summaryrefslogtreecommitdiff
path: root/numpy/core/multiarray.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/core/multiarray.py')
-rw-r--r--numpy/core/multiarray.py158
1 files changed, 114 insertions, 44 deletions
diff --git a/numpy/core/multiarray.py b/numpy/core/multiarray.py
index df0ed2df4..c0fcc10ff 100644
--- a/numpy/core/multiarray.py
+++ b/numpy/core/multiarray.py
@@ -7,7 +7,9 @@ by importing from the extension module.
"""
import functools
+import sys
import warnings
+import sys
from . import overrides
from . import _multiarray_umath
@@ -15,7 +17,7 @@ import numpy as np
from numpy.core._multiarray_umath import *
from numpy.core._multiarray_umath import (
_fastCopyAndTranspose, _flagdict, _insert, _reconstruct, _vec_string,
- _ARRAY_API, _monotonicity
+ _ARRAY_API, _monotonicity, _get_ndarray_c_version
)
__all__ = [
@@ -30,15 +32,21 @@ __all__ = [
'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
'digitize', 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
- 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'getbuffer', 'inner',
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'inner',
'int_asbuffer', 'interp', 'interp_complex', 'is_busday', 'lexsort',
'matmul', 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer',
- 'nested_iters', 'newbuffer', 'normalize_axis_index', 'packbits',
+ 'nested_iters', 'normalize_axis_index', 'packbits',
'promote_types', 'putmask', 'ravel_multi_index', 'result_type', 'scalar',
'set_datetimeparse_function', 'set_legacy_print_mode', 'set_numeric_ops',
'set_string_function', 'set_typeDict', 'shares_memory', 'test_interrupt',
'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot',
'where', 'zeros']
+if sys.version_info.major < 3:
+ __all__ += ['newbuffer', 'getbuffer']
+
+# For backward compatibility, make sure pickle imports these functions from here
+_reconstruct.__module__ = 'numpy.core.multiarray'
+scalar.__module__ = 'numpy.core.multiarray'
arange.__module__ = 'numpy'
@@ -67,9 +75,9 @@ array_function_from_c_func_and_dispatcher = functools.partial(
@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
-def empty_like(prototype, dtype=None, order=None, subok=None):
+def empty_like(prototype, dtype=None, order=None, subok=None, shape=None):
"""
- empty_like(prototype, dtype=None, order='K', subok=True)
+ empty_like(prototype, dtype=None, order='K', subok=True, shape=None)
Return a new array with the same shape and type as a given array.
@@ -93,6 +101,12 @@ def empty_like(prototype, dtype=None, order=None, subok=None):
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+
+ .. versionadded:: 1.17.0
Returns
-------
@@ -117,11 +131,11 @@ def empty_like(prototype, dtype=None, order=None, subok=None):
--------
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
- array([[-1073741821, -1073741821, 3], #random
+ array([[-1073741821, -1073741821, 3], # uninitialized
[ 0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
- array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
"""
@@ -211,9 +225,11 @@ def concatenate(arrays, axis=None, out=None):
fill_value=999999)
"""
- for array in arrays:
- yield array
- yield out
+ if out is not None:
+ # optimize for the typical case where only arrays is provided
+ arrays = list(arrays)
+ arrays.append(out)
+ return arrays
@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
@@ -286,8 +302,8 @@ def inner(a, b):
An example where `b` is a scalar:
>>> np.inner(np.eye(2), 7)
- array([[ 7., 0.],
- [ 0., 7.]])
+ array([[7., 0.],
+ [0., 7.]])
"""
return (a, b)
@@ -421,8 +437,8 @@ def lexsort(keys, axis=None):
>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by a, then by b
- >>> print(ind)
- [2 0 4 6 5 3 1]
+ >>> ind
+ array([2, 0, 4, 6, 5, 3, 1])
>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
@@ -483,11 +499,15 @@ def can_cast(from_, to, casting=None):
Notes
-----
- Starting in NumPy 1.9, can_cast function now returns False in 'safe'
- casting mode for integer/float dtype and string dtype if the string dtype
- length is not long enough to store the max integer/float value converted
- to a string. Previously can_cast in 'safe' mode returned True for
- integer/float dtype and a string dtype of any length.
+ .. versionchanged:: 1.17.0
+ Casting between a simple data type and a structured one is possible only
+ for "unsafe" casting. Casting to multiple fields is allowed, but
+ casting from multiple fields is not.
+
+ .. versionchanged:: 1.9.0
+ Casting from numeric to string types in 'safe' casting mode requires
+ that the string dtype length is long enough to store the maximum
+ integer/float value converted.
See also
--------
@@ -1101,9 +1121,9 @@ def putmask(a, mask, values):
@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
-def packbits(myarray, axis=None):
+def packbits(a, axis=None, bitorder='big'):
"""
- packbits(myarray, axis=None)
+ packbits(a, axis=None, bitorder='big')
Packs the elements of a binary-valued array into bits in a uint8 array.
