg + */ +template <typename vtype, typename zmm_t = typename vtype::zmm_t> +static NPY_INLINE zmm_t +sort_zmm(zmm_t zmm) +{ + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), + 0xAAAA); + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(0, 1, 2, 3)>(zmm), + 0xCCCC); + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), + 0xAAAA); + zmm = cmp_merge<vtype>( + zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK3), zmm), 0xF0F0); + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm), + 0xCCCC); + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), + 0xAAAA); + zmm = cmp_merge<vtype>( + zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm), 0xFF00); + zmm = cmp_merge<vtype>( + zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK6), zmm), 0xF0F0); + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm), + 0xCCCC); + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), + 0xAAAA); + return zmm; +} + +// Assumes zmm is bitonic and performs a recursive half cleaner +template <typename vtype, typename zmm_t = typename vtype::zmm_t> +static NPY_INLINE zmm_t +bitonic_merge_zmm(zmm_t zmm) +{ + // 1) half_cleaner[16]: compare 1-9, 2-10, 3-11 etc .. + zmm = cmp_merge<vtype>( + zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK7), zmm), 0xFF00); + // 2) half_cleaner[8]: compare 1-5, 2-6, 3-7 etc .. + zmm = cmp_merge<vtype>( + zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK6), zmm), 0xF0F0); + // 3) half_cleaner[4] + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm), + 0xCCCC); + // 3) half_cleaner[1] + zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm), + 0xAAAA); + return zmm; +} + +// Assumes zmm1 and zmm2 are sorted and performs a recursive half cleaner +template <typename vtype, typename zmm_t = typename vtype::zmm_t> +static NPY_INLINE void +bitonic_merge_two_zmm(zmm_t *zmm1, zmm_t *zmm2) +{ + // 1) First step of a merging network: coex of zmm1 and zmm2 reversed + *zmm2 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), *zmm2); + zmm_t zmm3 = vtype::min(*zmm1, *zmm2); + zmm_t zmm4 = vtype::max(*zmm1, *zmm2); + // 2) Recursive half cleaner for each + *zmm1 = bitonic_merge_zmm<vtype>(zmm3); + *zmm2 = bitonic_merge_zmm<vtype>(zmm4); +} + +// Assumes [zmm0, zmm1] and [zmm2, zmm3] are sorted and performs a recursive +// half cleaner +template <typename vtype, typename zmm_t = typename vtype::zmm_t> +static NPY_INLINE void +bitonic_merge_four_zmm(zmm_t *zmm) +{ + zmm_t zmm2r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[2]); + zmm_t zmm3r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[3]); + zmm_t zmm_t1 = vtype::min(zmm[0], zmm3r); + zmm_t zmm_t2 = vtype::min(zmm[1], zmm2r); + zmm_t zmm_t3 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), + vtype::max(zmm[1], zmm2r)); + zmm_t zmm_t4 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), + vtype::max(zmm[0], zmm3r)); + zmm_t zmm0 = vtype::min(zmm_t1, zmm_t2); + zmm_t zmm1 = vtype::max(zmm_t1, zmm_t2); + zmm_t zmm2 = vtype::min(zmm_t3, zmm_t4); + zmm_t zmm3 = vtype::max(zmm_t3, zmm_t4); + zmm[0] = bitonic_merge_zmm<vtype>(zmm0); + zmm[1] = bitonic_merge_zmm<vtype>(zmm1); + zmm[2] = bitonic_merge_zmm<vtype>(zmm2); + zmm[3] = bitonic_merge_zmm<vtype>(zmm3); +} + +template <typename vtype, typename zmm_t = typename vtype::zmm_t> +static NPY_INLINE void +bitonic_merge_eight_zmm(zmm_t *zmm) +{ + zmm_t zmm4r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[4]); + zmm_t zmm5r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[5]); + zmm_t zmm6r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[6]); + zmm_t zmm7r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[7]); + zmm_t zmm_t1 = vtype::min(zmm[0], zmm7r); + zmm_t zmm_t2 = vtype::min(zmm[1], zmm6r); + zmm_t zmm_t3 = vtype::min(zmm[2], zmm5r); + zmm_t zmm_t4 = vtype::min(zmm[3], zmm4r); + zmm_t zmm_t5 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), + vtype::max(zmm[3], zmm4r)); + zmm_t zmm_t6 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), + vtype::max(zmm[2], zmm5r)); + zmm_t zmm_t7 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), + vtype::max(zmm[1], zmm6r)); + zmm_t zmm_t8 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), + vtype::max(zmm[0], zmm7r)); + COEX<vtype>(zmm_t1, zmm_t3); + COEX<vtype>(zmm_t2, zmm_t4); + COEX<vtype>(zmm_t5, zmm_t7); + COEX<vtype>(zmm_t6, zmm_t8); + COEX<vtype>(zmm_t1, zmm_t2); + COEX<vtype>(zmm_t3, zmm_t4); + COEX<vtype>(zmm_t5, zmm_t6); + COEX<vtype>(zmm_t7, zmm_t8); + zmm[0] = bitonic_merge_zmm<vtype>(zmm_t1); + zmm[1] = bitonic_merge_zmm<vtype>(zmm_t2); + zmm[2] = bitonic_merge_zmm<vtype>(zmm_t3); + zmm[3] = bitonic_merge_zmm<vtype>(zmm_t4); + zmm[4] = bitonic_merge_zmm<vtype>(zmm_t5); + zmm[5] = bitonic_merge_zmm<vtype>(zmm_t6); + zmm[6] = bitonic_merge_zmm<vtype>(zmm_t7); + zmm[7] = bitonic_merge_zmm<vtype>(zmm_t8); +} + +template <typename vtype, typename type_t> +static NPY_INLINE void +sort_16(type_t *arr, npy_int N) +{ + __mmask16 load_mask = (0x0001 << N) - 0x0001; + typename vtype::zmm_t zmm = + vtype::mask_loadu(vtype::zmm_max(), load_mask, arr); + vtype::mask_storeu(arr, load_mask, sort_zmm<vtype>(zmm)); +} + +template <typename vtype, typename type_t> +static NPY_INLINE void +sort_32(type_t *arr, npy_int N) +{ + if (N <= 16) { + sort_16<vtype>(arr, N); + return; + } + using zmm_t = typename vtype::zmm_t; + zmm_t zmm1 = vtype::loadu(arr); + __mmask16 load_mask = (0x0001 << (N - 16)) - 0x0001; + zmm_t zmm2 = vtype::mask_loadu(vtype::zmm_max(), load_mask, arr + 16); + zmm1 = sort_zmm<vtype>(zmm1); + zmm2 = sort_zmm<vtype>(zmm2); + bitonic_merge_two_zmm<vtype>(&zmm1, &zmm2); + vtype::storeu(arr, zmm1); + vtype::mask_storeu(arr + 16, load_mask, zmm2); +} + +template <typename vtype, typename type_t> +static NPY_INLINE void +sort_64(type_t *arr, npy_int N) +{ + if (N <= 32) { + sort_32<vtype>(arr, N); + return; + } + using zmm_t = typename vtype::zmm_t; + zmm_t zmm[4]; + zmm[0] = vtype::loadu(arr); + zmm[1] = vtype::loadu(arr + 16); + __mmask16 load_mask1 = 0xFFFF, load_mask2 = 0xFFFF; + if (N < 48) { + load_mask1 = (0x0001 << (N - 32)) - 0x0001; + load_mask2 = 0x0000; + } + else if (N < 64) { + load_mask2 = (0x0001 << (N - 48)) - 0x0001; + } + zmm[2] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 32); + zmm[3] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 48); + zmm[0] = sort_zmm<vtype>(zmm[0]); + zmm[1] = sort_zmm<vtype>(zmm[1]); + zmm[2] = sort_zmm<vtype>(zmm[2]); + zmm[3] = sort_zmm<vtype>(zmm[3]); + bitonic_merge_two_zmm<vtype>(&zmm[0], &zmm[1]); + bitonic_merge_two_zmm<vtype>(&zmm[2], &zmm[3]); + bitonic_merge_four_zmm<vtype>(zmm); + vtype::storeu(arr, zmm[0]); + vtype::storeu(arr + 16, zmm[1]); + vtype::mask_storeu(arr + 32, load_mask1, zmm[2]); + vtype::mask_storeu(arr + 48, load_mask2, zmm[3]); +} + +template <typename vtype, typename type_t> +static NPY_INLINE void +sort_128(type_t *arr, npy_int N) +{ + if (N <= 64) { + sort_64<vtype>(arr, N); + return; + } + using zmm_t = typename vtype::zmm_t; + zmm_t zmm[8]; + zmm[0] = vtype::loadu(arr); + zmm[1] = vtype::loadu(arr + 16); + zmm[2] = vtype::loadu(arr + 32); + zmm[3] = vtype::loadu(arr + 48); + zmm[0] = sort_zmm<vtype>(zmm[0]); + zmm[1] = sort_zmm<vtype>(zmm[1]); + zmm[2] = sort_zmm<vtype>(zmm[2]); + zmm[3] = sort_zmm<vtype>(zmm[3]); + __mmask16 load_mask1 = 0xFFFF, load_mask2 = 0xFFFF; + __mmask16 load_mask3 = 0xFFFF, load_mask4 = 0xFFFF; + if (N < 80) { + load_mask1 = (0x0001 << (N - 64)) - 0x0001; + load_mask2 = 0x0000; + load_mask3 = 0x0000; + load_mask4 = 0x0000; + } + else if (N < 96) { + load_mask2 = (0x0001 << (N - 80)) - 0x0001; + load_mask3 = 0x0000; + load_mask4 = 0x0000; + } + else if (N < 112) { + load_mask3 = (0x0001 << (N - 96)) - 0x0001; + load_mask4 = 0x0000; + } + else { + load_mask4 = (0x0001 << (N - 112)) - 0x0001; + } + zmm[4] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 64); + zmm[5] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 80); + zmm[6] = vtype::mask_loadu(vtype::zmm_max(), load_mask3, arr + 96); + zmm[7] = vtype::mask_loadu(vtype::zmm_max(), load_mask4, arr + 112); + zmm[4] = sort_zmm<vtype>(zmm[4]); + zmm[5] = sort_zmm<vtype>(zmm[5]); + zmm[6] = sort_zmm<vtype>(zmm[6]); + zmm[7] = sort_zmm<vtype>(zmm[7]); + bitonic_merge_two_zmm<vtype>(&zmm[0], &zmm[1]); + bitonic_merge_two_zmm<vtype>(&zmm[2], &zmm[3]); + bitonic_merge_two_zmm<vtype>(&zmm[4], &zmm[5]); + bitonic_merge_two_zmm<vtype>(&zmm[6], &zmm[7]); + bitonic_merge_four_zmm<vtype>(zmm); + bitonic_merge_four_zmm<vtype>(zmm + 4); + bitonic_merge_eight_zmm<vtype>(zmm); + vtype::storeu(arr, zmm[0]); + vtype::storeu(arr + 16, zmm[1]); + vtype::storeu(arr + 32, zmm[2]); + vtype::storeu(arr + 48, zmm[3]); + vtype::mask_storeu(arr + 64, load_mask1, zmm[4]); + vtype::mask_storeu(arr + 80, load_mask2, zmm[5]); + vtype::mask_storeu(arr + 96, load_mask3, zmm[6]); + vtype::mask_storeu(arr + 112, load_mask4, zmm[7]); +} + +template <typename type_t> +static NPY_INLINE void +swap(type_t *arr, npy_intp ii, npy_intp jj) +{ + type_t temp = arr[ii]; + arr[ii] = arr[jj]; + arr[jj] = temp; +} + +// Median of 3 strategy +// template<typename