summaryrefslogtreecommitdiff
path: root/doc/source/reference
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference')
-rw-r--r--doc/source/reference/arrays.classes.rst15
-rw-r--r--doc/source/reference/arrays.ndarray.rst5
-rw-r--r--doc/source/reference/maskedarray.baseclass.rst395
-rw-r--r--doc/source/reference/maskedarray.generic.rst427
-rw-r--r--doc/source/reference/maskedarray.rst14
5 files changed, 850 insertions, 6 deletions
diff --git a/doc/source/reference/arrays.classes.rst b/doc/source/reference/arrays.classes.rst
index 65fc10af5..41253a077 100644
--- a/doc/source/reference/arrays.classes.rst
+++ b/doc/source/reference/arrays.classes.rst
@@ -261,7 +261,12 @@ scalar data type object :class:`record`.
Masked arrays (:mod:`numpy.ma`)
===============================
-.. seealso:: :ref:`routines.ma`
+.. seealso:: :ref:`maskedarray`
+
+Masked arrays are arrays that may have missing or invalid entries.
+The :mod:`numpy.ma` module provides a nearly work-alike replacement for numpy
+that supports data arrays with masks.
+
.. XXX: masked array documentation should be improved
@@ -270,12 +275,10 @@ Masked arrays (:mod:`numpy.ma`)
.. index::
single: masked arrays
-.. autosummary::
- :toctree: generated/
-
- ma.masked_array
+.. toctree::
+ :maxdepth: 2
-.. automodule:: numpy.ma
+ maskedarray
Standard container class
diff --git a/doc/source/reference/arrays.ndarray.rst b/doc/source/reference/arrays.ndarray.rst
index f07199603..7713bff9c 100644
--- a/doc/source/reference/arrays.ndarray.rst
+++ b/doc/source/reference/arrays.ndarray.rst
@@ -135,6 +135,8 @@ in a different scheme.
is automatically made.
+.. _arrays.ndarray.attributes:
+
Array attributes
================
@@ -217,6 +219,9 @@ Array interface
.. note:: XXX: update and check these docstrings.
+
+.. _array.ndarray.methods:
+
Array methods
=============
diff --git a/doc/source/reference/maskedarray.baseclass.rst b/doc/source/reference/maskedarray.baseclass.rst
new file mode 100644
index 000000000..bef16b100
--- /dev/null
+++ b/doc/source/reference/maskedarray.baseclass.rst
@@ -0,0 +1,395 @@
+
+.. currentmodule:: numpy.ma
+
+
+.. _numpy.ma.constants:
+
+Constants of the :mod:`numpy.ma` module
+=======================================
+
+In addition to the :class:`MaskedArray` class, the :mod:`numpy.ma` module
+defines several constants.
+
+.. data:: masked
+
+ The :attr:`masked` constant is a special case of :class:`MaskedArray`,
+ with a float datatype and a null shape. It is used to test whether a
+ specific entry of a masked array is masked, or to mask one or several
+ entries of a masked array::
+
+ >>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
+ >>> x[1] is ma.masked
+ True
+ >>> x[-1] = ma.masked
+ >>> x
+ masked_array(data = [1 -- --],
+ mask = [False True True],
+ fill_value = 999999)
+
+
+.. data:: nomask
+
+ Value indicating that a masked array has no invalid entry.
+ :attr:`nomask` is used internally to speed up computations when the mask
+ is not needed.
+
+
+.. data:: masked_print_options
+
+ String used in lieu of missing data when a masked array is printed.
+ By default, this string is ``'--'``.
+
+
+
+
+.. _maskedarray.baseclass:
+
+The :class:`MaskedArray` class
+==============================
+
+ An instance of :class:`MaskedArray` can be thought as the combination of several elements:
+
+* The :attr:`data`, as a regular :class:`numpy.ndarray` of any shape or datatype (the data).
+* A boolean :attr:`mask` with the same shape as the data, where a ``True`` value indicates that the corresponding element of the data is invalid.
+ The special value :attr:`nomask` is also acceptable for arrays without named fields, and indicates that no data is invalid.
+* A :attr:`fill_value`, a value that may be used to replace the invalid entries in order to return a standard :class:`numpy.ndarray`.
+
+
+
+Attributes and properties of masked arrays
+------------------------------------------
+
+.. seealso:: :ref:`Array Attributes <arrays.ndarray.attributes>`
+
+
+.. attribute:: MaskedArray.data
+
+ Returns the underlying data, as a view of the masked array.
