diff options
Diffstat (limited to 'numpy/core/function_base.py')
-rw-r--r-- | numpy/core/function_base.py | 45 |
1 files changed, 1 insertions, 44 deletions
diff --git a/numpy/core/function_base.py b/numpy/core/function_base.py index 05fea557a..c82c9bb6b 100644 --- a/numpy/core/function_base.py +++ b/numpy/core/function_base.py @@ -1,6 +1,6 @@ from __future__ import division, absolute_import, print_function -__all__ = ['logspace', 'linspace', 'may_share_memory'] +__all__ = ['logspace', 'linspace'] from . import numeric as _nx from .numeric import result_type, NaN, shares_memory, MAY_SHARE_BOUNDS, TooHardError @@ -201,46 +201,3 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None): if dtype is None: return _nx.power(base, y) return _nx.power(base, y).astype(dtype) - - -def may_share_memory(a, b, max_work=None): - """Determine if two arrays can share memory - - A return of True does not necessarily mean that the two arrays - share any element. It just means that they *might*. - - Only the memory bounds of a and b are checked by default. - - Parameters - ---------- - a, b : ndarray - Input arrays - max_work : int, optional - Effort to spend on solving the overlap problem. See - `shares_memory` for details. Default for ``may_share_memory`` - is to do a bounds check. - - Returns - ------- - out : bool - - See Also - -------- - shares_memory - - Examples - -------- - >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) - False - >>> x = np.zeros([3, 4]) - >>> np.may_share_memory(x[:,0], x[:,1]) - True - - """ - if max_work is None: - max_work = MAY_SHARE_BOUNDS - try: - return shares_memory(a, b, max_work=max_work) - except (TooHardError, OverflowError): - # Unable to determine, assume yes - return True |