summaryrefslogtreecommitdiff
path: root/doc/source/user/absolute_beginners.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/user/absolute_beginners.rst')
-rw-r--r--doc/source/user/absolute_beginners.rst14
1 files changed, 10 insertions, 4 deletions
diff --git a/doc/source/user/absolute_beginners.rst b/doc/source/user/absolute_beginners.rst
index bb570f622..27e9e1f63 100644
--- a/doc/source/user/absolute_beginners.rst
+++ b/doc/source/user/absolute_beginners.rst
@@ -391,7 +391,7 @@ this array to an array with three rows and two columns::
With ``np.reshape``, you can specify a few optional parameters::
- >>> numpy.reshape(a, newshape=(1, 6), order='C')
+ >>> np.reshape(a, newshape=(1, 6), order='C')
array([[0, 1, 2, 3, 4, 5]])
``a`` is the array to be reshaped.
@@ -613,7 +613,7 @@ How to create an array from existing data
-----
-You can easily use create a new array from a section of an existing array.
+You can easily create a new array from a section of an existing array.
Let's say you have this array:
@@ -899,12 +899,18 @@ You can aggregate matrices the same way you aggregated vectors::
.. image:: images/np_matrix_aggregation.png
You can aggregate all the values in a matrix and you can aggregate them across
-columns or rows using the ``axis`` parameter::
+columns or rows using the ``axis`` parameter. To illustrate this point, let's
+look at a slightly modified dataset::
+ >>> data = np.array([[1, 2], [5, 3], [4, 6]])
+ >>> data
+ array([[1, 2],
+ [5, 3],
+ [4, 6]])
>>> data.max(axis=0)
array([5, 6])
>>> data.max(axis=1)
- array([2, 4, 6])
+ array([2, 5, 6])
.. image:: images/np_matrix_aggregation_row.png