+ If the underlying data is a subclass of :class:`numpy.ndarray`, it is
+ returned as such.
+
+ >>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
+ >>> x.data
+ matrix([[1, 2],
+ [3, 4]])
+
+ The type of the data can be accessed through the :attr:`baseclass`
+ attribute.
+
+.. attribute:: MaskedArray.mask
+
+ Returns the underlying mask, as an array with the same shape and structure
+ as the data, but where all fields are booleans.
+ A value of ``True`` indicates an invalid entry.
+
+
+.. attribute:: MaskedArray.recordmask
+
+ Returns the mask of the array if it has no named fields. For structured
+ arrays, returns a ndarray of booleans where entries are ``True`` if **all**
+ the fields are masked, ``False`` otherwise::
+
+ >>> x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
+ ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
+ ... dtype=[('a', int), ('b', int)])
+ >>> x.recordmask
+ array([False, False, True, False, False], dtype=bool)
+
+
+.. attribute:: MaskedArray.fill_value
+
+ Returns the value used to fill the invalid entries of a masked array.
+ The value is either a scalar (if the masked array has no named fields),
+ or a 0d-ndarray with the same datatype as the masked array if it has
+ named fields.
+
+ The default filling value depends on the datatype of the array:
+
+ ======== ========
+ datatype default
+ ======== ========
+ bool True
+ int 999999
+ float 1.e20
+ complex 1.e20+0j
+ object '?'
+ string 'N/A'
+ ======== ========
+
+
+
+.. attribute:: MaskedArray.baseclass
+
+ Returns the class of the underlying data.::
+
+ >>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]])
+ >>> x.baseclass
+ <class 'numpy.core.defmatrix.matrix'>
+
+
+.. attribute:: MaskedArray.sharedmask
+
+ Returns whether the mask of the array is shared between several arrays.
+ If this is the case, any modification to the mask of one array will be
+ propagated to the other masked arrays.
+
+
+.. attribute:: MaskedArray.hardmask
+
+ Returns whether the mask is hard (``True``) or soft (``False``).
+ When the mask is hard, masked entries cannot be unmasked.
+
+
+As :class:`MaskedArray` is a subclass of :class:`~numpy.ndarray`, a masked array also inherits all the attributes and properties of a :class:`~numpy.ndarray` instance.
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.flags
+ MaskedArray.shape
+ MaskedArray.strides
+ MaskedArray.ndim
+ MaskedArray.size
+ MaskedArray.itemsize
+ MaskedArray.nbytes
+ MaskedArray.base
+ MaskedArray.dtype
+ MaskedArray.T
+ MaskedArray.real
+ MaskedArray.imag
+ MaskedArray.flat
+ MaskedArray.ctypes
+ MaskedArray.__array_priority__
+
+
+
+:class:`MaskedArray` methods
+============================
+
+.. seealso:: :ref:`Array methods <array.ndarray.methods>`
+
+
+Conversion
+----------
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.view
+ MaskedArray.astype
+ MaskedArray.filled
+ MaskedArray.tofile
+ MaskedArray.toflex
+ MaskedArray.tolist
+ MaskedArray.torecords
+ MaskedArray.tostring
+
+
+Shape manipulation
+------------------
+
+For reshape, resize, and transpose, the single tuple argument may be
+replaced with ``n`` integers which will be interpreted as an n-tuple.
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.flatten
+ MaskedArray.ravel
+ MaskedArray.reshape
+ MaskedArray.resize
+ MaskedArray.squeeze
+ MaskedArray.swapaxes
+ MaskedArray.transpose
+
+
+Item selection and manipulation
+-------------------------------
+
+For array methods that take an *axis* keyword, it defaults to
+:const:`None`. If axis is *None*, then the array is treated as a 1-D
+array. Any other value for *axis* represents the dimension along which
+the operation should proceed.