@@ -1111,12 +1131,19 @@ def packbits(myarray, axis=None):
Parameters
----------
- myarray : array_like
+ a : array_like
An array of integers or booleans whose elements should be packed to
bits.
axis : int, optional
The dimension over which bit-packing is done.
``None`` implies packing the flattened array.
+ bitorder : {'big', 'little'}, optional
+ The order of the input bits. 'big' will mimic bin(val),
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011 => ``, 'little' will
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
+ Defaults to 'big'.
+
+ .. versionadded:: 1.17.0
Returns
-------
@@ -1139,34 +1166,56 @@ def packbits(myarray, axis=None):
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
- array([[[160],[64]],[[192],[32]]], dtype=uint8)
+ array([[[160],
+ [ 64]],
+ [[192],
+ [ 32]]], dtype=uint8)
Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
and 32 = 0010 0000.
"""
- return (myarray,)
+ return (a,)
@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
-def unpackbits(myarray, axis=None):
+def unpackbits(a, axis=None, count=None, bitorder='big'):
"""
- unpackbits(myarray, axis=None)
+ unpackbits(a, axis=None, count=None, bitorder='big')
Unpacks elements of a uint8 array into a binary-valued output array.
- Each element of `myarray` represents a bit-field that should be unpacked
- into a binary-valued output array. The shape of the output array is either
- 1-D (if `axis` is None) or the same shape as the input array with unpacking
- done along the axis specified.
+ Each element of `a` represents a bit-field that should be unpacked
+ into a binary-valued output array. The shape of the output array is
+ either 1-D (if `axis` is ``None``) or the same shape as the input
+ array with unpacking done along the axis specified.
Parameters
----------
- myarray : ndarray, uint8 type
+ a : ndarray, uint8 type
Input array.
axis : int, optional
The dimension over which bit-unpacking is done.
``None`` implies unpacking the flattened array.
+ count : int or None, optional
+ The number of elements to unpack along `axis`, provided as a way
+ of undoing the effect of packing a size that is not a multiple
+ of eight. A non-negative number means to only unpack `count`
+ bits. A negative number means to trim off that many bits from
+ the end. ``None`` means to unpack the entire array (the
+ default). Counts larger than the available number of bits will
+ add zero padding to the output. Negative counts must not
+ exceed the available number of bits.
+
+ .. versionadded:: 1.17.0
+
+ bitorder : {'big', 'little'}, optional
+ The order of the returned bits. 'big' will mimic bin(val),
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
+ Defaults to 'big'.
+
+ .. versionadded:: 1.17.0
Returns
-------
@@ -1175,8 +1224,8 @@ def unpackbits(myarray, axis=None):
See Also
--------
- packbits : Packs the elements of a binary-valued array into bits in a uint8
- array.
+ packbits : Packs the elements of a binary-valued array into bits in
+ a uint8 array.
Examples
--------
@@ -1190,9 +1239,27 @@ def unpackbits(myarray, axis=None):
array([[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
+ >>> c = np.unpackbits(a, axis=1, count=-3)
+ >>> c
+ array([[0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 1, 0]], dtype=uint8)
+
+ >>> p = np.packbits(b, axis=0)
+ >>> np.unpackbits(p, axis=0)
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
+ True
"""
- return (myarray,)
+ return (a,)
@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
@@ -1329,7 +1396,7 @@ def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
- array([False, False, True], dtype='bool')
+ array([False, False, True])
"""
return (dates, weekmask, holidays, out)
@@ -1403,27 +1470,27 @@ def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
--------
>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
- numpy.datetime64('2011-10-03','D')
+ numpy.datetime64('2011-10-03')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
- numpy.datetime64('2012-02-29','D')
+ numpy.datetime64('2012-02-29')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
- numpy.datetime64('2011-01-19','D')
+ numpy.datetime64('2011-01-19')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
- numpy.datetime64('2012-05-13','D')
+ numpy.datetime64('2012-05-13')
>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
- numpy.datetime64('2011-03-21','D')
+ numpy.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
- numpy.datetime64('2011-03-22','D')
+ numpy.datetime64('2011-03-22')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
- numpy.datetime64('2011-03-21','D')
+ numpy.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
- numpy.datetime64('2011-03-23','D')
+ numpy.datetime64('2011-03-23')
"""
return (dates, offsets, weekmask, holidays, out)
@@ -1487,7 +1554,7 @@ def busday_count(begindates, enddates, weekmask=None, holidays=None,
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
- ... np.busday_count('2011', '2012')
+ >>> np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
@@ -1525,6 +1592,7 @@ def datetime_as_string(arr, unit=None, timezone=None, casting=None):
Examples
--------
+ >>> import pytz
>>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
>>> d
array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
@@ -1555,6 +1623,8 @@ def datetime_as_string(arr, unit=None, timezone=None, casting=None):
'casting' can be used to specify whether precision can be changed
>>> np.datetime_as_string(d, unit='h', casting='safe')
+ Traceback (most recent call last):
+ ...
TypeError: Cannot create a datetime string as units 'h' from a NumPy
datetime with units 'm' according to the rule 'safe'
"""