diff options
Diffstat (limited to 'numpy/array_api')
-rw-r--r-- | numpy/array_api/__init__.py | 171 | ||||
-rw-r--r-- | numpy/array_api/_array_object.py | 983 | ||||
-rw-r--r-- | numpy/array_api/_constants.py | 6 | ||||
-rw-r--r-- | numpy/array_api/_creation_functions.py | 216 | ||||
-rw-r--r-- | numpy/array_api/_data_type_functions.py | 117 | ||||
-rw-r--r-- | numpy/array_api/_dtypes.py | 100 | ||||
-rw-r--r-- | numpy/array_api/_elementwise_functions.py | 659 | ||||
-rw-r--r-- | numpy/array_api/_linear_algebra_functions.py | 58 | ||||
-rw-r--r-- | numpy/array_api/_manipulation_functions.py | 71 | ||||
-rw-r--r-- | numpy/array_api/_searching_functions.py | 44 | ||||
-rw-r--r-- | numpy/array_api/_set_functions.py | 15 | ||||
-rw-r--r-- | numpy/array_api/_sorting_functions.py | 31 | ||||
-rw-r--r-- | numpy/array_api/_statistical_functions.py | 30 | ||||
-rw-r--r-- | numpy/array_api/_typing.py | 26 | ||||
-rw-r--r-- | numpy/array_api/_utility_functions.py | 23 | ||||
-rw-r--r-- | numpy/array_api/tests/__init__.py | 7 | ||||
-rw-r--r-- | numpy/array_api/tests/test_array_object.py | 250 | ||||
-rw-r--r-- | numpy/array_api/tests/test_creation_functions.py | 103 | ||||
-rw-r--r-- | numpy/array_api/tests/test_elementwise_functions.py | 110 |
19 files changed, 3020 insertions, 0 deletions
diff --git a/numpy/array_api/__init__.py b/numpy/array_api/__init__.py new file mode 100644 index 000000000..4650e3db8 --- /dev/null +++ b/numpy/array_api/__init__.py @@ -0,0 +1,171 @@ +""" +A NumPy sub-namespace that conforms to the Python array API standard. + +This submodule accompanies NEP 47, which proposes its inclusion in NumPy. + +This is a proof-of-concept namespace that wraps the corresponding NumPy +functions to give a conforming implementation of the Python array API standard +(https://data-apis.github.io/array-api/latest/). The standard is currently in +an RFC phase and comments on it are both welcome and encouraged. Comments +should be made either at https://github.com/data-apis/array-api or at +https://github.com/data-apis/consortium-feedback/discussions. + +NumPy already follows the proposed spec for the most part, so this module +serves mostly as a thin wrapper around it. However, NumPy also implements a +lot of behavior that is not included in the spec, so this serves as a +restricted subset of the API. Only those functions that are part of the spec +are included in this namespace, and all functions are given with the exact +signature given in the spec, including the use of position-only arguments, and +omitting any extra keyword arguments implemented by NumPy but not part of the +spec. The behavior of some functions is also modified from the NumPy behavior +to conform to the standard. Note that the underlying array object itself is +wrapped in a wrapper Array() class, but is otherwise unchanged. This submodule +is implemented in pure Python with no C extensions. + +The array API spec is designed as a "minimal API subset" and explicitly allows +libraries to include behaviors not specified by it. But users of this module +that intend to write portable code should be aware that only those behaviors +that are listed in the spec are guaranteed to be implemented across libraries. +Consequently, the NumPy implementation was chosen to be both conforming and +minimal, so that users can use this implementation of the array API namespace +and be sure that behaviors that it defines will be available in conforming +namespaces from other libraries. + +A few notes about the current state of this submodule: + +- There is a test suite that tests modules against the array API standard at + https://github.com/data-apis/array-api-tests. The test suite is still a work + in progress, but the existing tests pass on this module, with a few + exceptions: + + - Device support is not yet implemented in NumPy + (https://data-apis.github.io/array-api/latest/design_topics/device_support.html). + As a result, the `device` attribute of the array object is missing, and + array creation functions that take the `device` keyword argument will fail + with NotImplementedError. + + - DLPack support (see https://github.com/data-apis/array-api/pull/106) is + not included here, as it requires a full implementation in NumPy proper + first. + + - The linear algebra extension in the spec will be added in a future pull +request. + + The test suite is not yet complete, and even the tests that exist are not + guaranteed to give a comprehensive coverage of the spec. Therefore, those + reviewing this submodule should refer to the standard documents themselves. + +- There is a custom array object, numpy.array_api.Array, which is returned + by all functions in this module. All functions in the array API namespace + implicitly assume that they will only receive this object as input. The only + way to create instances of this object is to use one of the array creation + functions. It does not have a public constructor on the object itself. The + object is a small wrapper Python class around numpy.ndarray. The main + purpose of it is to restrict the namespace of the array object to only those + dtypes and only those methods that are required by the spec, as well as to + limit/change certain behavior that differs in the spec. In particular: + + - The array API namespace does not have scalar objects, only 0-d arrays. + Operations in on Array that would create a scalar in NumPy create a 0-d + array. + + - Indexing: Only a subset of indices supported by NumPy are required by the + spec. The Array object restricts indexing to only allow those types of + indices that are required by the spec. See the docstring of the + numpy.array_api.Array._validate_indices helper function for more + information. + + - Type promotion: Some type promotion rules are different in the spec. In + particular, the spec does not have any value-based casting. The + Array._promote_scalar method promotes Python scalars to arrays, + disallowing cross-type promotions like int -> float64 that are not allowed + in the spec. Array._normalize_two_args works around some type promotion + quirks in NumPy, particularly, value-based casting that occurs when one + argument of an operation is a 0-d array. + +- All functions include type annotations, corresponding to those given in the + spec (see _typing.py for definitions of some custom types). These do not + currently fully pass mypy due to some limitations in mypy. + +- Dtype objects are just the NumPy dtype objects, e.g., float64 = + np.dtype('float64'). The spec does not require any behavior on these dtype + objects other than that they be accessible by name and be comparable by + equality, but it was considered too much extra complexity to create custom + objects to represent dtypes. + +- The wrapper functions in this module do not do any type checking for things + that would be impossible without leaving the array_api namespace. For + example, since the array API dtype objects are just the NumPy dtype objects, + one could pass in a non-spec NumPy dtype into a function. + +- All places where the implementations in this submodule are known to deviate + from their corresponding functions in NumPy are marked with "# Note" + comments. Reviewers should make note of these comments. + +Still TODO in this module are: + +- Device support and DLPack support are not yet implemented. These require + support in NumPy itself first. + +- The a non-default value for the `copy` keyword argument is not yet + implemented on asarray. This requires support in numpy.asarray() first. + +- Some functions are not yet fully tested in the array API test suite, and may + require updates that are not yet known until the tests are written. + +""" + +__all__ = [] + +from ._constants import e, inf, nan, pi + +__all__ += ['e', 'inf', 'nan', 'pi'] + +from ._creation_functions import asarray, arange, empty, empty_like, eye, from_dlpack, full, full_like, linspace, meshgrid, ones, ones_like, zeros, zeros_like + +__all__ += ['asarray', 'arange', 'empty', 'empty_like', 'eye', 'from_dlpack', 'full', 'full_like', 'linspace', 'meshgrid', 'ones', 'ones_like', 'zeros', 'zeros_like'] + +from ._data_type_functions import broadcast_arrays, broadcast_to, can_cast, finfo, iinfo, result_type + +__all__ += ['broadcast_arrays', 'broadcast_to', 'can_cast', 'finfo', 'iinfo', 'result_type'] + +from ._dtypes import int8, int16, int32, int64, uint8, uint16, uint32, uint64, float32, float64, bool + +__all__ += ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'float32', 'float64', 'bool'] + +from ._elementwise_functions import abs, acos, acosh, add, asin, asinh, atan, atan2, atanh, bitwise_and, bitwise_left_shift, bitwise_invert, bitwise_or, bitwise_right_shift, bitwise_xor, ceil, cos, cosh, divide, equal, exp, expm1, floor, floor_divide, greater, greater_equal, isfinite, isinf, isnan, less, less_equal, log, log1p, log2, log10, logaddexp, logical_and, logical_not, logical_or, logical_xor, multiply, negative, not_equal, positive, pow, remainder, round, sign, sin, sinh, square, sqrt, subtract, tan, tanh, trunc + +__all__ += ['abs', 'acos', 'acosh', 'add', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'bitwise_and', 'bitwise_left_shift', 'bitwise_invert', 'bitwise_or', 'bitwise_right_shift', 'bitwise_xor', 'ceil', 'cos', 'cosh', 'divide', 'equal', 'exp', 'expm1', 'floor', 'floor_divide', 'greater', 'greater_equal', 'isfinite', 'isinf', 'isnan', 'less', 'less_equal', 'log', 'log1p', 'log2', 'log10', 'logaddexp', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'multiply', 'negative', 'not_equal', 'positive', 'pow', 'remainder', 'round', 'sign', 'sin', 'sinh', 'square', 'sqrt', 'subtract', 'tan', 'tanh', 'trunc'] + +# einsum is not yet implemented in the array API spec. + +# from ._linear_algebra_functions import einsum +# __all__ += ['einsum'] + +from ._linear_algebra_functions import matmul, tensordot, transpose, vecdot + +__all__ += ['matmul', 'tensordot', 'transpose', 'vecdot'] + +from ._manipulation_functions import concat, expand_dims, flip, reshape, roll, squeeze, stack + +__all__ += ['concat', 'expand_dims', 'flip', 'reshape', 'roll', 'squeeze', 'stack'] + +from ._searching_functions import argmax, argmin, nonzero, where + +__all__ += ['argmax', 'argmin', 'nonzero', 'where'] + +from ._set_functions import unique + +__all__ += ['unique'] + +from ._sorting_functions import argsort, sort + +__all__ += ['argsort', 'sort'] + +from ._statistical_functions import max, mean, min, prod, std, sum, var + +__all__ += ['max', 'mean', 'min', 'prod', 'std', 'sum', 'var'] + +from ._utility_functions import all, any + +__all__ += ['all', 'any'] diff --git a/numpy/array_api/_array_object.py b/numpy/array_api/_array_object.py new file mode 100644 index 000000000..24957fde6 --- /dev/null +++ b/numpy/array_api/_array_object.py @@ -0,0 +1,983 @@ +""" +Wrapper class around the ndarray object for the array API standard. + +The array API standard defines some behaviors differently than ndarray, in +particular, type promotion rules are different (the standard has no +value-based casting). The standard also specifies a more limited subset of +array methods and functionalities than are implemented on ndarray. Since the +goal of the array_api namespace is to be a minimal implementation of the array +API standard, we need to define a separate wrapper class for the array_api +namespace. + +The standard compliant class is only a wrapper class. It is *not* a subclass +of ndarray. +""" + +from __future__ import annotations + +import operator +from enum import IntEnum +from ._creation_functions import asarray +from ._dtypes import (_all_dtypes, _boolean_dtypes, _integer_dtypes, + _integer_or_boolean_dtypes, _floating_dtypes, _numeric_dtypes) + +from typing import TYPE_CHECKING, Any, Optional, Tuple, Union +if TYPE_CHECKING: + from ._typing import PyCapsule, Device, Dtype + +import numpy as np + +class Array: + """ + n-d array object for the array API namespace. + + See the docstring of :py:obj:`np.ndarray <numpy.ndarray>` for more + information. + + This is a wrapper around numpy.ndarray that restricts the usage to only + those things that are required by the array API namespace. Note, + attributes on this object that start with a single underscore are not part + of the API specification and should only be used internally. This object + should not be constructed directly. Rather, use one of the creation + functions, such as asarray(). + + """ + # Use a custom constructor instead of __init__, as manually initializing + # this class is not supported API. + @classmethod + def _new(cls, x, /): + """ + This is a private method for initializing the array API Array + object. + + Functions outside of the array_api submodule should not use this + method. Use one of the creation functions instead, such as + ``asarray``. + + """ + obj = super().