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.argsort
+ MaskedArray.choose
+ MaskedArray.compress
+ MaskedArray.diagonal
+ MaskedArray.nonzero
+ MaskedArray.put
+ MaskedArray.repeat
+ MaskedArray.searchsorted
+ MaskedArray.sort
+ MaskedArray.take
+
+
+Calculations
+------------
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.all
+ MaskedArray.anom
+ MaskedArray.any
+ MaskedArray.argmax
+ MaskedArray.argmin
+ MaskedArray.clip
+ MaskedArray.conj
+ MaskedArray.cumprod
+ MaskedArray.cumsum
+ MaskedArray.mean
+ MaskedArray.min
+ MaskedArray.prod
+ MaskedArray.ptp
+ MaskedArray.round
+ MaskedArray.std
+ MaskedArray.sum
+ MaskedArray.trace
+ MaskedArray.var
+
+
+Arithmetic and comparison operations
+------------------------------------
+
+.. index:: comparison, arithmetic, operation, operator
+
+Comparison operators:
+~~~~~~~~~~~~~~~~~~~~~
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__lt__
+ MaskedArray.__le__
+ MaskedArray.__gt__
+ MaskedArray.__ge__
+ MaskedArray.__eq__
+ MaskedArray.__ne__
+
+Truth value of an array (:func:`bool()`):
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__nonzero__
+
+
+Arithmetic:
+~~~~~~~~~~~
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__add__
+ MaskedArray.__sub__
+ MaskedArray.__mul__
+ MaskedArray.__div__
+ MaskedArray.__truediv__
+ MaskedArray.__floordiv__
+ MaskedArray.__mod__
+ MaskedArray.__divmod__
+ MaskedArray.__pow__
+ MaskedArray.__lshift__
+ MaskedArray.__rshift__
+ MaskedArray.__and__
+ MaskedArray.__or__
+ MaskedArray.__xor__
+
+
+Arithmetic, in-place:
+~~~~~~~~~~~~~~~~~~~~~
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__iadd__
+ MaskedArray.__isub__
+ MaskedArray.__imul__
+ MaskedArray.__idiv__
+ MaskedArray.__itruediv__
+ MaskedArray.__ifloordiv__
+ MaskedArray.__imod__
+ MaskedArray.__ipow__
+ MaskedArray.__ilshift__
+ MaskedArray.__irshift__
+ MaskedArray.__iand__
+ MaskedArray.__ior__
+ MaskedArray.__ixor__
+
+
+
+Special methods
+---------------
+
+For standard library functions:
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__copy__
+ MaskedArray.__deepcopy__
+ MaskedArray.__reduce__
+ MaskedArray.__setstate__
+
+Basic customization:
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__new__
+ MaskedArray.__array__
+ MaskedArray.__array_wrap__
+
+Container customization: (see :ref:`Indexing <arrays.indexing>`)
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.__len__
+ MaskedArray.__getitem__
+ MaskedArray.__setitem__
+ MaskedArray.__getslice__
+ MaskedArray.__setslice__
+ MaskedArray.__contains__
+
+
+
+Specific methods
+----------------
+
+Handling the mask
+~~~~~~~~~~~~~~~~~
+
+The following methods can be used to access information about the mask or to
+manipulate the mask.
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.harden_mask
+ MaskedArray.soften_mask
+ MaskedArray.unshare_mask
+ MaskedArray.shrink_mask
+
+
+Handling the `fill_value`
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.get_fill_value
+ MaskedArray.set_fill_value
+
+
+.. autosummary::
+ :toctree: generated/
+
+ MaskedArray.compressed
+ MaskedArray.count
+
diff --git a/doc/source/reference/maskedarray.generic.rst b/doc/source/reference/maskedarray.generic.rst
new file mode 100644
index 000000000..ba6b97deb
--- /dev/null
+++ b/doc/source/reference/maskedarray.generic.rst
@@ -0,0 +1,427 @@
+.. currentmodule:: numpy.ma
+
+.. _maskedarray.generic:
+
+
+
+The :mod:`numpy.ma` module
+==========================
+
+Rationale
+---------
+
+Masked arrays are arrays that may have missing or invalid entries.
+The :mod:`numpy.ma` module provides a nearly work-alike replacement for numpy
+that supports data arrays with masks.
+
+
+
+What is a masked array?
+-----------------------
+
+In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or
+recorded an invalid value.
+The :mod:`numpy.ma` module provides a convenient way to address this issue, by introducing masked arrays.
+
+A masked array is the combination of a standard :class:`numpy.ndarray` and a mask. A mask is either :attr:`nomask`, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not. When an element of the mask is ``False``, the corresponding element of the associated array is valid and is said to be unmasked. When an element of the mask is ``True``, the corresponding element of the associated array is said to be masked (invalid).
+
+The package ensures that masked entries are not used in computations.
