summaryrefslogtreecommitdiff
path: root/doc/source/reference/random/extending.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference/random/extending.rst')
-rw-r--r--doc/source/reference/random/extending.rst132
1 files changed, 27 insertions, 105 deletions
diff --git a/doc/source/reference/random/extending.rst b/doc/source/reference/random/extending.rst
index 22f9cb7e4..c63fb1a1b 100644
--- a/doc/source/reference/random/extending.rst
+++ b/doc/source/reference/random/extending.rst
@@ -12,128 +12,42 @@ Numba
Numba can be used with either CTypes or CFFI. The current iteration of the
BitGenerators all export a small set of functions through both interfaces.
-This example shows how numba can be used to produce Box-Muller normals using
+This example shows how numba can be used to produce gaussian samples using
a pure Python implementation which is then compiled. The random numbers are
provided by ``ctypes.next_double``.
-.. code-block:: python
-
- from numpy.random import PCG64
- import numpy as np
- import numba as nb
-
- x = PCG64()
- f = x.ctypes.next_double
- s = x.ctypes.state
- state_addr = x.ctypes.state_address
-
- def normals(n, state):
- out = np.empty(n)
- for i in range((n+1)//2):
- x1 = 2.0*f(state) - 1.0
- x2 = 2.0*f(state) - 1.0
- r2 = x1*x1 + x2*x2
- while r2 >= 1.0 or r2 == 0.0:
- x1 = 2.0*f(state) - 1.0
- x2 = 2.0*f(state) - 1.0
- r2 = x1*x1 + x2*x2
- g = np.sqrt(-2.0*np.log(r2)/r2)
- out[2*i] = g*x1
- if 2*i+1 < n:
- out[2*i+1] = g*x2
- return out
-
- # Compile using Numba
- print(normals(10, s).var())
- # Warm up
- normalsj = nb.jit(normals, nopython=True)
- # Must use state address not state with numba
- normalsj(1, state_addr)
- %timeit normalsj(1000000, state_addr)
- print('1,000,000 Box-Muller (numba/PCG64) randoms')
- %timeit np.random.standard_normal(1000000)
- print('1,000,000 Box-Muller (NumPy) randoms')
-
+.. literalinclude:: ../../../../numpy/random/examples/numba/extending.py
+ :language: python
+ :end-before: example 2
Both CTypes and CFFI allow the more complicated distributions to be used
-directly in Numba after compiling the file distributions.c into a DLL or so.
-An example showing the use of a more complicated distribution is in the
-examples folder.
+directly in Numba after compiling the file distributions.c into a ``DLL`` or
+``so``. An example showing the use of a more complicated distribution is in
+the `examples` section below.
-.. _randomgen_cython:
+.. _random_cython:
Cython
======
Cython can be used to unpack the ``PyCapsule`` provided by a BitGenerator.
-This example uses `~pcg64.PCG64` and
-``random_gauss_zig``, the Ziggurat-based generator for normals, to fill an
-array. The usual caveats for writing high-performance code using Cython --
-removing bounds checks and wrap around, providing array alignment information
--- still apply.
-
-.. code-block:: cython
-
- import numpy as np
- cimport numpy as np
- cimport cython
- from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
- from numpy.random.common cimport *
- from numpy.random.distributions cimport random_gauss_zig
- from numpy.random import PCG64
-
-
- @cython.boundscheck(False)
- @cython.wraparound(False)
- def normals_zig(Py_ssize_t n):
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef double[::1] random_values
-
- x = PCG64()
- capsule = x.capsule
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n)
- # Best practice is to release GIL and acquire the lock
- with x.lock, nogil:
- for i in range(n):
- random_values[i] = random_gauss_zig(rng)
- randoms = np.asarray(random_values)
- return randoms
+This example uses `PCG64` and the example from above. The usual caveats
+for writing high-performance code using Cython -- removing bounds checks and
+wrap around, providing array alignment information -- still apply.
+
+.. literalinclude:: ../../../../numpy/random/examples/cython/extending_distributions.pyx
+ :language: cython
+ :end-before: example 2
The BitGenerator can also be directly accessed using the members of the basic
RNG structure.
-.. code-block:: cython
-
- @cython.boundscheck(False)
- @cython.wraparound(False)
- def uniforms(Py_ssize_t n):
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef double[::1] random_values
-
- x = PCG64()
- capsule = x.capsule
- # Optional check that the capsule if from a BitGenerator
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- # Cast the pointer
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n)
- with x.lock, nogil:
- for i in range(n):
- # Call the function
- random_values[i] = rng.next_double(rng.state)
- randoms = np.asarray(random_values)
- return randoms
+.. literalinclude:: ../../../../numpy/random/examples/cython/extending_distributions.pyx
+ :language: cython
+ :start-after: example 2
These functions along with a minimal setup file are included in the
-examples folder.
+`examples` folder, ``numpy.random.examples``.
New Basic RNGs
==============
@@ -163,3 +77,11 @@ the next 64-bit unsigned integer function if not needed. Functions inside
.. code-block:: c
bitgen_state->next_uint64(bitgen_state->state)
+
+Examples
+========
+
+.. toctree::
+ Numba <examples/numba>
+ CFFI + Numba <examples/numba_cffi>
+ Cython <examples/cython/index>