__new__(cls) + # Note: The spec does not have array scalars, only 0-D arrays. + if isinstance(x, np.generic): + # Convert the array scalar to a 0-D array + x = np.asarray(x) + if x.dtype not in _all_dtypes: + raise TypeError(f"The array_api namespace does not support the dtype '{x.dtype}'") + obj._array = x + return obj + + # Prevent Array() from working + def __new__(cls, *args, **kwargs): + raise TypeError("The array_api Array object should not be instantiated directly. Use an array creation function, such as asarray(), instead.") + + # These functions are not required by the spec, but are implemented for + # the sake of usability. + + def __str__(self: Array, /) -> str: + """ + Performs the operation __str__. + """ + return self._array.__str__().replace('array', 'Array') + + def __repr__(self: Array, /) -> str: + """ + Performs the operation __repr__. + """ + return f"Array({np.array2string(self._array, separator=', ')}, dtype={self.dtype.name})" + + # These are various helper functions to make the array behavior match the + # spec in places where it either deviates from or is more strict than + # NumPy behavior + + def _check_allowed_dtypes(self, other, dtype_category, op): + """ + Helper function for operators to only allow specific input dtypes + + Use like + + other = self._check_allowed_dtypes(other, 'numeric', '__add__') + if other is NotImplemented: + return other + """ + from ._dtypes import _result_type + + _dtypes = { + 'all': _all_dtypes, + 'numeric': _numeric_dtypes, + 'integer': _integer_dtypes, + 'integer or boolean': _integer_or_boolean_dtypes, + 'boolean': _boolean_dtypes, + 'floating-point': _floating_dtypes, + } + + if self.dtype not in _dtypes[dtype_category]: + raise TypeError(f'Only {dtype_category} dtypes are allowed in {op}') + if isinstance(other, (int, float, bool)): + other = self._promote_scalar(other) + elif isinstance(other, Array): + if other.dtype not in _dtypes[dtype_category]: + raise TypeError(f'Only {dtype_category} dtypes are allowed in {op}') + else: + return NotImplemented + + # This will raise TypeError for type combinations that are not allowed + # to promote in the spec (even if the NumPy array operator would + # promote them). + res_dtype = _result_type(self.dtype, other.dtype) + if op.startswith('__i'): + # Note: NumPy will allow in-place operators in some cases where + # the type promoted operator does not match the left-hand side + # operand. For example, + + # >>> a = np.array(1, dtype=np.int8) + # >>> a += np.array(1, dtype=np.int16) + + # The spec explicitly disallows this. + if res_dtype != self.dtype: + raise TypeError(f"Cannot perform {op} with dtypes {self.dtype} and {other.dtype}") + + return other + + # Helper function to match the type promotion rules in the spec + def _promote_scalar(self, scalar): + """ + Returns a promoted version of a Python scalar appropriate for use with + operations on self. + + This may raise an OverflowError in cases where the scalar is an + integer that is too large to fit in a NumPy integer dtype, or + TypeError when the scalar type is incompatible with the dtype of self. + """ + if isinstance(scalar, bool): + if self.dtype not in _boolean_dtypes: + raise TypeError("Python bool scalars can only be promoted with bool arrays") + elif isinstance(scalar, int): + if self.dtype in _boolean_dtypes: + raise TypeError("Python int scalars cannot be promoted with bool arrays") + elif isinstance(scalar, float): + if self.dtype not in _floating_dtypes: + raise TypeError("Python float scalars can only be promoted with floating-point arrays.") + else: + raise TypeError("'scalar' must be a Python scalar") + + # Note: the spec only specifies integer-dtype/int promotion + # behavior for integers within the bounds of the integer dtype. + # Outside of those bounds we use the default NumPy behavior (either + # cast or raise OverflowError). + return Array._new(np.array(scalar, self.dtype)) + + @staticmethod + def _normalize_two_args(x1, x2): + """ + Normalize inputs to two arg functions to fix type promotion rules + + NumPy deviates from the spec type promotion rules in cases where one + argument is 0-dimensional and the other is not. For example: + + >>> import numpy as np + >>> a = np.array([1.0], dtype=np.float32) + >>> b = np.array(1.0, dtype=np.float64) + >>> np.add(a, b) # The spec says this should be float64 + array([2.], dtype=float32) + + To fix this, we add a dimension to the 0-dimension array before passing it + through. This works because a dimension would be added anyway from + broadcasting, so the resulting shape is the same, but this prevents NumPy + from not promoting the dtype. + """ + # Another option would be to use signature=(x1.dtype, x2.dtype, None), + # but that only works for ufuncs, so we would have to call the ufuncs + # directly in the operator methods. One should also note that this + # sort of trick wouldn't work for functions like searchsorted, which + # don't do normal broadcasting, but there aren't any functions like + # that in the array API namespace. + if x1.ndim == 0 and x2.ndim != 0: + # The _array[None] workaround was chosen because it is relatively + # performant. broadcast_to(x1._array, x2.shape) is much slower. We + # could also manually type promote x2, but that is more complicated + # and about the same performance as this. + x1 = Array._new(x1._array[None]) + elif x2.ndim == 0 and x1.ndim != 0: + x2 = Array._new(x2._array[None]) + return (x1, x2) + + # Note: A large fraction of allowed indices are disallowed here (see the + # docstring below) + @staticmethod + def _validate_index(key, shape): + """ + Validate an index according to the array API. + + The array API specification only requires a subset of indices that are + supported by NumPy. This function will reject any index that is + allowed by NumPy but not required by the array API specification. We + always raise ``IndexError`` on such indices (the spec does not require + any specific behavior on them, but this makes the NumPy array API + namespace a minimal implementation of the spec). See + https://data-apis.org/array-api/latest/API_specification/indexing.html + for the full list of required indexing behavior + + This function either raises IndexError if the index ``key`` is + invalid, or a new key to be used in place of ``key`` in indexing. It + only raises ``IndexError`` on indices that are not already rejected by + NumPy, as NumPy will already raise the appropriate error on such + indices. ``shape`` may be None, in which case, only cases that are + independent of the array shape are checked. + + The following cases are allowed by NumPy, but not specified by the array + API specification: + + - The start and stop of a slice may not be out of bounds. In + particular, for a slice ``i:j:k`` on an axis of size ``n``, only the + following are allowed: + + - ``i`` or ``j`` omitted (``None``). + - ``-n <= i <= max(0, n - 1)``. + - For ``k > 0`` or ``k`` omitted (``None``), ``-n <= j <= n``. + - For ``k < 0``, ``-n - 1 <= j <= max(0, n - 1)``. + + - Boolean array indices are not allowed as part of a larger tuple + index. + + - Integer array indices are not allowed (with the exception of 0-D + arrays, which are treated the same as scalars). + + Additionally, it should be noted that indices that would return a + scalar in NumPy will return a 0-D array. Array scalars are not allowed + in the specification, only 0-D arrays. This is done in the + ``Array._new`` constructor, not this function. + + """ + if isinstance(key, slice): + if shape is None: + return key + if shape == (): + return key + size = shape[0] + # Ensure invalid slice entries are passed through. + if key.start is not None: + try: + operator.index(key.start) + except TypeError: + return key + if not (-size <= key.start <= max(0, size - 1)): + raise IndexError("Slices with out-of-bounds start are not allowed in the array API namespace") + if key.stop is not None: + try: + operator.index(key.stop) + except TypeError: + return key + step = 1 if key.step is None else key.step + if (step > 0 and not (-size <= key.stop <= size) + or step < 0 and not (-size - 1 <= key.stop <= max(0, size - 1))): + raise IndexError("Slices with out-of-bounds stop are not allowed in the array API namespace") + return key + + elif isinstance(key, tuple): + key = tuple(Array._validate_index(idx, None) for idx in key) + + for idx in key: + if isinstance(idx, np.ndarray) and idx.dtype in _boolean_dtypes or isinstance(idx, (bool, np.bool_)): + if len(key) == 1: + return key + raise IndexError("Boolean array indices combined with other indices are not allowed in the array API namespace") + if isinstance(idx, tuple): + raise IndexError("Nested tuple indices are not allowed in the array API namespace") + + if shape is None: + return key + n_ellipsis = key.count(...) + if n_ellipsis > 1: + return key + ellipsis_i = key.index(...) if n_ellipsis else len(key) + + for idx, size in list(zip(key[:ellipsis_i], shape)) + list(zip(key[:ellipsis_i:-1], shape[:ellipsis_i:-1])): + Array._validate_index(idx, (size,)) + return key + elif isinstance(key, bool): + return key + elif isinstance(key, Array): + if key.dtype in _integer_dtypes: + if key.ndim != 0: + raise IndexError("Non-zero dimensional integer array indices are not allowed in the array API namespace") + return key._array + elif key is Ellipsis: + return key + elif key is None: + raise IndexError("newaxis indices are not allowed in the array API namespace") + try: + return operator.index(key) + except TypeError: + # Note: This also omits boolean arrays that are not already in + # Array() form, like a list of booleans. + raise IndexError("Only integers, slices (`:`), ellipsis (`...`), and boolean arrays are valid indices in the array API namespace") + + # Everything below this line is required by the spec. + + def __abs__(self: Array, /) -> Array: + """ + Performs the operation __abs__. + """ + if self.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in __abs__') + res = self._array.__abs__() + return self.__class__._new(res) + + def __add__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __add__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__add__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__add__(other._array) + return self.__class__._new(res) + + def __and__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __and__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__and__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__and__(other._array) + return self.__class__._new(res) + + def __array_namespace__(self: Array, /, *, api_version: Optional[str] = None) -> object: + if api_version is not None and not api_version.startswith('2021.'): + raise ValueError(f"Unrecognized array API version: {api_version!r}") + from numpy import array_api + return array_api + + def __bool__(self: Array, /) -> bool: + """ + Performs the operation __bool__. + """ + # Note: This is an error here. + if self._array.ndim != 0: + raise TypeError("bool is only allowed on arrays with 0 dimensions") + res = self._array.