+
+As an illustration, let's consider the following dataset::
+
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3, -1, 5])
+
+We wish to mark the fourth entry as invalid. The easiest is to create a masked
+array::
+
+ >>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])
+
+We can now compute the mean of the dataset, without taking the invalid data into account::
+
+ >>> mx.mean()
+ 2.75
+
+
+The :mod:`numpy.ma` module
+--------------------------
+
+
+The main feature of the :mod:`numpy.ma` module is the :class:`~numpy.ma.MaskedArray` class, which is a subclass of :class:`numpy.ndarray`.
+The class, its attributes and methods are described in more details in the
+:ref:`MaskedArray class <maskedarray.baseclass>` section.
+
+The :mod:`numpy.ma` module can be used as an addition to :mod:`numpy`: ::
+
+ >>> import numpy as np
+ >>> import numpy.ma as ma
+
+To create an array with the second element invalid, we would do::
+
+ >>> y = ma.array([1, 2, 3], mask = [0, 1, 0])
+
+To create a masked array where all values close to 1.e20 are invalid, we would
+do::
+
+ >>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)
+
+For a complete discussion of creation methods for masked arrays please see
+section :ref:`Constructing masked arrays <maskedarray.generic.constructing>`.
+
+
+
+
+Using numpy.ma
+==============
+
+.. _maskedarray.generic.constructing:
+
+Constructing masked arrays
+--------------------------
+
+There are several ways to construct a masked array.
+
+* A first possibility is to directly invoke the :class:`MaskedArray` class.
+
+* A second possibility is to use the two masked array constructors,
+ :func:`array` and :func:`masked_array`.
+
+ .. autosummary::
+ :toctree: generated/
+
+ array
+ masked_array
+
+
+* A third option is to take the view of an existing array. In that case, the
+ mask of the view is set to :attr:`nomask` if the array has no named fields,
+ or an array of boolean with the same structure as the array otherwise.::
+
+ >>> x = np.array([1, 2, 3])
+ >>> x.view(ma.MaskedArray)
+ masked_array(data = [1 2 3],
+ mask = False,
+ fill_value = 999999)
+
+* Yet another possibility is to use any of the following functions:
+
+ .. autosummary::
+ :toctree: generated/
+
+ asarray
+ asanyarray
+ fix_invalid
+ masked_equal
+ masked_greater
+ masked_greater_equal
+ masked_inside
+ masked_invalid
+ masked_less
+ masked_less_equal
+ masked_not_equal
+ masked_object
+ masked_outside
+ masked_values
+ masked_where
+
+
+
+Accessing the data
+------------------
+
+The underlying data of a masked array can be accessed through several ways:
+
+* through the :attr:`data` attribute. The output is a view of the array as
+ a :class:`numpy.ndarray` or one of its subclasses, depending on the type
+ of the underlying data at the masked array creation.
+
+* through the :meth:`~MaskedArray.__array__` method. The output is then a :class:`numpy.ndarray`.
+
+* by directly taking a view of the masked array as a :class:`numpy.ndarray` or one of its subclass (which is actually what using the :attr:`data` attribute does).
+
+* by using the :func:`getdata` function.
+
+
+None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule, invalid data should not be relied on.
+If a representation of the array is needed without any masked entries, it is recommended to fill the array with the :meth:`filled` method.
+
+
+
+Accessing the mask
+------------------
+
+The mask of a masked array is accessible through its :attr:`mask` attribute.
+We must keep in mind that a ``True`` entry in the mask indicates an *invalid* data.
+
+Another possibility is to use the :func:`getmask` and :func:`getmaskarray` functions. :func:`getmask(x)` outputs the mask of ``x`` if ``x`` is a masked array, and the special value :data:`nomask` otherwise.
+:func:`getmaskarray(x)` outputs the mask of ``x`` if ``x`` is a masked array.
+If ``x`` has no invalid entry or is not a masked array, the function outputs a boolean array of ``False`` with as many elements as ``x``.