type_t> +// static NPY_INLINE +// npy_intp get_pivot_index(type_t *arr, const npy_intp left, const npy_intp +// right) { +// return (rand() % (right + 1 - left)) + left; +// //npy_intp middle = ((right-left)/2) + left; +// //type_t a = arr[left], b = arr[middle], c = arr[right]; +// //if ((b >= a && b <= c) || (b <= a && b >= c)) +// // return middle; +// //if ((a >= b && a <= c) || (a <= b && a >= c)) +// // return left; +// //else +// // return right; +//} + +/* + * Picking the pivot: Median of 72 array elements chosen at random. + */ + +template <typename vtype, typename type_t> +static NPY_INLINE type_t +get_pivot(type_t *arr, const npy_intp left, const npy_intp right) +{ + /* seeds for vectorized random number generator */ + __m256i s0 = _mm256_setr_epi64x(8265987198341093849, 3762817312854612374, + 1324281658759788278, 6214952190349879213); + __m256i s1 = _mm256_setr_epi64x(2874178529384792648, 1257248936691237653, + 7874578921548791257, 1998265912745817298); + s0 = _mm256_add_epi64(s0, _mm256_set1_epi64x(left)); + s1 = _mm256_sub_epi64(s1, _mm256_set1_epi64x(right)); + + npy_intp arrsize = right - left + 1; + __m256i bound = + _mm256_set1_epi32(arrsize > INT32_MAX ? INT32_MAX : arrsize); + __m512i left_vec = _mm512_set1_epi64(left); + __m512i right_vec = _mm512_set1_epi64(right); + using ymm_t = typename vtype::ymm_t; + ymm_t v[9]; + /* fill 9 vectors with random numbers */ + for (npy_int i = 0; i < 9; ++i) { + __m256i rand_64 = vnext(&s0, &s1); /* vector with 4 random uint64_t */ + __m512i rand_32 = _mm512_cvtepi32_epi64(rnd_epu32( + rand_64, bound)); /* random numbers between 0 and bound - 1 */ + __m512i indices; + if (i < 5) + indices = + _mm512_add_epi64(left_vec, rand_32); /* indices for arr */ + else + indices = + _mm512_sub_epi64(right_vec, rand_32); /* indices for arr */ + + v[i] = vtype::template i64gather<sizeof(type_t)>(indices, arr); + } + + /* median network for 9 elements */ + COEX<vtype>(v[0], v[1]); + COEX<vtype>(v[2], v[3]); + COEX<vtype>(v[4], v[5]); + COEX<vtype>(v[6], v[7]); + COEX<vtype>(v[0], v[2]); + COEX<vtype>(v[1], v[3]); + COEX<vtype>(v[4], v[6]); + COEX<vtype>(v[5], v[7]); + COEX<vtype>(v[0], v[4]); + COEX<vtype>(v[1], v[2]); + COEX<vtype>(v[5], v[6]); + COEX<vtype>(v[3], v[7]); + COEX<vtype>(v[1], v[5]); + COEX<vtype>(v[2], v[6]); + COEX<vtype>(v[3], v[5]); + COEX<vtype>(v[2], v[4]); + COEX<vtype>(v[3], v[4]); + COEX<vtype>(v[3], v[8]); + COEX<vtype>(v[4], v[8]); + + // technically v[4] needs to be sorted before we pick the correct median, + // picking the 4th element works just as well for performance + type_t *temp = (type_t *)&v[4]; + + return temp[4]; +} + +/* + * Parition one ZMM register based on the pivot and returns the index of the + * last element that is less than equal to the pivot. + */ +template <typename vtype, typename type_t, typename zmm_t> +static NPY_INLINE npy_int +partition_vec(type_t *arr, npy_intp left, npy_intp right, const zmm_t curr_vec, + const zmm_t pivot_vec, zmm_t *smallest_vec, zmm_t *biggest_vec) +{ + /* which elements