__bool__() + return res + + def __dlpack__(self: Array, /, *, stream: None = None) -> PyCapsule: + """ + Performs the operation __dlpack__. + """ + res = self._array.__dlpack__(stream=stream) + return self.__class__._new(res) + + def __dlpack_device__(self: Array, /) -> Tuple[IntEnum, int]: + """ + Performs the operation __dlpack_device__. + """ + # Note: device support is required for this + res = self._array.__dlpack_device__() + return self.__class__._new(res) + + def __eq__(self: Array, other: Union[int, float, bool, Array], /) -> Array: + """ + Performs the operation __eq__. + """ + # Even though "all" dtypes are allowed, we still require them to be + # promotable with each other. + other = self._check_allowed_dtypes(other, 'all', '__eq__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__eq__(other._array) + return self.__class__._new(res) + + def __float__(self: Array, /) -> float: + """ + Performs the operation __float__. + """ + # Note: This is an error here. + if self._array.ndim != 0: + raise TypeError("float is only allowed on arrays with 0 dimensions") + res = self._array.__float__() + return res + + def __floordiv__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __floordiv__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__floordiv__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__floordiv__(other._array) + return self.__class__._new(res) + + def __ge__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __ge__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__ge__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__ge__(other._array) + return self.__class__._new(res) + + def __getitem__(self: Array, key: Union[int, slice, ellipsis, Tuple[Union[int, slice, ellipsis], ...], Array], /) -> Array: + """ + Performs the operation __getitem__. + """ + # Note: Only indices required by the spec are allowed. See the + # docstring of _validate_index + key = self._validate_index(key, self.shape) + res = self._array.__getitem__(key) + return self._new(res) + + def __gt__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __gt__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__gt__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__gt__(other._array) + return self.__class__._new(res) + + def __int__(self: Array, /) -> int: + """ + Performs the operation __int__. + """ + # Note: This is an error here. + if self._array.ndim != 0: + raise TypeError("int is only allowed on arrays with 0 dimensions") + res = self._array.__int__() + return res + + def __invert__(self: Array, /) -> Array: + """ + Performs the operation __invert__. + """ + if self.dtype not in _integer_or_boolean_dtypes: + raise TypeError('Only integer or boolean dtypes are allowed in __invert__') + res = self._array.__invert__() + return self.__class__._new(res) + + def __le__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __le__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__le__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__le__(other._array) + return self.__class__._new(res) + + # Note: __len__ may end up being removed from the array API spec. + def __len__(self, /) -> int: + """ + Performs the operation __len__. + """ + res = self._array.__len__() + return self.__class__._new(res) + + def __lshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __lshift__. + """ + other = self._check_allowed_dtypes(other, 'integer', '__lshift__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__lshift__(other._array) + return self.__class__._new(res) + + def __lt__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __lt__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__lt__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__lt__(other._array) + return self.__class__._new(res) + + def __matmul__(self: Array, other: Array, /) -> Array: + """ + Performs the operation __matmul__. + """ + # matmul is not defined for scalars, but without this, we may get + # the wrong error message from asarray. + other = self._check_allowed_dtypes(other, 'numeric', '__matmul__') + if other is NotImplemented: + return other + res = self._array.__matmul__(other._array) + return self.__class__._new(res) + + def __mod__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __mod__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__mod__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__mod__(other._array) + return self.__class__._new(res) + + def __mul__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __mul__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__mul__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__mul__(other._array) + return self.__class__._new(res) + + def __ne__(self: Array, other: Union[int, float, bool, Array], /) -> Array: + """ + Performs the operation __ne__. + """ + other = self._check_allowed_dtypes(other, 'all', '__ne__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__ne__(other._array) + return self.__class__._new(res) + + def __neg__(self: Array, /) -> Array: + """ + Performs the operation __neg__. + """ + if self.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in __neg__') + res = self._array.__neg__() + return self.__class__._new(res) + + def __or__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __or__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__or__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__or__(other._array) + return self.__class__._new(res) + + def __pos__(self: Array, /) -> Array: + """ + Performs the operation __pos__. + """ + if self.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in __pos__') + res = self._array.__pos__() + return self.__class__._new(res) + + # PEP 484 requires int to be a subtype of float, but __pow__ should not + # accept int. + def __pow__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __pow__. + """ + from ._elementwise_functions import pow + + other = self._check_allowed_dtypes(other, 'floating-point', '__pow__') + if other is NotImplemented: + return other + # Note: NumPy's __pow__ does not follow type promotion rules for 0-d + # arrays, so we use pow() here instead. + return pow(self, other) + + def __rshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __rshift__. + """ + other = self._check_allowed_dtypes(other, 'integer', '__rshift__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rshift__(other._array) + return self.__class__._new(res) + + def __setitem__(self, key: Union[int, slice, ellipsis, Tuple[Union[int, slice, ellipsis], ...], Array], value: Union[int, float, bool, Array], /) -> Array: + """ + Performs the operation __setitem__. + """ + # Note: Only indices required by the spec are allowed. See the + # docstring of _validate_index + key = self._validate_index(key, self.shape) + self._array.__setitem__(key, asarray(value)._array) + + def __sub__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __sub__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__sub__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__sub__(other._array) + return self.__class__._new(res) + + # PEP 484 requires int to be a subtype of float, but __truediv__ should + # not accept int. + def __truediv__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __truediv__. + """ + other = self._check_allowed_dtypes(other, 'floating-point', '__truediv__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__truediv__(other._array) + return self.__class__._new(res) + + def __xor__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __xor__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__xor__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__xor__(other._array) + return self.__class__._new(res) + + def __iadd__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __iadd__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__iadd__') + if other is NotImplemented: + return other + self._array.__iadd__(other._array) + return self + + def __radd__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __radd__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__radd__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__radd__(other._array) + return self.__class__._new(res) + + def __iand__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __iand__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__iand__') + if other is NotImplemented: + return other + self._array.__iand__(other._array) + return self + + def __rand__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __rand__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__rand__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rand__(other._array) + return self.__class__._new(res) + + def __ifloordiv__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __ifloordiv__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__ifloordiv__') + if other is NotImplemented: + return other + self._array.__ifloordiv__(other._array) + return self + + def __rfloordiv__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rfloordiv__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__rfloordiv__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rfloordiv__(other._array) + return self.__class__._new(res) + + def __ilshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __ilshift__. + """ + other = self._check_allowed_dtypes(other, 'integer', '__ilshift__') + if other is NotImplemented: + return other + self._array.__ilshift__(other._array) + return self + + def __rlshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __rlshift__. + """ + other = self._check_allowed_dtypes(other, 'integer', '__rlshift__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rlshift__(other._array) + return self.__class__._new(res) + + def __imatmul__(self: Array, other: Array, /) -> Array: + """ + Performs the operation __imatmul__. + """ + # Note: NumPy does not implement __imatmul__. + + # matmul is not defined for scalars, but without this, we may get + # the wrong error message from asarray. + other = self._check_allowed_dtypes(other, 'numeric', '__imatmul__') + if other is NotImplemented: + return other + + # __imatmul__ can only be allowed when it would not change the shape + # of self. + other_shape = other.shape + if self.shape == () or other_shape == (): + raise ValueError("@= requires at least one dimension") + if len(other_shape) == 1 or other_shape[-1] != other_shape[-2]: + raise ValueError("@= cannot change the shape of the input array") + self._array[:] = self._array.__matmul__(other._array) + return self + + def __rmatmul__(self: Array, other: Array, /) -> Array: + """ + Performs the operation __rmatmul__. + """ + # matmul is not defined for scalars, but without this, we may get + # the wrong error message from asarray. + other = self._check_allowed_dtypes(other, 'numeric', '__rmatmul__') + if other is NotImplemented: + return other + res = self._array.__rmatmul__(other._array) + return self.__class__._new(res) + + def __imod__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __imod__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__imod__') + if other is NotImplemented: + return other + self._array.__imod__(other._array) + return self + + def __rmod__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rmod__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__rmod__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rmod__(other._array) + return self.__class__._new(res) + + def __imul__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __imul__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__imul__') + if other is NotImplemented: + return other + self._array.