+
+
+
+
+Accessing only the valid entries
+---------------------------------
+
+To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be calculated with the :func:`numpy.logical_not` function or simply with the ``~`` operator::
+
+ >>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
+ >>> x[~x.mask]
+ masked_array(data = [1 4],
+ mask = [False False],
+ fill_value = 999999)
+
+Another way to retrieve the valid data is to use the :meth:`compressed` method, which returns a one-dimensional :class:`~numpy.ndarray` (or one of its subclasses, depending on the value of the :attr:`baseclass` attribute)::
+
+ >>> x.compressed
+ array([1, 4])
+
+
+
+Modifying the mask
+------------------
+
+Masking an entry
+~~~~~~~~~~~~~~~~
+
+The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special value :attr:`masked` to them::
+
+ >>> x = ma.array([1, 2, 3])
+ >>> x[0] = ma.masked
+ >>> x
+ masked_array(data = [-- 2 3],
+ mask = [ True False False],
+ fill_value = 999999)
+ >>> y = ma.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ >>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
+ >>> y
+ masked_array(data =
+ [[1 -- 3]
+ [4 5 --]
+ [-- 8 9]],
+ mask =
+ [[False True False]
+ [False False True]
+ [ True False False]],
+ fill_value = 999999)
+ >>> z = ma.array([1, 2, 3, 4])
+ >>> z[:-2] = ma.masked
+ >>> z
+ masked_array(data = [-- -- 3 4],
+ mask = [ True True False False],
+ fill_value = 999999)
+
+
+A second possibility is to modify the mask directly, but this usage is discouraged.
+
+.. note::
+ When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the special value :attr:`nomask`, that corresponds roughly to the boolean ``False``. Trying to set an element of :attr:`nomask` will fail with a :exc:`TypeError` exception, as a boolean does not support item assignment.
+
+
+All the entries of an array can be masked at once by assigning ``True`` to the mask::
+
+ >>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
+ >>> x.mask = True
+ >>> x
+ masked_array(data = [-- -- --],
+ mask = [ True True True],
+ fill_value = 999999)
+
+Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans::
+
+ >>> x = ma.array([1, 2, 3])
+ >>> x.mask = [0, 1, 0]
+ >>> x
+ masked_array(data = [1 -- 3],
+ mask = [False True False],
+ fill_value = 999999)
+
+Unmasking an entry
+~~~~~~~~~~~~~~~~~~
+
+To unmask one or several specific entries, we can just assign one or several new valid values to them::
+
+ >>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
+ >>> x
+ masked_array(data = [1 2 --],
+ mask = [False False True],
+ fill_value = 999999)
+ >>> x[-1] = 5
+ >>> x
+ masked_array(data = [1 2 5],
+ mask = [False False False],
+ fill_value = 999999)
+
+.. note::
+ Unmasking an entry by direct assignment will not work if the masked array
+ has a *hard* mask, as shown by the :attr:`hardmask`.
+ This feature was introduced to prevent the overwriting of the mask.
+ To force the unmasking of an entry in such circumstance, the mask has first
+ to be softened with the :meth:`soften_mask` method before the allocation,
+ and then re-hardened with :meth:`harden_mask`::
+
+ >>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
+ >>> x
+ masked_array(data = [1 2 --],
+ mask = [False False True],
+ fill_value = 999999)
+ >>> x[-1] = 5
+ >>> x
+ masked_array(data = [1 2 --],
+ mask = [False False True],
+ fill_value = 999999)
+ >>> x.soften_mask()
+ >>> x[-1] = 5
+ >>> x
+ masked_array(data = [1 2 --],
+ mask = [False False True],
+ fill_value = 999999)
+ >>> x.soften_mask()
+
+
+To unmask all masked entries of a masked array, the simplest solution is to assign the constant :attr:`nomask` to the mask::
+
+ >>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
+ >>> x
+ masked_array(data = [1 2 --],
+ mask = [False False True],
+ fill_value = 999999)
+ >>> x.mask = nomask
+ >>> x
+ masked_array(data = [1 2 3],
+ mask = [False False False],
+ fill_value = 999999)
+
+
+
+Indexing and slicing
+--------------------
+
+As a :class:`MaskedArray` is a subclass of :class:`numpy.ndarray`, it inherits its mechanisms for indexing and slicing.
+
+When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding entry of the mask is ``False``) or the special value :attr:`masked` (if the corresponding entry of the mask is ``True``)::
+
+ >>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
+ >>> x[0]
+ 1
+ >>> x[-1]
+ masked_array(data = --,
+ mask = True,
+ fill_value = 1e+20)
+ >>> x[-1] is ma.masked
+ True
+
+If the masked array has named fields, accessing a single entry returns a
+:class:`numpy.void` object if none of the fields are masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.
+
+ >>> y = ma.masked_array([(1,2), (3, 4)],
+ ... mask=[(0, 0), (0, 1)],
+ ... dtype=[('a', int), ('b', int)])
+ >>> y[0]
+ (1, 2)
+ >>> y[-1]
+ masked_array(data = (3, --),
+ mask = (False, True),
+ fill_value = (999999, 999999),
+ dtype = [('a', '<i4'), ('b', '<i4')])
+
+
+When accessing a slice, the output is a masked array whose :attr:`data` attribute is a view of the original data, and whose mask is either :attr:`nomask` (if there was no invalid entries in the original array) or a copy of the corresponding slice of the original mask. The copy is required to avoid propagation of any modification of the mask to the original.
