summaryrefslogtreecommitdiff
path: root/doc/source
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source')
-rw-r--r--doc/source/reference/routines.polynomials.classes.rst4
-rw-r--r--doc/source/user/absolute_beginners.rst3
-rw-r--r--doc/source/user/quickstart.rst1
3 files changed, 0 insertions, 8 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst
index fd5b0a7e3..2ce29d9d0 100644
--- a/doc/source/reference/routines.polynomials.classes.rst
+++ b/doc/source/reference/routines.polynomials.classes.rst
@@ -294,7 +294,6 @@ polynomials up to degree 5 are plotted below.
... ax = plt.plot(x, T.basis(i)(x), lw=2, label=f"$T_{i}$")
...
>>> plt.legend(loc="upper left")
- <matplotlib.legend.Legend object at 0x...>
>>> plt.show()
In the range -1 <= `x` <= 1 they are nice, equiripple functions lying between +/- 1.
@@ -309,7 +308,6 @@ The same plots over the range -2 <= `x` <= 2 look very different:
... ax = plt.plot(x, T.basis(i)(x), lw=2, label=f"$T_{i}$")
...
>>> plt.legend(loc="lower right")
- <matplotlib.legend.Legend object at 0x...>
>>> plt.show()
As can be seen, the "good" parts have shrunk to insignificance. In using
@@ -335,10 +333,8 @@ illustrated below for a fit to a noisy sine curve.
>>> y = np.sin(x) + np.random.normal(scale=.1, size=x.shape)
>>> p = T.fit(x, y, 5)
>>> plt.plot(x, y, 'o')
- [<matplotlib.lines.Line2D object at 0x...>]
>>> xx, yy = p.linspace()
>>> plt.plot(xx, yy, lw=2)
- [<matplotlib.lines.Line2D object at 0x...>]
>>> p.domain
array([0. , 6.28318531])
>>> p.window
diff --git a/doc/source/user/absolute_beginners.rst b/doc/source/user/absolute_beginners.rst
index ecbc37bfa..f74a28af4 100644
--- a/doc/source/user/absolute_beginners.rst
+++ b/doc/source/user/absolute_beginners.rst
@@ -1654,7 +1654,6 @@ If you already have Matplotlib installed, you can import it with::
All you need to do to plot your values is run::
>>> plt.plot(a)
- [<matplotlib.lines.Line2D object at 0x...>]
# If you are running from a command line, you may need to do this:
# >>> plt.show()
@@ -1668,9 +1667,7 @@ For example, you can plot a 1D array like this::
>>> x = np.linspace(0, 5, 20)
>>> y = np.linspace(0, 10, 20)
>>> plt.plot(x, y, 'purple') # line
- [<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x, y, 'o') # dots
- [<matplotlib.lines.Line2D object at 0x...>]
.. plot:: user/plots/matplotlib2.py
:align: center
diff --git a/doc/source/user/quickstart.rst b/doc/source/user/quickstart.rst
index b1a5a8b16..8e0e3b6ba 100644
--- a/doc/source/user/quickstart.rst
+++ b/doc/source/user/quickstart.rst
@@ -1274,7 +1274,6 @@ set <https://en.wikipedia.org/wiki/Mandelbrot_set>`__:
... return divtime
>>> plt.clf()
>>> plt.imshow(mandelbrot(400, 400))
- <matplotlib.image.AxesImage object at 0x...>
The second way of indexing with booleans is more similar to integer
indexing; for each dimension of the array we give a 1D boolean array