__imul__(other._array) + return self + + def __rmul__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rmul__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__rmul__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rmul__(other._array) + return self.__class__._new(res) + + def __ior__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __ior__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__ior__') + if other is NotImplemented: + return other + self._array.__ior__(other._array) + return self + + def __ror__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __ror__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__ror__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__ror__(other._array) + return self.__class__._new(res) + + def __ipow__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __ipow__. + """ + other = self._check_allowed_dtypes(other, 'floating-point', '__ipow__') + if other is NotImplemented: + return other + self._array.__ipow__(other._array) + return self + + def __rpow__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __rpow__. + """ + from ._elementwise_functions import pow + + other = self._check_allowed_dtypes(other, 'floating-point', '__rpow__') + if other is NotImplemented: + return other + # Note: NumPy's __pow__ does not follow the spec type promotion rules + # for 0-d arrays, so we use pow() here instead. + return pow(other, self) + + def __irshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __irshift__. + """ + other = self._check_allowed_dtypes(other, 'integer', '__irshift__') + if other is NotImplemented: + return other + self._array.__irshift__(other._array) + return self + + def __rrshift__(self: Array, other: Union[int, Array], /) -> Array: + """ + Performs the operation __rrshift__. + """ + other = self._check_allowed_dtypes(other, 'integer', '__rrshift__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rrshift__(other._array) + return self.__class__._new(res) + + def __isub__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __isub__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__isub__') + if other is NotImplemented: + return other + self._array.__isub__(other._array) + return self + + def __rsub__(self: Array, other: Union[int, float, Array], /) -> Array: + """ + Performs the operation __rsub__. + """ + other = self._check_allowed_dtypes(other, 'numeric', '__rsub__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rsub__(other._array) + return self.__class__._new(res) + + def __itruediv__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __itruediv__. + """ + other = self._check_allowed_dtypes(other, 'floating-point', '__itruediv__') + if other is NotImplemented: + return other + self._array.__itruediv__(other._array) + return self + + def __rtruediv__(self: Array, other: Union[float, Array], /) -> Array: + """ + Performs the operation __rtruediv__. + """ + other = self._check_allowed_dtypes(other, 'floating-point', '__rtruediv__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rtruediv__(other._array) + return self.__class__._new(res) + + def __ixor__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __ixor__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__ixor__') + if other is NotImplemented: + return other + self._array.__ixor__(other._array) + return self + + def __rxor__(self: Array, other: Union[int, bool, Array], /) -> Array: + """ + Performs the operation __rxor__. + """ + other = self._check_allowed_dtypes(other, 'integer or boolean', '__rxor__') + if other is NotImplemented: + return other + self, other = self._normalize_two_args(self, other) + res = self._array.__rxor__(other._array) + return self.__class__._new(res) + + @property + def dtype(self) -> Dtype: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.dtype <numpy.ndarray.dtype>`. + + See its docstring for more information. + """ + return self._array.dtype + + @property + def device(self) -> Device: + return 'cpu' + + @property + def ndim(self) -> int: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.ndim <numpy.ndarray.ndim>`. + + See its docstring for more information. + """ + return self._array.ndim + + @property + def shape(self) -> Tuple[int, ...]: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.shape <numpy.ndarray.shape>`. + + See its docstring for more information. + """ + return self._array.shape + + @property + def size(self) -> int: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.size <numpy.ndarray.size>`. + + See its docstring for more information. + """ + return self._array.size + + @property + def T(self) -> Array: + """ + Array API compatible wrapper for :py:meth:`np.ndarray.T <numpy.ndarray.T>`. + + See its docstring for more information. + """ + return self._array.T diff --git a/numpy/array_api/_constants.py b/numpy/array_api/_constants.py new file mode 100644 index 000000000..9541941e7 --- /dev/null +++ b/numpy/array_api/_constants.py @@ -0,0 +1,6 @@ +import numpy as np + +e = np.e +inf = np.inf +nan = np.nan +pi = np.pi diff --git a/numpy/array_api/_creation_functions.py b/numpy/array_api/_creation_functions.py new file mode 100644 index 000000000..acf78056a --- /dev/null +++ b/numpy/array_api/_creation_functions.py @@ -0,0 +1,216 @@ +from __future__ import annotations + + +from typing import TYPE_CHECKING, List, Optional, Tuple, Union +if TYPE_CHECKING: + from ._typing import (Array, Device, Dtype, NestedSequence, + SupportsDLPack, SupportsBufferProtocol) + from collections.abc import Sequence +from ._dtypes import _all_dtypes + +import numpy as np + +def _check_valid_dtype(dtype): + # Note: Only spelling dtypes as the dtype objects is supported. + + # We use this instead of "dtype in _all_dtypes" because the dtype objects + # define equality with the sorts of things we want to disallw. + for d in (None,) + _all_dtypes: + if dtype is d: + return + raise ValueError("dtype must be one of the supported dtypes") + +def asarray(obj: Union[Array, bool, int, float, NestedSequence[bool|int|float], SupportsDLPack, SupportsBufferProtocol], /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, copy: Optional[bool] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`. + + See its docstring for more information. + """ + # _array_object imports in this file are inside the functions to avoid + # circular imports + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + if copy is False: + # Note: copy=False is not yet implemented in np.asarray + raise NotImplementedError("copy=False is not yet implemented") + if isinstance(obj, Array) and (dtype is None or obj.dtype == dtype): + if copy is True: + return Array._new(np.array(obj._array, copy=True, dtype=dtype)) + return obj + if dtype is None and isinstance(obj, int) and (obj > 2**64 or obj < -2**63): + # Give a better error message in this case. NumPy would convert this + # to an object array. TODO: This won't handle large integers in lists. + raise OverflowError("Integer out of bounds for array dtypes") + res = np.asarray(obj, dtype=dtype) + return Array._new(res) + +def arange(start: Union[int, float], /, stop: Optional[Union[int, float]] = None, step: Union[int, float] = 1, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype)) + +def empty(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.empty(shape, dtype=dtype)) + +def empty_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.empty_like(x._array, dtype=dtype)) + +def eye(n_rows: int, n_cols: Optional[int] = None, /, *, k: Optional[int] = 0, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype)) + +def from_dlpack(x: object, /) -> Array: + # Note: dlpack support is not yet implemented on Array + raise NotImplementedError("DLPack support is not yet implemented") + +def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[int, float], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.full <numpy.full>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + if isinstance(fill_value, Array) and fill_value.ndim == 0: + fill_value = fill_value._array + res = np.full(shape, fill_value, dtype=dtype) + if res.dtype not in _all_dtypes: + # This will happen if the fill value is not something that NumPy + # coerces to one of the acceptable dtypes. + raise TypeError("Invalid input to full") + return Array._new(res) + +def full_like(x: Array, /, fill_value: Union[int, float], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + res = np.full_like(x._array, fill_value, dtype=dtype) + if res.dtype not in _all_dtypes: + # This will happen if the fill value is not something that NumPy + # coerces to one of the acceptable dtypes. + raise TypeError("Invalid input to full_like") + return Array._new(res) + +def linspace(start: Union[int, float], stop: Union[int, float], /, num: int, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, endpoint: bool = True) -> Array: + """ + Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint)) + +def meshgrid(*arrays: Sequence[Array], indexing: str = 'xy') -> List[Array, ...]: + """ + Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`. + + See its docstring for more information. + """ + from ._array_object import Array + return [Array._new(array) for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)] + +def ones(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.ones(shape, dtype=dtype)) + +def ones_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.ones_like(x._array, dtype=dtype)) + +def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.zeros(shape, dtype=dtype)) + +def zeros_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`. + + See its docstring for more information. + """ + from ._array_object import Array + + _check_valid_dtype(dtype) + if device not in ['cpu', None]: + raise ValueError(f"Unsupported device {device!r}") + return Array._new(np.zeros_like(x._array, dtype=dtype)) diff --git a/numpy/array_api/_data_type_functions.py b/numpy/array_api/_data_type_functions.py new file mode 100644 index 000000000..17a00cc6d --- /dev/null +++ b/numpy/array_api/_data_type_functions.py @@ -0,0 +1,117 @@ +from __future__ import annotations + +from ._array_object import Array +from ._dtypes import _all_dtypes, _result_type + +from dataclasses import dataclass +from typing import TYPE_CHECKING, List, Tuple, Union +if TYPE_CHECKING: + from ._typing import Dtype + from collections.abc import Sequence + +import numpy as np + +def broadcast_arrays(*arrays: Sequence[Array]) -> List[Array]: + """ + Array API compatible wrapper for :py:func:`np.broadcast_arrays <numpy.broadcast_arrays>`. + + See its docstring for more information. + """ + from ._array_object import Array + return [Array._new(array) for array in np.broadcast_arrays(*[a._array for a in arrays])] + +def broadcast_to(x: Array, /, shape: Tuple[int, ...]) -> Array: + """ + Array API compatible wrapper for :py:func:`np.broadcast_to <numpy.broadcast_to>`. + + See its docstring for more information. + """ + from ._array_object import Array + return Array._new(np.broadcast_to(x._array, shape)) + +def can_cast(from_: Union[Dtype, Array], to: Dtype, /) -> bool: + """ + Array API compatible wrapper for :py:func:`np.can_cast <numpy.can_cast>`. + + See its docstring for more information. + """ + from ._array_object import Array + if isinstance(from_, Array): + from_ = from_._array + return np.can_cast(from_, to) + +# These are internal objects for the return types of finfo and iinfo, since +# the NumPy versions contain extra data that isn't part of the spec. +@dataclass +class finfo_object: + bits: int + # Note: The types of the float data here are float, whereas in NumPy they + # are scalars of the corresponding float dtype. + eps: float + max: float + min: float + # Note: smallest_normal is part of the array API spec, but cannot be used + # until https://github.com/numpy/numpy/pull/18536 is merged. + + # smallest_normal: float + +@dataclass +class iinfo_object: + bits: int + max: int + min: int + +def finfo(type: Union[Dtype, Array], /) -> finfo_object: + """ + Array API compatible wrapper for :py:func:`np.finfo <numpy.finfo>`. + + See its docstring for more information. + """ + fi = np.finfo(type) + # Note: The types of the float data here are float, whereas in NumPy they + # are scalars of the corresponding float dtype. + return finfo_object( + fi.bits, + float(fi.eps), + float(fi.max), + float(fi.min), + # TODO: Uncomment this when #18536 is merged. + # float(fi.smallest_normal), + ) + +def iinfo(type: Union[Dtype, Array], /) -> iinfo_object: + """ + Array API compatible wrapper for :py:func:`np.iinfo <numpy.iinfo>`. + + See its docstring for more information. + """ + ii = np.iinfo(type) + return iinfo_object(ii.bits, ii.max, ii.min) + +def result_type(*arrays_and_dtypes: Sequence[Union[Array, Dtype]]) -> Dtype: + """ + Array API compatible wrapper for :py:func:`np.result_type <numpy.result_type>`. + + See its docstring for more information. + """ + # Note: we use a custom implementation that gives only the type promotions + # required by the spec rather than using np.result_type. NumPy implements + # too many extra type promotions like int64 + uint64 -> float64, and does + # value-based casting on scalar arrays. + A = [] + for a in arrays_and_dtypes: + if isinstance(a, Array): + a = a.dtype + elif isinstance(a, np.ndarray) or a not in _all_dtypes: + raise TypeError("result_type() inputs must be array_api arrays or dtypes") + A.append(a) + + if len(A) == 0: + raise ValueError("at least one array or dtype is required") + elif len(A) == 1: + return A[0] + else: + t = A[0] + for t2 in A[1:]: + t = _result_type(t, t2) + return t diff --git a/numpy/array_api/_dtypes.py b/numpy/array_api/_dtypes.py new file mode 100644 index 000000000..fcdb562da --- /dev/null +++ b/numpy/array_api/_dtypes.py @@ -0,0 +1,100 @@ +import numpy as np + +# Note: we use dtype objects instead of dtype classes. The spec does not +# require any behavior on dtypes other than equality. +int8 = np.dtype('int8') +int16 = np.dtype('int16') +int32 = np.dtype('int32') +int64 = np.dtype('int64') +uint8 = np.dtype('uint8') +uint16 = np.dtype('uint16') +uint32 = np.dtype('uint32') +uint64 = np.dtype('uint64') +float32 = np.dtype('float32') +float64 = np.dtype('float64') +# Note: This name is changed +bool = np.dtype('bool') + +_all_dtypes = (int8, int16, int32, int64, uint8, uint16, uint32, uint64, + float32, float64, bool) +_boolean_dtypes = (bool,) +_floating_dtypes = (float32, float64) +_integer_dtypes = (int8, int16, int32, int64, uint8, uint16, uint32, uint64) +_integer_or_boolean_dtypes = (bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64) +_numeric_dtypes = (float32, float64, int8, int16, int32, int64, uint8, uint16, uint32, uint64) + +# Note: the spec defines a restricted type promotion table compared to NumPy. +# In particular, cross-kind promotions like integer + float or boolean + +# integer are not allowed, even for functions that accept both kinds. +# Additionally, NumPy promotes signed integer + uint64 to float64, but this +# promotion is not allowed here. To be clear, Python scalar int objects are +# allowed to promote to floating-point dtypes, but only in array operators +# (see Array._promote_scalar) method in _array_object.py. +_promotion_table = { + (int8, int8): int8, + (int8, int16): int16, + (int8, int32): int32, + (int8, int64): int64, + (int16, int8): int16, + (int16, int16): int16, + (int16, int32): int32, + (int16, int64): int64, + (int32, int8): int32, + (int32, int16): int32, + (int32, int32): int32, + (int32, int64): int64, + (int64, int8): int64, + (int64, int16): int64, + (int64, int32): int64, + (int64, int64): int64, + (uint8, uint8): uint8, + (uint8, uint16): uint16, + (uint8, uint32): uint32, + (uint8, uint64): uint64, + (uint16, uint8): uint16, + (uint16, uint16): uint16, + (uint16, uint32): uint32, + (uint16, uint64): uint64, + (uint32, uint8): uint32, + (uint32, uint16): uint32, + (uint32, uint32): uint32, + (uint32, uint64): uint64, + (uint64, uint8): uint64, + (uint64, uint16): uint64, + (uint64, uint32): uint64, + (uint64, uint64): uint64, + (int8, uint8): int16, + (int8, uint16): int32, + (int8, uint32): int64, + (int16, uint8): int16, + (int16, uint16): int32, + (int16, uint32): int64, + (int32, uint8): int32, + (int32, uint16): int32, + (int32, uint32): int64, + (int64, uint8): int64, + (int64, uint16): int64, + (int64, uint32): int64, + (uint8, int8): int16, + (uint16, int8): int32, + (uint32, int8): int64, + (uint8, int16): int16, + (uint16, int16): int32, + (uint32, int16): int64, + (uint8, int32): int32, + (uint16, int32): int32, + (uint32, int32): int64, + (uint8, int64): int64, + (uint16, int64): int64, + (uint32, int64): int64, + (float32, float32): float32, + (float32, float64): float64, + (float64, float32): float64, + (float64, float64): float64, + (bool, bool): bool, +} + +def _result_type(type1, type2): + if (type1, type2) in _promotion_table: + return _promotion_table[type1, type2] + raise TypeError(f"{type1} and {type2} cannot be type promoted together") diff --git a/numpy/array_api/_elementwise_functions.py b/numpy/array_api/_elementwise_functions.py new file mode 100644 index 000000000..7833ebe54 --- /dev/null +++ b/numpy/array_api/_elementwise_functions.py @@ -0,0 +1,659 @@ +from __future__ import annotations + +from ._dtypes import (_boolean_dtypes, _floating_dtypes, + _integer_dtypes, _integer_or_boolean_dtypes, + _numeric_dtypes, _result_type) +from ._array_object import Array + +import numpy as np + +def abs(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in abs') + return Array._new(np.abs(x._array)) + +# Note: the function name is different here +def acos(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in acos') + return Array._new(np.arccos(x._array)) + +# Note: the function name is different here +def acosh(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in acosh') + return Array._new(np.arccosh(x._array)) + +def add(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.add <numpy.add>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in add') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.add(x1._array, x2._array)) + +# Note: the function name is different here +def asin(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in asin') + return Array._new(np.arcsin(x._array)) + +# Note: the function name is different here +def asinh(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in asinh') + return Array._new(np.arcsinh(x._array)) + +# Note: the function name is different here +def atan(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in atan') + return Array._new(np.arctan(x._array)) + +# Note: the function name is different here +def atan2(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`. + + See its docstring for more information. + """ + if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in atan2') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.arctan2(x1._array, x2._array)) + +# Note: the function name is different here +def atanh(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in atanh') + return Array._new(np.arctanh(x._array)) + +def bitwise_and(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`. + + See its docstring for more information. + """ + if x1.dtype not in _integer_or_boolean_dtypes or x2.dtype not in _integer_or_boolean_dtypes: + raise TypeError('Only integer or boolean dtypes are allowed in bitwise_and') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.bitwise_and(x1._array, x2._array)) + +# Note: the function name is different here +def bitwise_left_shift(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`. + + See its docstring for more information. + """ + if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes: + raise TypeError('Only integer dtypes are allowed in bitwise_left_shift') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + # Note: bitwise_left_shift is only defined for x2 nonnegative. + if np.any(x2._array < 0): + raise ValueError('bitwise_left_shift(x1, x2) is only defined for x2 >= 0') + return Array._new(np.left_shift(x1._array, x2._array)) + +# Note: the function name is different here +def bitwise_invert(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`. + + See its docstring for more information. + """ + if x.dtype not in _integer_or_boolean_dtypes: + raise TypeError('Only integer or boolean dtypes are allowed in bitwise_invert') + return Array._new(np.invert(x._array)) + +def bitwise_or(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`. + + See its docstring for more information. + """ + if x1.dtype not in _integer_or_boolean_dtypes or x2.dtype not in _integer_or_boolean_dtypes: + raise TypeError('Only integer or boolean dtypes are allowed in bitwise_or') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.bitwise_or(x1._array, x2._array)) + +# Note: the function name is different here +def bitwise_right_shift(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`. + + See its docstring for more information. + """ + if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes: + raise TypeError('Only integer dtypes are allowed in bitwise_right_shift') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + # Note: bitwise_right_shift is only defined for x2 nonnegative. + if np.any(x2._array < 0): + raise ValueError('bitwise_right_shift(x1, x2) is only defined for x2 >= 0') + return Array._new(np.right_shift(x1._array, x2._array)) + +def bitwise_xor(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`. + + See its docstring for more information. + """ + if x1.dtype not in _integer_or_boolean_dtypes or x2.dtype not in _integer_or_boolean_dtypes: + raise TypeError('Only integer or boolean dtypes are allowed in bitwise_xor') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.bitwise_xor(x1._array, x2._array)) + +def ceil(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in ceil') + if x.dtype in _integer_dtypes: + # Note: The return dtype of ceil is the same as the input + return x + return Array._new(np.ceil(x._array)) + +def cos(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in cos') + return Array._new(np.cos(x._array)) + +def cosh(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in cosh') + return Array._new(np.cosh(x._array)) + +def divide(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`. + + See its docstring for more information. + """ + if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in divide') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.divide(x1._array, x2._array)) + +def equal(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`. + + See its docstring for more information. + """ + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.equal(x1._array, x2._array)) + +def exp(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in exp') + return Array._new(np.exp(x._array)) + +def expm1(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in expm1') + return Array._new(np.expm1(x._array)) + +def floor(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in floor') + if x.dtype in _integer_dtypes: + # Note: The return dtype of floor is the same as the input + return x + return Array._new(np.floor(x._array)) + +def floor_divide(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in floor_divide') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.floor_divide(x1._array, x2._array)) + +def greater(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in greater') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.greater(x1._array, x2._array)) + +def greater_equal(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in greater_equal') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.greater_equal(x1._array, x2._array)) + +def isfinite(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in