+
+ >>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, 0, 0, 1])
+ >>> mx = x[:3]
+ >>> mx
+ masked_array(data = [1 -- 3],
+ mask = [False True False],
+ fill_value = 999999)
+ >>> mx[1] = -1
+ >>> mx
+ masked_array(data = [1 -1 3],
+ mask = [False True False],
+ fill_value = 999999)
+ >>> x.mask
+ array([False, True, False, False, True], dtype=bool)
+ >>> x.data
+ array([ 1, -1, 3, 4, 5])
+
+
+Accessing a field of a masked array with structured datatype returns a :class:`MaskedArray`.
+
+
+
+Operations on masked arrays
+---------------------------
+
+Arithmetic and comparison operations are supported by masked arrays.
+As much as possible, invalid entries of a masked array are not processed, meaning that the corresponding :attr:`data` entries *should* be the same before and after the operation.
+We need to stress that this behavior may not be systematic, that invalid data may actually be affected by the operation in some cases and once again that invalid data should not be relied on.
+
+The :mod:`numpy.ma` module comes with a specific implementation of most
+ufuncs. Unary and binary functions that have a validity domain (such as :func:`~numpy.log` or :func:`~numpy.divide`) return the :data:`masked` constant whenever the input is masked or falls outside the validity domain::
+
+ >>> ma.log([-1, 0, 1, 2])
+ masked_array(data = [-- -- 0.0 0.69314718056],
+ mask = [ True True False False],
+ fill_value = 1e+20)
+
+Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If the ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments and its domain), the context is processed and entries of the output masked array are masked wherever the corresponding input fall outside the validity domain::
+
+ >>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, 0, 0, 0, 1])
+ >>> np.log(x)
+ masked_array(data = [-- -- 0.0 0.69314718056 --],
+ mask = [ True True False False True],
+ fill_value = 1e+20)
+
+
+
+Examples
+========
+
+Data with a given value representing missing data
+-------------------------------------------------
+
+Let's consider a list of elements, ``x``, where values of -9999. represent missing data.
+We wish to compute the average value of the data and the vector of anomalies (deviations from the average)::
+
+ >>> import numpy.ma as ma
+ >>> x = [0.,1.,-9999.,3.,4.]
+ >>> mx = ma.masked_values (x, -9999.)
+ >>> print mx.mean()
+ 2.0
+ >>> print mx - mx.mean()
+ [-2.0 -1.0 -- 1.0 2.0]
+ >>> print mx.anom()
+ [-2.0 -1.0 -- 1.0 2.0]
+
+
+Filling in the missing data
+---------------------------
+
+Suppose now that we wish to print that same data, but with the missing values
+replaced by the average value.
+
+ >>> print mx.filled(mx.mean())
+ [ 0. 1. 2. 3. 4.]
+
+
+Numerical operations
+--------------------
+
+Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots of negative numbers, etc.::
+
+ >>> import numpy as np, numpy.ma as ma
+ >>> x = ma.array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
+ >>> y = ma.array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
+ >>> print np.sqrt(x/y)
+ [1.0 -- -- 1.0 -- --]
+
+Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second from the division by zero, and the last two where the inputs were masked.
+
+
+Ignoring extreme values
+-----------------------
+
+Let's consider an array ``d`` of random floats between 0 and 1.
+We wish to compute the average of the values of ``d`` while ignoring any data outside the range [0.1, 0.9]::
+
+ >>> print ma.masked_outside(d, 0.1, 0.9).mean()
diff --git a/doc/source/reference/maskedarray.rst b/doc/source/reference/maskedarray.rst
new file mode 100644
index 000000000..aae06c361
--- /dev/null
+++ b/doc/source/reference/maskedarray.rst
@@ -0,0 +1,14 @@
+.. _maskedarray:
+
+
+Masked arrays are arrays that may have missing or invalid entries.
+The :mod:`numpy.ma` module provides a nearly work-alike replacement for numpy
+that supports data arrays with masks.
+
+
+.. toctree::
+ :maxdepth: 2
+
+ maskedarray.generic
+ maskedarray.baseclass
+ routines.ma \ No newline at end of file