are larger than the pivot */ + __mmask16 gt_mask = vtype::ge(curr_vec, pivot_vec); + npy_int amount_gt_pivot = _mm_popcnt_u32((npy_int)gt_mask); + vtype::mask_compressstoreu(arr + left, _knot_mask16(gt_mask), curr_vec); + vtype::mask_compressstoreu(arr + right - amount_gt_pivot, gt_mask, + curr_vec); + *smallest_vec = vtype::min(curr_vec, *smallest_vec); + *biggest_vec = vtype::max(curr_vec, *biggest_vec); + return amount_gt_pivot; +} + +/* + * Parition an array based on the pivot and returns the index of the + * last element that is less than equal to the pivot. + */ +template <typename vtype, typename type_t> +static NPY_INLINE npy_intp +partition_avx512(type_t *arr, npy_intp left, npy_intp right, type_t pivot, + type_t *smallest, type_t *biggest) +{ + /* make array length divisible by 16 , shortening the array */ + for (npy_int i = (right - left) % 16; i > 0; --i) { + *smallest = MIN(*smallest, arr[left]); + *biggest = MAX(*biggest, arr[left]); + if (arr[left] > pivot) { + swap(arr, left, --right); + } + else { + ++left; + } + } + + if (left == right) + return left; /* less than 16 elements in the array */ + + using zmm_t = typename vtype::zmm_t; + zmm_t pivot_vec = vtype::set1(pivot); + zmm_t min_vec = vtype::set1(*smallest); + zmm_t max_vec = vtype::set1(*biggest); + + if (right - left == 16) { + zmm_t vec = vtype::loadu(arr + left); + npy_int amount_gt_pivot = partition_vec<vtype>( + arr, left, left + 16, vec, pivot_vec, &min_vec, &max_vec); + *smallest = vtype::reducemin(min_vec); + *biggest = vtype::reducemax(max_vec); + return left + (16 - amount_gt_pivot); + } + + // first and last 16 values are partitioned at the end + zmm_t vec_left = vtype::loadu(arr + left); + zmm_t vec_right = vtype::loadu(arr + (right - 16)); + // store points of the vectors + npy_intp r_store = right - 16; + npy_intp l_store = left; + // indices for loading the elements + left += 16; + right -= 16; + while (right - left != 0) { + zmm_t curr_vec; + /* + * if fewer elements are stored on the right side of the array, + * then next elements are loaded from the right side, + * otherwise from the left side + */ + if ((r_store + 16) - right < left - l_store) { + right -= 16; + curr_vec = vtype::loadu(arr + right); + } + else { + curr_vec = vtype::loadu(arr + left); + left += 16; + } + // partition the current vector and save it on both sides of the array + npy_int amount_gt_pivot = + partition_vec<vtype>(arr, l_store, r_store + 16, curr_vec, + pivot_vec, &min_vec, &max_vec); + ; + r_store -= amount_gt_pivot; + l_store += (16 - amount_gt_pivot); + } + + /* partition and save vec_left and vec_right */ + npy_int amount_gt_pivot = + partition_vec<vtype>(arr, l_store, r_store + 16, vec_left, + pivot_vec, &min_vec, &max_vec); + l_store += (16 - amount_gt_pivot); + amount_gt_pivot = + partition_vec<vtype>(arr, l_store, l_store + 16, vec_right, + pivot_vec, &min_vec, &max_vec); + l_store += (16 - amount_gt_pivot); + *smallest = vtype::reducemin(min_vec); + *biggest = vtype::reducemax(max_vec); + return