summaryrefslogtreecommitdiff
path: root/doc/source
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source')
-rw-r--r--doc/source/reference/c-api/types-and-structures.rst5
-rw-r--r--doc/source/user/basics.io.genfromtxt.rst14
-rw-r--r--doc/source/user/basics.rec.rst11
3 files changed, 17 insertions, 13 deletions
diff --git a/doc/source/reference/c-api/types-and-structures.rst b/doc/source/reference/c-api/types-and-structures.rst
index 605a4ae71..1ea47b498 100644
--- a/doc/source/reference/c-api/types-and-structures.rst
+++ b/doc/source/reference/c-api/types-and-structures.rst
@@ -286,6 +286,11 @@ PyArrayDescr_Type and PyArray_Descr
array like behavior. Each bit in this member is a flag which are named
as:
+ .. c:member:: int alignment
+
+ Non-NULL if this type is an array (C-contiguous) of some other type
+
+
..
dedented to allow internal linking, pending a refactoring
diff --git a/doc/source/user/basics.io.genfromtxt.rst b/doc/source/user/basics.io.genfromtxt.rst
index 8fe7565aa..6a1ba75dd 100644
--- a/doc/source/user/basics.io.genfromtxt.rst
+++ b/doc/source/user/basics.io.genfromtxt.rst
@@ -231,9 +231,7 @@ When ``dtype=None``, the type of each column is determined iteratively from
its data. We start by checking whether a string can be converted to a
boolean (that is, if the string matches ``true`` or ``false`` in lower
cases); then whether it can be converted to an integer, then to a float,
-then to a complex and eventually to a string. This behavior may be changed
-by modifying the default mapper of the
-:class:`~numpy.lib._iotools.StringConverter` class.
+then to a complex and eventually to a string.
The option ``dtype=None`` is provided for convenience. However, it is
significantly slower than setting the dtype explicitly.
@@ -514,15 +512,15 @@ output array will then be a :class:`~numpy.ma.MaskedArray`.
Shortcut functions
==================
-In addition to :func:`~numpy.genfromtxt`, the :mod:`numpy.lib.npyio` module
+In addition to :func:`~numpy.genfromtxt`, the ``numpy.lib.npyio`` module
provides several convenience functions derived from
:func:`~numpy.genfromtxt`. These functions work the same way as the
original, but they have different default values.
-:func:`~numpy.npyio.recfromtxt`
+``numpy.lib.npyio.recfromtxt``
Returns a standard :class:`numpy.recarray` (if ``usemask=False``) or a
- :class:`~numpy.ma.mrecords.MaskedRecords` array (if ``usemaske=True``). The
+ ``numpy.ma.mrecords.MaskedRecords`` array (if ``usemaske=True``). The
default dtype is ``dtype=None``, meaning that the types of each column
will be automatically determined.
-:func:`~numpy.npyio.recfromcsv`
- Like :func:`~numpy.npyio.recfromtxt`, but with a default ``delimiter=","``.
+``numpy.lib.npyio.recfromcsv``
+ Like ``numpy.lib.npyio.recfromtxt``, but with a default ``delimiter=","``.
diff --git a/doc/source/user/basics.rec.rst b/doc/source/user/basics.rec.rst
index 1e6f30506..7f487f39b 100644
--- a/doc/source/user/basics.rec.rst
+++ b/doc/source/user/basics.rec.rst
@@ -579,12 +579,13 @@ As an optional convenience numpy provides an ndarray subclass,
attribute instead of only by index.
Record arrays use a special datatype, :class:`numpy.record`, that allows
field access by attribute on the structured scalars obtained from the array.
-The :mod:`numpy.rec` module provides functions for creating recarrays from
+The ``numpy.rec`` module provides functions for creating recarrays from
various objects.
Additional helper functions for creating and manipulating structured arrays
can be found in :mod:`numpy.lib.recfunctions`.
-The simplest way to create a record array is with ``numpy.rec.array``::
+The simplest way to create a record array is with
+:func:`numpy.rec.array <numpy.core.records.array>`::
>>> recordarr = np.rec.array([(1, 2., 'Hello'), (2, 3., "World")],
... dtype=[('foo', 'i4'),('bar', 'f4'), ('baz', 'S10')])
@@ -600,14 +601,14 @@ The simplest way to create a record array is with ``numpy.rec.array``::
>>> recordarr[1].baz
b'World'
-:func:`numpy.rec.array` can convert a wide variety of arguments into record
-arrays, including structured arrays::
+:func:`numpy.rec.array <numpy.core.records.array>` can convert a wide variety
+of arguments into record arrays, including structured arrays::
>>> arr = np.array([(1, 2., 'Hello'), (2, 3., "World")],
... dtype=[('foo', 'i4'), ('bar', 'f4'), ('baz', 'S10')])
>>> recordarr = np.rec.array(arr)
-The :mod:`numpy.rec` module provides a number of other convenience functions for
+The ``numpy.rec`` module provides a number of other convenience functions for
creating record arrays, see :ref:`record array creation routines
<routines.array-creation.rec>`.