diff options
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 261 |
1 files changed, 261 insertions, 0 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index 0ef30da3a..58b80493f 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -17,3 +17,264 @@ add_newdoc('numpy.core','dtype', ('num', "Internally-used number for builtin base") ] ) + +add_newdoc('numpy.core','fromobject', +"""array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0) + +Return an array from object with the specified date-type. + +Inputs: + object - an array, any object exposing the array interface, any + object whose __array__ method returns an array, or any + (nested) sequence. + dtype - The desired data-type for the array. If not given, then + the type will be determined as the minimum type required + to hold the objects in the sequence. This argument can only + be used to 'upcast' the array. For downcasting, use the + .astype(t) method. + copy - If true, then force a copy. Otherwise a copy will only occur + if __array__ returns a copy, obj is a nested sequence, or + a copy is needed to satisfy any of the other requirements + order - Specify the order of the array. If order is 'C', then the + array will be in C-contiguous order (last-index varies the + fastest). If order is 'FORTRAN', then the returned array + will be in Fortran-contiguous order (first-index varies the + fastest). If order is None, then the returned array may + be in either C-, or Fortran-contiguous order or even + discontiguous. + subok - If True, then sub-classes will be passed-through, otherwise + the returned array will be forced to be a base-class array + ndmin - Specifies the minimum number of dimensions that the resulting + array should have. 1's will be pre-pended to the shape as + needed to meet this requirement. + +""") + +add_newdoc('numpy.core','empty', +"""empty((d1,...,dn),dtype=float,order='C') + +Return a new array of shape (d1,...,dn) and given type with all its +entries uninitialized. This can be faster than zeros. + +""") + + +add_newdoc('numpy.core','scalar', +"""scalar(dtype,obj) + +Return a new scalar array of the given type initialized with +obj. Mainly for pickle support. The dtype must be a valid data-type +descriptor. If dtype corresponds to an OBJECT descriptor, then obj +can be any object, otherwise obj must be a string. If obj is not given +it will be interpreted as None for object type and zeros for all other +types. + +""") + +add_newdoc('numpy.core','zeros', +"""zeros((d1,...,dn),dtype=float,order='C') + +Return a new array of shape (d1,...,dn) and type typecode with all +it's entries initialized to zero. + +""") + +add_newdoc('numpy.core','set_typeDict', +"""set_typeDict(dict) + +Set the internal dictionary that can look up an array type using a +registered code. + +""") + +add_newdoc('numpy.core','fromstring', +"""fromstring(string, dtype=float, count=-1, sep='') + +Return a new 1d array initialized from the raw binary data in string. + +If count is positive, the new array will have count elements, otherwise its +size is determined by the size of string. If sep is not empty then the +string is interpreted in ASCII mode and converted to the desired number type +using sep as the separator between elements (extra whitespace is ignored). + +""") + +add_newdoc('numpy.core','fromstring', +"""fromiter(iterable, dtype, count=-1) + +Return a new 1d array initialized from iterable. If count is +nonegative, the new array will have count elements, otherwise it's +size is determined by the generator. + +""") + +add_newdoc('numpy.core','fromfile', +"""fromfile(file=, dtype=float, count=-1, sep='') + +Return an array of the given data type from a (text or binary) file. +The file argument can be an open file or a string with the name of a +file to read from. If count==-1, then the entire file is read, +otherwise count is the number of items of the given type read in. If +sep is '' then read a binary file, otherwise it gives the separator +between elements in a text file. + +WARNING: This function should be used sparingly, as it is not a +platform-independent method of persistence. But it can be useful to +read in simply-formatted or binary data quickly. + +""") + +add_newdoc('numpy.core','frombuffer', +"""frombuffer(buffer=, dtype=float, count=-1, offset=0) + +Returns a 1-d array of data type dtype from buffer. The buffer +argument