summaryrefslogtreecommitdiff
path: root/numpy/array_api/_set_functions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/array_api/_set_functions.py')
-rw-r--r--numpy/array_api/_set_functions.py106
1 files changed, 106 insertions, 0 deletions
diff --git a/numpy/array_api/_set_functions.py b/numpy/array_api/_set_functions.py
new file mode 100644
index 000000000..0b4132cf8
--- /dev/null
+++ b/numpy/array_api/_set_functions.py
@@ -0,0 +1,106 @@
+from __future__ import annotations
+
+from ._array_object import Array
+
+from typing import NamedTuple
+
+import numpy as np
+
+# Note: np.unique() is split into four functions in the array API:
+# unique_all, unique_counts, unique_inverse, and unique_values (this is done
+# to remove polymorphic return types).
+
+# Note: The various unique() functions are supposed to return multiple NaNs.
+# This does not match the NumPy behavior, however, this is currently left as a
+# TODO in this implementation as this behavior may be reverted in np.unique().
+# See https://github.com/numpy/numpy/issues/20326.
+
+# Note: The functions here return a namedtuple (np.unique() returns a normal
+# tuple).
+
+class UniqueAllResult(NamedTuple):
+ values: Array
+ indices: Array
+ inverse_indices: Array
+ counts: Array
+
+
+class UniqueCountsResult(NamedTuple):
+ values: Array
+ counts: Array
+
+
+class UniqueInverseResult(NamedTuple):
+ values: Array
+ inverse_indices: Array
+
+
+def unique_all(x: Array, /) -> UniqueAllResult:
+ """
+ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
+
+ See its docstring for more information.
+ """
+ values, indices, inverse_indices, counts = np.unique(
+ x._array,
+ return_counts=True,
+ return_index=True,
+ return_inverse=True,
+ equal_nan=False,
+ )
+ # np.unique() flattens inverse indices, but they need to share x's shape
+ # See https://github.com/numpy/numpy/issues/20638
+ inverse_indices = inverse_indices.reshape(x.shape)
+ return UniqueAllResult(
+ Array._new(values),
+ Array._new(indices),
+ Array._new(inverse_indices),
+ Array._new(counts),
+ )
+
+
+def unique_counts(x: Array, /) -> UniqueCountsResult:
+ res = np.unique(
+ x._array,
+ return_counts=True,
+ return_index=False,
+ return_inverse=False,
+ equal_nan=False,
+ )
+
+ return UniqueCountsResult(*[Array._new(i) for i in res])
+
+
+def unique_inverse(x: Array, /) -> UniqueInverseResult:
+ """
+ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
+
+ See its docstring for more information.
+ """
+ values, inverse_indices = np.unique(
+ x._array,
+ return_counts=False,
+ return_index=False,
+ return_inverse=True,
+ equal_nan=False,
+ )
+ # np.unique() flattens inverse indices, but they need to share x's shape
+ # See https://github.com/numpy/numpy/issues/20638
+ inverse_indices = inverse_indices.reshape(x.shape)
+ return UniqueInverseResult(Array._new(values), Array._new(inverse_indices))
+
+
+def unique_values(x: Array, /) -> Array:
+ """
+ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
+
+ See its docstring for more information.
+ """
+ res = np.unique(
+ x._array,
+ return_counts=False,
+ return_index=False,
+ return_inverse=False,
+ equal_nan=False,
+ )
+ return Array._new(res)