l_store; +} + +template <typename vtype, typename type_t> +static NPY_INLINE void +qsort_(type_t *arr, npy_intp left, npy_intp right, npy_int max_iters) +{ + /* + * Resort to heapsort if quicksort isnt making any progress + */ + if (max_iters <= 0) { + heapsort_<typename vtype::tag>(arr + left, right + 1 - left); + return; + } + /* + * Base case: use bitonic networks to sort arrays <= 128 + */ + if (right + 1 - left <= 128) { + sort_128<vtype>(arr + left, right + 1 - left); + return; + } + + type_t pivot = get_pivot<vtype>(arr, left, right); + type_t smallest = vtype::type_max(); + type_t biggest = vtype::type_min(); + npy_intp pivot_index = partition_avx512<vtype>(arr, left, right + 1, pivot, + &smallest, &biggest); + if (pivot != smallest) + qsort_<vtype>(arr, left, pivot_index - 1, max_iters - 1); + if (pivot != biggest) + qsort_<vtype>(arr, pivot_index, right, max_iters - 1); +} + +static NPY_INLINE npy_intp +replace_nan_with_inf(npy_float *arr, npy_intp arrsize) +{ + npy_intp nan_count = 0; + __mmask16 loadmask = 0xFFFF; + while (arrsize > 0) { + if (arrsize < 16) { + loadmask = (0x0001 << arrsize) - 0x0001; + } + __m512 in_zmm = _mm512_maskz_loadu_ps(loadmask, arr); + __mmask16 nanmask = _mm512_cmp_ps_mask(in_zmm, in_zmm, _CMP_NEQ_UQ); + nan_count += _mm_popcnt_u32((npy_int)nanmask); + _mm512_mask_storeu_ps(arr, nanmask, ZMM_MAX_FLOAT); + arr += 16; + arrsize -= 16; + } + return nan_count; +} + +static NPY_INLINE void +replace_inf_with_nan(npy_float *arr, npy_intp arrsize, npy_intp nan_count) +{ + for (npy_intp ii = arrsize - 1; nan_count > 0; --ii) { + arr[ii] = NPY_NANF; + nan_count -= 1; + } +} + +/*************************************** + * C > C++ dispatch + ***************************************/ + +NPY_NO_EXPORT void +NPY_CPU_DISPATCH_CURFX(x86_quicksort_int)(void *arr, npy_intp arrsize) +{ + if (arrsize > 1) { + qsort_<vector<npy_int>, npy_int>((npy_int *)arr, 0, arrsize - 1, + 2 * log2(arrsize)); + } +} + +NPY_NO_EXPORT void +NPY_CPU_DISPATCH_CURFX(x86_quicksort_uint)(void *arr, npy_intp arrsize) +{ + if (arrsize > 1) { + qsort_<vector<npy_uint>, npy_uint>((npy_uint *)arr, 0, arrsize - 1, + 2 * log2(arrsize)); + } +} + +NPY_NO_EXPORT void +NPY_CPU_DISPATCH_CURFX(x86_quicksort_float)(void *arr, npy_intp arrsize) +{ + if (arrsize > 1) { + npy_intp nan_count = replace_nan_with_inf((npy_float *)arr, arrsize); + qsort_<vector<npy_float>, npy_float>((npy_float *)arr, 0, arrsize - 1, + 2 * log2(arrsize)); + replace_inf_with_nan((npy_float *)arr, arrsize, nan_count); + } +} + +#endif // NPY_HAVE_AVX512_SKX diff --git a/numpy/distutils/ccompiler_opt.py b/numpy/distutils/ccompiler_opt.py index d0c40a7b2..0343cb8f4 100644 --- a/numpy/distutils/ccompiler_opt.py +++ b/numpy/distutils/ccompiler_opt.py @@ -2551,6 +2551,8 @@ class CCompilerOpt(_Config, _Distutils, _Cache, _CCompiler, _Feature, _Parse): except OSError: pass + os.makedirs(os.path.dirname(config_path), exist_ok=True) + self.dist_log("generate dispatched config -> ", config_path) dispatch_calls = [] for tar in targets: |
