summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r--numpy/core/fromnumeric.py65
1 files changed, 32 insertions, 33 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index f3e9f9b5d..a6f4203be 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -294,7 +294,7 @@ def swapaxes(a, axis1, axis2):
Returns
-------
a_swapped : ndarray
- If `a` is an ndarray, then a view on `a` is returned, otherwise
+ If `a` is an ndarray, then a view of `a` is returned; otherwise
a new array is created.
Examples
@@ -1176,11 +1176,9 @@ def product (a, axis=None, dtype=None, out=None):
"""
Return the product of array elements over a given axis.
- Refer to `numpy.prod` for full documentation.
-
See Also
--------
- prod : equivalent function
+ prod : equivalent function; see for details.
"""
try:
@@ -1390,11 +1388,10 @@ def cumproduct(a, axis=None, dtype=None, out=None):
"""
Return the cumulative product over the given axis.
- See `cumprod` for full documentation.
See Also
--------
- cumprod
+ cumprod : equivalent function; see for details.
"""
try:
@@ -1449,7 +1446,7 @@ def ptp(a, axis=None, out=None):
def amax(a, axis=None, out=None):
"""
- Return the maximum along a given axis.
+ Return the maximum along an axis.
Parameters
----------
@@ -1463,19 +1460,19 @@ def amax(a, axis=None, out=None):
Returns
-------
- amax : {ndarray, scalar}
+ amax : ndarray
A new array or a scalar with the result, or a reference to `out`
if it was specified.
Examples
--------
- >>> x = np.arange(4).reshape((2,2))
- >>> x
+ >>> a = np.arange(4).reshape((2,2))
+ >>> a
array([[0, 1],
[2, 3]])
- >>> np.amax(x,0)
+ >>> np.amax(a, axis=0)
array([2, 3])
- >>> np.amax(x,1)
+ >>> np.amax(a, axis=1)
array([1, 3])
"""
@@ -1488,7 +1485,7 @@ def amax(a, axis=None, out=None):
def amin(a, axis=None, out=None):
"""
- Return the minimum along a given axis.
+ Return the minimum along an axis.
Parameters
----------
@@ -1502,19 +1499,21 @@ def amin(a, axis=None, out=None):
Returns
-------
- amin : {ndarray, scalar}
+ amin : ndarray
A new array or a scalar with the result, or a reference to `out` if it
was specified.
Examples
--------
- >>> x = np.arange(4).reshape((2,2))
- >>> x
+ >>> a = np.arange(4).reshape((2,2))
+ >>> a
array([[0, 1],
[2, 3]])
- >>> np.amin(x,0)
+ >>> np.amin(a) # Minimum of the flattened array
+ 0
+ >>> np.amin(a, axis=0) # Minima along the first axis
array([0, 1])
- >>> np.amin(x,1)
+ >>> np.amin(a, axis=1) # Minima along the second axis
array([0, 2])
"""
@@ -1640,7 +1639,7 @@ def cumprod(a, axis=None, dtype=None, out=None):
Parameters
----------
- a : array-like
+ a : array_like
Input array.
axis : int, optional
Axis along which the cumulative product is computed. By default the
@@ -1658,7 +1657,7 @@ def cumprod(a, axis=None, dtype=None, out=None):
Returns
-------
- cumprod : ndarray.
+ cumprod : ndarray
A new array holding the result is returned unless `out` is
specified, in which case a reference to out is returned.
@@ -1925,21 +1924,21 @@ def mean(a, axis=None, dtype=None, out=None):
a : array_like
Array containing numbers whose mean is desired. If `a` is not an
array, a conversion is attempted.
- axis : {None, int}, optional
+ axis : int, optional
Axis along which the means are computed. The default is to compute
the mean of the flattened array.
- dtype : {None, dtype}, optional
- Type to use in computing the mean. For integer inputs the default
- is float64; for floating point inputs it is the same as the input
+ dtype : dtype, optional
+ Type to use in computing the mean. For integer inputs, the default
+ is float64; for floating point, inputs it is the same as the input
dtype.
- out : {None, ndarray}, optional
+ out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
- mean : {ndarray, scalar}, see dtype parameter above
+ mean : ndarray, see dtype parameter above
If `out=None`, returns a new array containing the mean values,
otherwise a reference to the output array is returned.
@@ -2050,27 +2049,27 @@ def var(a, axis=None, dtype=None, out=None, ddof=0):
Parameters
----------
a : array_like
- Array containing numbers whose variance is desired. If a is not an
+ Array containing numbers whose variance is desired. If `a` is not an
array, a conversion is attempted.
axis : int, optional
Axis along which the variance is computed. The default is to compute
the variance of the flattened array.
dtype : dtype, optional
Type to use in computing the variance. For arrays of integer type
- the default is float32, for arrays of float types it is the same as
+ the default is float32; for arrays of float types it is the same as
the array type.
out : ndarray, optional
Alternative output array in which to place the result. It must have
- the same shape as the expected output but the type will be cast if
+ the same shape as the expected output but the type is cast if
necessary.
ddof : positive int,optional
- Means Delta Degrees of Freedom. The divisor used in calculation is
+ "Delta Degrees of Freedom": the divisor used in calculation is
N - ddof.
Returns
-------
- variance : {ndarray, scalar}, see dtype parameter above
- If out=None, returns a new array containing the variance, otherwise
+ variance : ndarray, see dtype parameter above
+ If out=None, returns a new array containing the variance; otherwise
a reference to the output array is returned.
See Also
@@ -2081,7 +2080,7 @@ def var(a, axis=None, dtype=None, out=None, ddof=0):
Notes
-----
The variance is the average of the squared deviations from the mean,
- i.e. var = mean(abs(x - x.mean())**2). The computed variance is biased,
+ i.e., var = mean(abs(x - x.mean())**2). The computed variance is biased,
i.e., the mean is computed by dividing by the number of elements, N,
rather than by N-1. Note that for complex numbers the absolute value is
taken before squaring, so that the result is always real and nonnegative.