summaryrefslogtreecommitdiff
path: root/doc/source/reference/c-api/data_memory.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference/c-api/data_memory.rst')
-rw-r--r--doc/source/reference/c-api/data_memory.rst84
1 files changed, 84 insertions, 0 deletions
diff --git a/doc/source/reference/c-api/data_memory.rst b/doc/source/reference/c-api/data_memory.rst
index 2084ab5d0..cab587efc 100644
--- a/doc/source/reference/c-api/data_memory.rst
+++ b/doc/source/reference/c-api/data_memory.rst
@@ -159,3 +159,87 @@ A better technique would be to use a ``PyCapsule`` as a base object:
return NULL;
}
...
+
+Example of memory tracing with ``np.lib.tracemalloc_domain``
+------------------------------------------------------------
+
+Note that since Python 3.6 (or newer), the builtin ``tracemalloc`` module can be used to
+track allocations inside NumPy. NumPy places its CPU memory allocations into the
+``np.lib.tracemalloc_domain`` domain.
+For additional information, check: `https://docs.python.org/3/library/tracemalloc.html`.
+
+Here is an example on how to use ``np.lib.tracemalloc_domain``:
+
+.. code-block:: python
+
+ """
+ The goal of this example is to show how to trace memory
+ from an application that has NumPy and non-NumPy sections.
+ We only select the sections using NumPy related calls.
+ """
+
+ import tracemalloc
+ import numpy as np
+
+ # Flag to determine if we select NumPy domain
+ use_np_domain = True
+
+ nx = 300
+ ny = 500
+
+ # Start to trace memory
+ tracemalloc.start()
+
+ # Section 1
+ # ---------
+
+ # NumPy related call
+ a = np.zeros((nx,ny))
+
+ # non-NumPy related call
+ b = [i**2 for i in range(nx*ny)]
+
+ snapshot1 = tracemalloc.take_snapshot()
+ # We filter the snapshot to only select NumPy related calls
+ np_domain = np.lib.tracemalloc_domain
+ dom_filter = tracemalloc.DomainFilter(inclusive=use_np_domain,
+ domain=np_domain)
+ snapshot1 = snapshot1.filter_traces([dom_filter])
+ top_stats1 = snapshot1.statistics('traceback')
+
+ print("================ SNAPSHOT 1 =================")
+ for stat in top_stats1:
+ print(f"{stat.count} memory blocks: {stat.size / 1024:.1f} KiB")
+ print(stat.traceback.format()[-1])
+
+ # Clear traces of memory blocks allocated by Python
+ # before moving to the next section.
+ tracemalloc.clear_traces()
+
+ # Section 2
+ #----------
+
+ # We are only using NumPy
+ c = np.sum(a*a)
+
+ snapshot2 = tracemalloc.take_snapshot()
+ top_stats2 = snapshot2.statistics('traceback')
+
+ print()
+ print("================ SNAPSHOT 2 =================")
+ for stat in top_stats2:
+ print(f"{stat.count} memory blocks: {stat.size / 1024:.1f} KiB")
+ print(stat.traceback.format()[-1])
+
+ tracemalloc.stop()
+
+ print()
+ print("============================================")
+ print("\nTracing Status : ", tracemalloc.is_tracing())
+
+ try:
+ print("\nTrying to Take Snapshot After Tracing is Stopped.")
+ snap = tracemalloc.take_snapshot()
+ except Exception as e:
+ print("Exception : ", e)
+