isfinite') + return Array._new(np.isfinite(x._array)) + +def isinf(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in isinf') + return Array._new(np.isinf(x._array)) + +def isnan(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in isnan') + return Array._new(np.isnan(x._array)) + +def less(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.less <numpy.less>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in less') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.less(x1._array, x2._array)) + +def less_equal(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in less_equal') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.less_equal(x1._array, x2._array)) + +def log(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.log <numpy.log>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in log') + return Array._new(np.log(x._array)) + +def log1p(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in log1p') + return Array._new(np.log1p(x._array)) + +def log2(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in log2') + return Array._new(np.log2(x._array)) + +def log10(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in log10') + return Array._new(np.log10(x._array)) + +def logaddexp(x1: Array, x2: Array) -> Array: + """ + Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`. + + See its docstring for more information. + """ + if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in logaddexp') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.logaddexp(x1._array, x2._array)) + +def logical_and(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`. + + See its docstring for more information. + """ + if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes: + raise TypeError('Only boolean dtypes are allowed in logical_and') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.logical_and(x1._array, x2._array)) + +def logical_not(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`. + + See its docstring for more information. + """ + if x.dtype not in _boolean_dtypes: + raise TypeError('Only boolean dtypes are allowed in logical_not') + return Array._new(np.logical_not(x._array)) + +def logical_or(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`. + + See its docstring for more information. + """ + if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes: + raise TypeError('Only boolean dtypes are allowed in logical_or') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.logical_or(x1._array, x2._array)) + +def logical_xor(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`. + + See its docstring for more information. + """ + if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes: + raise TypeError('Only boolean dtypes are allowed in logical_xor') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.logical_xor(x1._array, x2._array)) + +def multiply(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in multiply') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.multiply(x1._array, x2._array)) + +def negative(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in negative') + return Array._new(np.negative(x._array)) + +def not_equal(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`. + + See its docstring for more information. + """ + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.not_equal(x1._array, x2._array)) + +def positive(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in positive') + return Array._new(np.positive(x._array)) + +# Note: the function name is different here +def pow(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.power <numpy.power>`. + + See its docstring for more information. + """ + if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in pow') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.power(x1._array, x2._array)) + +def remainder(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in remainder') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.remainder(x1._array, x2._array)) + +def round(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.round <numpy.round>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in round') + return Array._new(np.round(x._array)) + +def sign(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in sign') + return Array._new(np.sign(x._array)) + +def sin(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in sin') + return Array._new(np.sin(x._array)) + +def sinh(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in sinh') + return Array._new(np.sinh(x._array)) + +def square(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.square <numpy.square>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in square') + return Array._new(np.square(x._array)) + +def sqrt(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in sqrt') + return Array._new(np.sqrt(x._array)) + +def subtract(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`. + + See its docstring for more information. + """ + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in subtract') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) + return Array._new(np.subtract(x1._array, x2._array)) + +def tan(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in tan') + return Array._new(np.tan(x._array)) + +def tanh(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`. + + See its docstring for more information. + """ + if x.dtype not in _floating_dtypes: + raise TypeError('Only floating-point dtypes are allowed in tanh') + return Array._new(np.tanh(x._array)) + +def trunc(x: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`. + + See its docstring for more information. + """ + if x.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in trunc') + if x.dtype in _integer_dtypes: + # Note: The return dtype of trunc is the same as the input + return x + return Array._new(np.trunc(x._array)) diff --git a/numpy/array_api/_linear_algebra_functions.py b/numpy/array_api/_linear_algebra_functions.py new file mode 100644 index 000000000..f13f9c541 --- /dev/null +++ b/numpy/array_api/_linear_algebra_functions.py @@ -0,0 +1,58 @@ +from __future__ import annotations + +from ._array_object import Array +from ._dtypes import _numeric_dtypes, _result_type + +from typing import Optional, Sequence, Tuple, Union + +import numpy as np + +# einsum is not yet implemented in the array API spec. + +# def einsum(): +# """ +# Array API compatible wrapper for :py:func:`np.einsum <numpy.einsum>`. +# +# See its docstring for more information. +# """ +# return np.einsum() + +def matmul(x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`. + + See its docstring for more information. + """ + # Note: the restriction to numeric dtypes only is different from + # np.matmul. + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in matmul') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + + return Array._new(np.matmul(x1._array, x2._array)) + +# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like. +def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array: + # Note: the restriction to numeric dtypes only is different from + # np.tensordot. + if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes: + raise TypeError('Only numeric dtypes are allowed in tensordot') + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + + return Array._new(np.tensordot(x1._array, x2._array, axes=axes)) + +def transpose(x: Array, /, *, axes: Optional[Tuple[int, ...]] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`. + + See its docstring for more information. + """ + return Array._new(np.transpose(x._array, axes=axes)) + +# Note: vecdot is not in NumPy +def vecdot(x1: Array, x2: Array, /, *, axis: Optional[int] = None) -> Array: + if axis is None: + axis = -1 + return tensordot(x1, x2, axes=((axis,), (axis,))) diff --git a/numpy/array_api/_manipulation_functions.py b/numpy/array_api/_manipulation_functions.py new file mode 100644 index 000000000..fa6344beb --- /dev/null +++ b/numpy/array_api/_manipulation_functions.py @@ -0,0 +1,71 @@ +from __future__ import annotations + +from ._array_object import Array +from ._data_type_functions import result_type + +from typing import List, Optional, Tuple, Union + +import numpy as np + +# Note: the function name is different here +def concat(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: Optional[int] = 0) -> Array: + """ + Array API compatible wrapper for :py:func:`np.concatenate <numpy.concatenate>`. + + See its docstring for more information. + """ + arrays = tuple(a._array for a in arrays) + # Call result type here just to raise on disallowed type combinations + result_type(*arrays) + return Array._new(np.concatenate(arrays, axis=axis)) + +def expand_dims(x: Array, /, *, axis: int) -> Array: + """ + Array API compatible wrapper for :py:func:`np.expand_dims <numpy.expand_dims>`. + + See its docstring for more information. + """ + return Array._new(np.expand_dims(x._array, axis)) + +def flip(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.flip <numpy.flip>`. + + See its docstring for more information. + """ + return Array._new(np.flip(x._array, axis=axis)) + +def reshape(x: Array, /, shape: Tuple[int, ...]) -> Array: + """ + Array API compatible wrapper for :py:func:`np.reshape <numpy.reshape>`. + + See its docstring for more information. + """ + return Array._new(np.reshape(x._array, shape)) + +def roll(x: Array, /, shift: Union[int, Tuple[int, ...]], *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.roll <numpy.roll>`. + + See its docstring for more information. + """ + return Array._new(np.roll(x._array, shift, axis=axis)) + +def squeeze(x: Array, /, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array: + """ + Array API compatible wrapper for :py:func:`np.squeeze <numpy.squeeze>`. + + See its docstring for more information. + """ + return Array._new(np.squeeze(x._array, axis=axis)) + +def stack(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: int = 0) -> Array: + """ + Array API compatible wrapper for :py:func:`np.stack <numpy.stack>`. + + See its docstring for more information. + """ + arrays = tuple(a._array for a in arrays) + # Call result type here just to raise on disallowed type combinations + result_type(*arrays) + return Array._new(np.stack(arrays, axis=axis)) diff --git a/numpy/array_api/_searching_functions.py b/numpy/array_api/_searching_functions.py new file mode 100644 index 000000000..d80720850 --- /dev/null +++ b/numpy/array_api/_searching_functions.py @@ -0,0 +1,44 @@ +from __future__ import annotations + +from ._array_object import Array +from ._dtypes import _result_type + +from typing import Optional, Tuple + +import numpy as np + +def argmax(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array: + """ + Array API compatible wrapper for :py:func:`np.argmax <numpy.argmax>`. + + See its docstring for more information. + """ + # Note: this currently fails as np.argmax does not implement keepdims + return Array._new(np.asarray(np.argmax(x._array, axis=axis, keepdims=keepdims))) + +def argmin(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array: + """ + Array API compatible wrapper for :py:func:`np.argmin <numpy.argmin>`. + + See its docstring for more information. + """ + # Note: this currently fails as np.argmin does not implement keepdims + return Array._new(np.asarray(np.argmin(x._array, axis=axis, keepdims=keepdims))) + +def nonzero(x: Array, /) -> Tuple[Array, ...]: + """ + Array API compatible wrapper for :py:func:`np.nonzero <numpy.nonzero>`. + + See its docstring for more information. + """ + return Array._new(np.nonzero(x._array)) + +def where(condition: Array, x1: Array, x2: Array, /) -> Array: + """ + Array API compatible wrapper for :py:func:`np.where <numpy.where>`. + + See its docstring for more information. + """ + # Call result type here just to raise on disallowed type combinations + _result_type(x1.dtype, x2.dtype) + return