must be an object that exposes the buffer interface. If +count is -1 then the entire buffer is used, otherwise, count is the +size of the output. If offset is given then jump that far into the +buffer. If the buffer has data that is out not in machine byte-order, +than use a propert data type descriptor. The data will not be +byteswapped, but the array will manage it in future operations. + +""") + +add_newdoc('numpy.core','concatenate', +"""concatenate((a1, a2, ...), axis=None) + +Join arrays together. + +The tuple of sequences (a1, a2, ...) are joined along the given axis +(default is the first one) into a single numpy array. + +Example: + +>>> concatenate( ([0,1,2], [5,6,7]) ) +array([0, 1, 2, 5, 6, 7]) + +""") + +add_newdoc('numpy.core','inner', +"""inner(a,b) + +Returns the dot product of two arrays, which has shape a.shape[:-1] + +b.shape[:-1] with elements computed by the product of the elements +from the last dimensions of a and b. + +""") + +add_newdoc('numpy.core','matrixproduct', +"""dot(a,v) + +Return matrix-multiplication between a and b. + +The product-sum is over the last dimension of a and the +second-to-last dimension of b. + +""") + +add_newdoc('numpy.core','fastCopyAndTranspose', +"""_fastCopyAndTranspose(a)""") + +add_newdoc('numpy.core','cross_correlate', +"""cross_correlate(a,v, mode=0)""") + +add_newdoc('numpy.core','arange', +"""arange([start,] stop[, step,], dtype=None) + +For integer arguments, just like range() except it returns an array +whose type can be specified by the keyword argument dtype. If dtype +is not specified, the type of the result is deduced from the type of +the arguments. + +For floating point arguments, the length of the result is ceil((stop - +start)/step). This rule may result in the last element of the result +being greater than stop. + +""") + +add_newdoc('numpy.core','_get_ndarray_c_version', +"""_get_ndarray_c_version() + +Return the compile time NDARRAY_VERSION number. + +""") + +add_newdoc('numpy.core','_reconstruct', +"""_reconstruct(subtype, shape, dtype) + +Construct an empty array. Used by Pickles. + +""") + + +add_newdoc('numpy.core','set_string_function', +"""set_string_function(f, repr=1) + +Set the python function f to be the function used to obtain a pretty +printable string version of an array whenever an array is printed. +f(M) should expect an array argument M, and should return a string +consisting of the desired representation of M for printing. + +""") + +add_newdoc('numpy.core','set_numeric_ops', +"""set_numeric_ops(op=func, ...) + +Set some or all of the number methods for all array objects. Don't +forget **dict can be used as the argument list. Return the functions +that were replaced, which can be stored and set later. + +""") + +add_newdoc('numpy.core','where', +"""where(condition, | x, y) + +The result is shaped like condition and has elements of x and y where +condition is respectively true or false. If x or y are not given, +then it is equivalent to condition.nonzero(). + +To group the indices by element, rather than dimension, use + + transpose(where(condition, | x, y)) + +instead. This always results in a 2d array, with a row of indices for +each element that satisfies the condition. + +""") + + +add_newdoc('numpy.core','lexsort', +"""lexsort(keys=, axis=-1) + +Return an array of indices similar to argsort, except the sorting is +done using the provided sorting keys. First the sort is done using +key[0], then the resulting list of indices is further manipulated by +sorting on key[1], and so forth. The result is a sort on multiple +keys. If the keys represented columns of a spreadsheet, for example, +this would sort using multiple columns. The keys argument must be a +sequence of things that can be converted to arrays of the same shape. + +""") + +add_newdoc('numpy.core','can_cast_safely', +"""can_cast_safely(from=d1, to=d2) + +Returns True if data type d1 can be cast to data type d2 without +losing precision. + +""") + +add_newdoc('numpy.core','new_buffer', +"""newbuffer(size) + +Return a new uninitialized buffer object of size bytes + +""") + +add_newdoc('numpy.core','getbuffer', +"""getbuffer(obj [,offset[, size]]) + +Create a buffer object from the given object referencing a slice of +length size starting at offset. Default is the entire buffer. A +read-write buffer is attempted followed by a read-only buffer. + +""") |