summaryrefslogtreecommitdiff
path: root/doc/source/user/absolute_beginners.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/user/absolute_beginners.rst')
-rw-r--r--doc/source/user/absolute_beginners.rst29
1 files changed, 14 insertions, 15 deletions
diff --git a/doc/source/user/absolute_beginners.rst b/doc/source/user/absolute_beginners.rst
index 27e9e1f63..2c6882905 100644
--- a/doc/source/user/absolute_beginners.rst
+++ b/doc/source/user/absolute_beginners.rst
@@ -229,8 +229,8 @@ content is random and depends on the state of the memory. The reason to use
fill every element afterwards! ::
>>> # Create an empty array with 2 elements
- >>> np.empty(2)
- array([ 3.14, 42. ]) # may vary
+ >>> np.empty(2) #doctest: +SKIP
+ array([3.14, 42. ]) # may vary
You can create an array with a range of elements::
@@ -669,18 +669,18 @@ If you wanted to split this array into three equally shaped arrays, you would
run::
>>> np.hsplit(x, 3)
- [array([[1, 2, 3, 4],
- [13, 14, 15, 16]]), array([[ 5, 6, 7, 8],
- [17, 18, 19, 20]]), array([[ 9, 10, 11, 12],
- [21, 22, 23, 24]])]
+ [array([[ 1, 2, 3, 4],
+ [13, 14, 15, 16]]), array([[ 5, 6, 7, 8],
+ [17, 18, 19, 20]]), array([[ 9, 10, 11, 12],
+ [21, 22, 23, 24]])]
If you wanted to split your array after the third and fourth column, you'd run::
>>> np.hsplit(x, (3, 4))
- [array([[1, 2, 3],
- [13, 14, 15]]), array([[ 4],
- [16]]), array([[ 5, 6, 7, 8, 9, 10, 11, 12],
- [17, 18, 19, 20, 21, 22, 23, 24]])]
+ [array([[ 1, 2, 3],
+ [13, 14, 15]]), array([[ 4],
+ [16]]), array([[ 5, 6, 7, 8, 9, 10, 11, 12],
+ [17, 18, 19, 20, 21, 22, 23, 24]])]
:ref:`Learn more about stacking and splitting arrays here <quickstart.stacking-arrays>`.
@@ -967,9 +967,8 @@ All you need to do is pass in the number of elements you want it to generate::
array([1., 1., 1.])
>>> np.zeros(3)
array([0., 0., 0.])
- # the simplest way to generate random numbers
- >>> rng = np.random.default_rng(0)
- >>> rng.random(3)
+ >>> rng = np.random.default_rng() # the simplest way to generate random numbers
+ >>> rng.random(3) #doctest: +SKIP
array([0.63696169, 0.26978671, 0.04097352])
.. image:: images/np_ones_zeros_random.png
@@ -985,7 +984,7 @@ a 2D array if you give them a tuple describing the dimensions of the matrix::
array([[0., 0.],
[0., 0.],
[0., 0.]])
- >>> rng.random((3, 2))
+ >>> rng.random((3, 2)) #doctest: +SKIP
array([[0.01652764, 0.81327024],
[0.91275558, 0.60663578],
[0.72949656, 0.54362499]]) # may vary
@@ -1011,7 +1010,7 @@ that this is inclusive with NumPy) to high (exclusive). You can set
You can generate a 2 x 4 array of random integers between 0 and 4 with::
- >>> rng.integers(5, size=(2, 4))
+ >>> rng.integers(5, size=(2, 4)) #doctest: +SKIP
array([[2, 1, 1, 0],
[0, 0, 0, 4]]) # may vary