Array._new(np.where(condition._array, x1._array, x2._array)) diff --git a/numpy/array_api/_set_functions.py b/numpy/array_api/_set_functions.py new file mode 100644 index 000000000..f28c2ee72 --- /dev/null +++ b/numpy/array_api/_set_functions.py @@ -0,0 +1,15 @@ +from __future__ import annotations + +from ._array_object import Array + +from typing import Tuple, Union + +import numpy as np + +def unique(x: Array, /, *, return_counts: bool = False, return_index: bool = False, return_inverse: bool = False) -> Union[Array, Tuple[Array, ...]]: + """ + Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`. + + See its docstring for more information. + """ + return Array._new(np.unique(x._array, return_counts=return_counts, return_index=return_index, return_inverse=return_inverse)) diff --git a/numpy/array_api/_sorting_functions.py b/numpy/array_api/_sorting_functions.py new file mode 100644 index 000000000..a125e0718 --- /dev/null +++ b/numpy/array_api/_sorting_functions.py @@ -0,0 +1,31 @@ +from __future__ import annotations + +from ._array_object import Array + +import numpy as np + +def argsort(x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True) -> Array: + """ + Array API compatible wrapper for :py:func:`np.argsort <numpy.argsort>`. + + See its docstring for more information. + """ + # Note: this keyword argument is different, and the default is different. + kind = 'stable' if stable else 'quicksort' + res = np.argsort(x._array, axis=axis, kind=kind) + if descending: + res = np.flip(res, axis=axis) + return Array._new(res) + +def sort(x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True) -> Array: + """ + Array API compatible wrapper for :py:func:`np.sort <numpy.sort>`. + + See its docstring for more information. + """ + # Note: this keyword argument is different, and the default is different. + kind = 'stable' if stable else 'quicksort' + res = np.sort(x._array, axis=axis, kind=kind) + if descending: + res = np.flip(res, axis=axis) + return Array._new(res) diff --git a/numpy/array_api/_statistical_functions.py b/numpy/array_api/_statistical_functions.py new file mode 100644 index 000000000..61fc60c46 --- /dev/null +++ b/numpy/array_api/_statistical_functions.py @@ -0,0 +1,30 @@ +from __future__ import annotations + +from ._array_object import Array + +from typing import Optional, Tuple, Union + +import numpy as np + +def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.max(x._array, axis=axis, keepdims=keepdims)) + +def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims))) + +def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.min(x._array, axis=axis, keepdims=keepdims)) + +def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims))) + +def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: + # Note: the keyword argument correction is different here + return Array._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))) + +def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + return Array._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims))) + +def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: + # Note: the keyword argument correction is different here + return Array._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))) diff --git a/numpy/array_api/_typing.py b/numpy/array_api/_typing.py new file mode 100644 index 000000000..4ff718205 --- /dev/null +++ b/numpy/array_api/_typing.py @@ -0,0 +1,26 @@ +""" +This file defines the types for type annotations. + +These names aren't part of the module namespace, but they are used in the +annotations in the function signatures. The functions in the module are only +valid for inputs that match the given type annotations. +""" + +__all__ = ['Array', 'Device', 'Dtype', 'SupportsDLPack', + 'SupportsBufferProtocol', 'PyCapsule'] + +from typing import Any, Sequence, Type, Union + +from . import (Array, int8, int16, int32, int64, uint8, uint16, uint32, + uint64, float32, float64) + +# This should really be recursive, but that isn't supported yet. See the +# similar comment in numpy/typing/_array_like.py +NestedSequence = Sequence[Sequence[Any]] + +Device = Any +Dtype = Type[Union[[int8, int16, int32, int64, uint8, uint16, + uint32, uint64, float32, float64]]] +SupportsDLPack = Any +SupportsBufferProtocol = Any +PyCapsule = Any diff --git a/numpy/array_api/_utility_functions.py b/numpy/array_api/_utility_functions.py new file mode 100644 index 000000000..f243bfe68 --- /dev/null +++ b/numpy/array_api/_utility_functions.py @@ -0,0 +1,23 @@ +from __future__ import annotations + +from ._array_object import Array + +from typing import Optional, Tuple, Union + +import numpy as np + +def all(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + """ + Array API compatible wrapper for :py:func:`np.all <numpy.all>`. + + See its docstring for more information. + """ + return Array._new(np.asarray(np.all(x._array, axis=axis, keepdims=keepdims))) + +def any(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: + """ + Array API compatible wrapper for :py:func:`np.any <numpy.any>`. + + See its docstring for more information. + """ + return Array._new(np.asarray(np.any(x._array, axis=axis, keepdims=keepdims))) diff --git a/numpy/array_api/tests/__init__.py b/numpy/array_api/tests/__init__.py new file mode 100644 index 000000000..536062e38 --- /dev/null +++ b/numpy/array_api/tests/__init__.py @@ -0,0 +1,7 @@ +""" +Tests for the array API namespace. + +Note, full compliance with the array API can be tested with the official array API test +suite https://github.com/data-apis/array-api-tests. This test suite primarily +focuses on those things that are not tested by the official test suite. +""" diff --git a/numpy/array_api/tests/test_array_object.py b/numpy/array_api/tests/test_array_object.py new file mode 100644 index 000000000..22078bbee --- /dev/null +++ b/numpy/array_api/tests/test_array_object.py @@ -0,0 +1,250 @@ +from numpy.testing import assert_raises +import numpy as np + +from .. import ones, asarray, result_type +from .._dtypes import (_all_dtypes, _boolean_dtypes, _floating_dtypes, + _integer_dtypes, _integer_or_boolean_dtypes, + _numeric_dtypes, int8, int16, int32, int64, uint64) + +def test_validate_index(): + # The indexing tests in the official array API test suite test that the + # array object correctly handles the subset of indices that are required + # by the spec. But the NumPy array API implementation specifically + # disallows any index not required by the spec, via Array._validate_index. + # This test focuses on testing that non-valid indices are correctly + # rejected. See + # https://data-apis.org/array-api/latest/API_specification/indexing.html + # and the docstring of Array._validate_index for the exact indexing + # behavior that should be allowed. This does not test indices that are + # already invalid in NumPy itself because Array will generally just pass + # such indices directly to the underlying np.ndarray. + + a = ones((3, 4)) + + # Out of bounds slices are not allowed + assert_raises(IndexError, lambda: a[:4]) + assert_raises(IndexError, lambda: a[:-4]) + assert_raises(IndexError, lambda: a[:3:-1]) + assert_raises(IndexError, lambda: a[:-5:-1]) + assert_raises(IndexError, lambda: a[3:]) + assert_raises(IndexError, lambda: a[-4:]) + assert_raises(IndexError, lambda: a[3::-1]) + assert_raises(IndexError, lambda: a[-4::-1]) + + assert_raises(IndexError, lambda: a[...,:5]) + assert_raises(IndexError, lambda: a[...,:-5]) + assert_raises(IndexError, lambda: a[...,:4:-1]) + assert_raises(IndexError, lambda: a[...,:-6:-1]) + assert_raises(IndexError, lambda: a[...,4:]) + assert_raises(IndexError, lambda: a[...,-5:]) + assert_raises(IndexError, lambda: a[...,4::-1]) + assert_raises(IndexError, lambda: a[...,-5::-1]) + + # Boolean indices cannot be part of a larger tuple index + assert_raises(IndexError, lambda: a[a[:,0]==1,0]) + assert_raises(IndexError, lambda: a[a[:,0]==1,...]) + assert_raises(IndexError, lambda: a[..., a[0]==1]) + assert_raises(IndexError, lambda: a[[True, True, True]]) + assert_raises(IndexError, lambda: a[(True, True, True),]) + + # Integer array indices are not allowed (except for 0-D) + idx = asarray([[0, 1]]) + assert_raises(IndexError, lambda: a[idx]) + assert_raises(IndexError, lambda: a[idx,]) + assert_raises(IndexError, lambda: a[[0, 1]]) + assert_raises(IndexError, lambda: a[(0, 1), (0, 1)]) + assert_raises(IndexError, lambda: a[[0, 1]]) + assert_raises(IndexError, lambda: a[np.array([[0, 1]])]) + + # np.newaxis is not allowed + assert_raises(IndexError, lambda: a[None]) + assert_raises(IndexError, lambda: a[None, ...]) + assert_raises(IndexError, lambda: a[..., None]) + +def test_operators(): + # For every operator, we test that it works for the required type + # combinations and raises TypeError otherwise + binary_op_dtypes ={ + '__add__': 'numeric', + '__and__': 'integer_or_boolean', + '__eq__': 'all', + '__floordiv__': 'numeric', + '__ge__': 'numeric', + '__gt__': 'numeric', + '__le__': 'numeric', + '__lshift__': 'integer', + '__lt__': 'numeric', + '__mod__': 'numeric', + '__mul__': 'numeric', + '__ne__': 'all', + '__or__': 'integer_or_boolean', + '__pow__': 'floating', + '__rshift__': 'integer', + '__sub__': 'numeric', + '__truediv__': 'floating', + '__xor__': 'integer_or_boolean', + } + + # Recompute each time because of in-place ops + def _array_vals(): + for d in _integer_dtypes: + yield asarray(1, dtype=d) + for d in _boolean_dtypes: + yield asarray(False, dtype=d) + for d in _floating_dtypes: + yield asarray(1., dtype=d) + + for op, dtypes in binary_op_dtypes.items(): + ops = [op] + if op not in ['__eq__', '__ne__', '__le__', '__ge__', '__lt__', '__gt__']: + rop = '__r' + op[2:] + iop = '__i' + op[2:] + ops += [rop, iop] + for s in [1, 1., False]: + for _op in ops: + for a in _array_vals(): + # Test array op scalar. From the spec, the following combinations + # are supported: + + # - Python bool for a bool array dtype, + # - a Python int within the bounds of the given dtype for integer array dtypes, + # - a Python int or float for floating-point array dtypes + + # We do not do bounds checking for int scalars, but rather use the default + # NumPy behavior for casting in that case. + + if ((dtypes == "all" + or dtypes == "numeric" and a.dtype in _numeric_dtypes + or dtypes == "integer" and a.dtype in _integer_dtypes + or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes + or dtypes == "boolean" and a.dtype in _boolean_dtypes + or dtypes == "floating" and a.dtype in _floating_dtypes + ) + # bool is a subtype of int, which is why we avoid + # isinstance here. + and (a.dtype in _boolean_dtypes and type(s) == bool + or a.dtype in _integer_dtypes and type(s) == int + or a.dtype in _floating_dtypes and type(s) in [float, int] + )): + # Only test for no error + getattr(a, _op)(s) + else: + assert_raises(TypeError, lambda: getattr(a, _op)(s)) + + # Test array op array. + for _op in ops: + for x in _array_vals(): + for y in _array_vals(): + # See the promotion table in NEP 47 or the array + # API spec page on type promotion. Mixed kind + # promotion is not defined. + if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64] + or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64] + or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes + or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes + or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes + or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes + or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes + or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes + ): + assert_raises(TypeError, lambda: getattr(x, _op)(y)) + # Ensure in-place operators only promote to the same dtype as the left operand. + elif _op.startswith('__i') and result_type(x.dtype, y.dtype) != x.dtype: + assert_raises(TypeError, lambda: getattr(x, _op)(y)) + # Ensure only those dtypes that are required for every operator are allowed. + elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes + or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes) + or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes) + or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _numeric_dtypes + or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes + or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes) + or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes + or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes + ): + getattr(x, _op)(y) + else: + assert_raises(TypeError, lambda: getattr(x, _op)(y)) + + unary_op_dtypes ={ + '__abs__': 'numeric', + '__invert__': 'integer_or_boolean', + '__neg__': 'numeric', + '__pos__': 'numeric', + } + for op, dtypes in unary_op_dtypes.items(): + for a in _array_vals(): + if (dtypes == "numeric" and a.dtype in _numeric_dtypes + or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes + ): + # Only test for no error + getattr(a, op)() + else: + assert_raises(TypeError, lambda: getattr(a, op)()) + + # Finally, matmul() must be tested separately, because it works a bit + # different from the other operations. + def _matmul_array_vals(): + for a in _array_vals(): + yield a + for d in _all_dtypes: + yield ones((3, 4), dtype=d) + yield ones((4, 2), dtype=d) + yield ones((4, 4), dtype=d) + + # Scalars always error + for _op in ['__matmul__', '__rmatmul__', '__imatmul__']: + for s in [1, 1., False]: + for a in _matmul_array_vals(): + if (type(s) in [float, int] and a.dtype in _floating_dtypes + or type(s) == int and a.dtype in _integer_dtypes): + # Type promotion is valid, but @ is not allowed on 0-D + # inputs, so the error is a ValueError + assert_raises(ValueError, lambda: getattr(a, _op)(s)) + else: + assert_raises(TypeError, lambda: getattr(a, _op)(s)) + + for x in _matmul_array_vals(): + for y in _matmul_array_vals(): + if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64] + or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64] + or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes + or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes + or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes + or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes + or x.dtype in _boolean_dtypes + or y.dtype in _boolean_dtypes + ): + assert_raises(TypeError, lambda: x.__matmul__(y)) + assert_raises(TypeError, lambda: y.__rmatmul__(x)) + assert_raises(TypeError, lambda: x.__imatmul__(y)) + elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]: + assert_raises(ValueError, lambda: x.__matmul__(y)) + assert_raises(ValueError, lambda: y.__rmatmul__(x)) + if result_type(x.dtype, y.dtype) != x.dtype: + assert_raises(TypeError, lambda: x.__imatmul__(y)) + else: + assert_raises(ValueError, lambda: x.__imatmul__(y)) + else: + x.__matmul__(y) + y.__rmatmul__(x) + if result_type(x.dtype, y.dtype) != x.dtype: + assert_raises(TypeError, lambda: x.__imatmul__(y)) + elif y.shape[0] != y.shape[1]: + # This one fails because x @ y has a different shape from x + assert_raises(ValueError, lambda: x.__imatmul__(y)) + else: + x.__imatmul__(y) + +def test_python_scalar_construtors(): + a = asarray(False) + b = asarray(0) + c = asarray(0.) + + assert bool(a) == bool(b) == bool(c) == False + assert int(a) == int(b) == int(c) == 0 + assert float(a) == float(b) == float(c) == 0. + + # bool/int/float should only be allowed on 0-D arrays. + assert_raises(TypeError, lambda: bool(asarray([False]))) + assert_raises(TypeError, lambda: int(asarray([0]))) + assert_raises(TypeError, lambda: float(asarray([0.]))) diff --git a/numpy/array_api/tests/test_creation_functions.py b/numpy/array_api/tests/test_creation_functions.py new file mode 100644 index 000000000..654f1d9b3 --- /dev/null +++ b/numpy/array_api/tests/test_creation_functions.py @@ -0,0 +1,103 @@ +from numpy.testing import assert_raises +import numpy as np + +from .. import all +from .._creation_functions import (asarray, arange, empty, empty_like, eye, from_dlpack, full, full_like, linspace, meshgrid, ones, ones_like, zeros, zeros_like) +from .._array_object import Array +from .._dtypes import (_all_dtypes, _boolean_dtypes, _floating_dtypes, + _integer_dtypes, _integer_or_boolean_dtypes, + _numeric_dtypes, int8, int16, int32, int64, uint64) + +def test_asarray_errors(): + # Test various protections against incorrect usage + assert_raises(TypeError, lambda: Array([1])) + assert_raises(TypeError, lambda: asarray(['a'])) + assert_raises(ValueError, lambda: asarray([1.], dtype=np.float16)) + assert_raises(OverflowError, lambda: asarray(2**100)) + # Preferably this would be OverflowError + # assert_raises(OverflowError, lambda: asarray([2**100])) + assert_raises(TypeError, lambda: asarray([2**100])) + asarray([1], device='cpu') # Doesn't error + assert_raises(ValueError, lambda: asarray([1], device='gpu')) + + assert_raises(ValueError, lambda: asarray([1], dtype=int)) + assert_raises(ValueError, lambda: asarray([1], dtype='i')) + +def test_asarray_copy(): + a = asarray([1]) + b = asarray(a, copy=True) + a[0] = 0 + assert all(b[0] == 1) + assert all(a[0] == 0) + # Once copy=False is implemented, replace this with + # a = asarray([1]) + # b = asarray(a, copy=False) + # a[0] = 0 + # assert all(b[0] == 0) + assert_raises(NotImplementedError, lambda: asarray(a, copy=False)) + +def test_arange_errors(): + arange(1, device='cpu') # Doesn't error + assert_raises(ValueError, lambda: arange(1, device='gpu')) + assert_raises(ValueError, lambda: arange(1, dtype=int)) + assert_raises(ValueError, lambda: arange(1, dtype='i')) + +def test_empty_errors(): + empty((1,), device='cpu') # Doesn't error + assert_raises(ValueError, lambda: empty((1,), device='gpu')) + assert_raises(ValueError, lambda: empty((1,), dtype=int)) + assert_raises(ValueError, lambda: empty((1,), dtype='i')) + +def test_empty_like_errors(): + empty_like(asarray(1), device='cpu') # Doesn't error + assert_raises(ValueError, lambda: empty_like(asarray(1), device='gpu')) + assert_raises(ValueError, lambda: empty_like(asarray(1), dtype=int)) + assert_raises(ValueError, lambda: empty_like(asarray(1), dtype='i')) + +def test_eye_errors(): + eye(1, device='cpu') # Doesn't error + assert_raises(ValueError, lambda: eye(1, device='gpu')) + assert_raises(ValueError, lambda: eye(1, dtype=int)) + assert_raises(ValueError, lambda: eye(1, dtype='i')) + +def test_full_errors(): + full((1,), 0, device='cpu') # Doesn't error + assert_raises(ValueError, lambda: full((1,), 0, device='gpu')) + assert_raises(ValueError, lambda: full((1,), 0, dtype=int)) + assert_raises(ValueError, lambda: full((1,), 0, dtype='i')) + +def test_full_like_errors(): + full_like(asarray(1), 0, device='cpu') # Doesn't error + assert_raises(ValueError, lambda: full_like(asarray(1), 0, device='gpu')) + assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype=int)) + assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype='i')) + +def test_linspace_errors(): + linspace(0, 1, 10, device='cpu') # Doesn't error + assert_raises(ValueError, lambda: linspace(0, 1, 10, device='gpu')) + assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype=float)) + assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype='f')) + +def test_ones_errors(): + ones((1,), device='cpu') # Doesn't error + assert_raises(ValueError, lambda: ones((1,), device='gpu')) + assert_raises(ValueError, lambda: ones((1,), dtype=int)) + assert_raises(ValueError, lambda: ones((1,), dtype='i')) + +def test_ones_like_errors(): + ones_like(asarray(1), device='cpu') # Doesn't error + assert_raises(ValueError, lambda: ones_like(asarray(1), device='gpu')) + assert_raises(ValueError, lambda: ones_like(asarray(1), dtype=int)) + assert_raises(ValueError, lambda: ones_like(asarray(1), dtype='i')) + +def test_zeros_errors(): + zeros((1,), device='cpu') # Doesn't error + assert_raises(ValueError, lambda: zeros((1,), device='gpu')) + assert_raises(ValueError, lambda: zeros((1,), dtype=int)) + assert_raises(ValueError, lambda: zeros((1,), dtype='i')) + +def test_zeros_like_errors(): + zeros_like(asarray(1), device='cpu') # Doesn't error + assert_raises(ValueError, lambda: zeros_like(asarray(1), device='gpu')) + assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype=int)) + assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype='i')) diff --git a/numpy/array_api/tests/test_elementwise_functions.py b/numpy/array_api/tests/test_elementwise_functions.py new file mode 100644 index 000000000..994cb0bf0 --- /dev/null +++ b/numpy/array_api/tests/test_elementwise_functions.py @@ -0,0 +1,110 @@ +from inspect import getfullargspec + +from numpy.testing import assert_raises + +from .. import asarray, _elementwise_functions +from .._elementwise_functions import bitwise_left_shift, bitwise_right_shift +from .._dtypes import (_all_dtypes, _boolean_dtypes, _floating_dtypes, + _integer_dtypes, _integer_or_boolean_dtypes, + _numeric_dtypes) + +def nargs(func): + return len(getfullargspec(func).args) + +def test_function_types(): + # Test that every function accepts only the required input types. We only + # test the negative cases here (error). The positive cases are tested in + # the array API test suite. + + elementwise_function_input_types = { + 'abs': 'numeric', + 'acos': 'floating', + 'acosh': 'floating', + 'add': 'numeric', + 'asin': 'floating', + 'asinh': 'floating', + 'atan': 'floating', + 'atan2': 'floating', + 'atanh': 'floating', + 'bitwise_and': 'integer_or_boolean', + 'bitwise_invert': 'integer_or_boolean', + 'bitwise_left_shift': 'integer', + 'bitwise_or': 'integer_or_boolean', + 'bitwise_right_shift': 'integer', + 'bitwise_xor': 'integer_or_boolean', + 'ceil': 'numeric', + 'cos': 'floating', + 'cosh': 'floating', + 'divide': 'floating', + 'equal': 'all', + 'exp': 'floating', + 'expm1': 'floating', + 'floor': 'numeric', + 'floor_divide': 'numeric', + 'greater': 'numeric', + 'greater_equal': 'numeric', + 'isfinite': 'numeric', + 'isinf': 'numeric', + 'isnan': 'numeric', + 'less': 'numeric', + 'less_equal': 'numeric', + 'log': 'floating', + 'logaddexp': 'floating', + 'log10': 'floating', + 'log1p': 'floating', + 'log2': 'floating', + 'logical_and': 'boolean', + 'logical_not': 'boolean', + 'logical_or': 'boolean', + 'logical_xor': 'boolean', + 'multiply': 'numeric', + 'negative': 'numeric', + 'not_equal': 'all', + 'positive': 'numeric', + 'pow': 'floating', + 'remainder': 'numeric', + 'round': 'numeric', + 'sign': 'numeric', + 'sin': 'floating', + 'sinh': 'floating', + 'sqrt': 'floating', + 'square': 'numeric', + 'subtract': 'numeric', + 'tan': 'floating', + 'tanh': 'floating', + 'trunc': 'numeric', + } + + _dtypes = { + 'all': _all_dtypes, + 'numeric': _numeric_dtypes, + 'integer': _integer_dtypes, + 'integer_or_boolean': _integer_or_boolean_dtypes, + 'boolean': _boolean_dtypes, + 'floating': _floating_dtypes, + } + + def _array_vals(): + for d in _integer_dtypes: + yield asarray(1, dtype=d) + for d in _boolean_dtypes: + yield asarray(False, dtype=d) + for d in _floating_dtypes: + yield asarray(1., dtype=d) + + for x in _array_vals(): + for func_name, types in elementwise_function_input_types.items(): + dtypes = _dtypes[types] + func = getattr(_elementwise_functions, func_name) + if nargs(func) == 2: + for y in _array_vals(): + if x.dtype not in dtypes or y.dtype not in dtypes: + assert_raises(TypeError, lambda: func(x, y)) + else: + if x.dtype not in dtypes: + assert_raises(TypeError, lambda: func(x)) + +def test_bitwise_shift_error(): + # bitwise shift functions should raise when the second argument is negative + assert_raises(ValueError, lambda: bitwise_left_shift(asarray([1, 1]), asarray([1, -1]))) + assert_raises(ValueError, lambda: bitwise_right_shift(asarray([1, 1]), asarray([1, -1]))) |