diff options
Diffstat (limited to 'numpy/core/multiarray.py')
-rw-r--r-- | numpy/core/multiarray.py | 479 |
1 files changed, 479 insertions, 0 deletions
diff --git a/numpy/core/multiarray.py b/numpy/core/multiarray.py index 25debd2f8..2b3633c97 100644 --- a/numpy/core/multiarray.py +++ b/numpy/core/multiarray.py @@ -39,6 +39,26 @@ __all__ = [ 'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros'] + +arange.__module__ = 'numpy' +array.__module__ = 'numpy' +datetime_data.__module__ = 'numpy' +empty.__module__ = 'numpy' +frombuffer.__module__ = 'numpy' +fromfile.__module__ = 'numpy' +fromiter.__module__ = 'numpy' +frompyfunc.__module__ = 'numpy' +fromstring.__module__ = 'numpy' +geterrobj.__module__ = 'numpy' +matmul.__module__ = 'numpy' +may_share_memory.__module__ = 'numpy' +nested_iters.__module__ = 'numpy' +promote_types.__module__ = 'numpy' +set_numeric_ops.__module__ = 'numpy' +seterrobj.__module__ = 'numpy' +zeros.__module__ = 'numpy' + + array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') @@ -832,6 +852,464 @@ def vdot(a, b): return _multiarray_umath.vdot(a, b) +def _bincount_dispatcher(x, weights=None, minlength=None): + return (x, weights) + + +@array_function_dispatch(_bincount_dispatcher) +def bincount(x, weights=None, minlength=0): + """ + Count number of occurrences of each value in array of non-negative ints. + + The number of bins (of size 1) is one larger than the largest value in + `x`. If `minlength` is specified, there will be at least this number + of bins in the output array (though it will be longer if necessary, + depending on the contents of `x`). + Each bin gives the number of occurrences of its index value in `x`. + If `weights` is specified the input array is weighted by it, i.e. if a + value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead + of ``out[n] += 1``. + + Parameters + ---------- + x : array_like, 1 dimension, nonnegative ints + Input array. + weights : array_like, optional + Weights, array of the same shape as `x`. + minlength : int, optional + A minimum number of bins for the output array. + + .. versionadded:: 1.6.0 + + Returns + ------- + out : ndarray of ints + The result of binning the input array. + The length of `out` is equal to ``np.amax(x)+1``. + + Raises + ------ + ValueError + If the input is not 1-dimensional, or contains elements with negative + values, or if `minlength` is negative. + TypeError + If the type of the input is float or complex. + + See Also + -------- + histogram, digitize, unique + + Examples + -------- + >>> np.bincount(np.arange(5)) + array([1, 1, 1, 1, 1]) + >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) + array([1, 3, 1, 1, 0, 0, 0, 1]) + + >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) + >>> np.bincount(x).size == np.amax(x)+1 + True + + The input array needs to be of integer dtype, otherwise a + TypeError is raised: + + >>> np.bincount(np.arange(5, dtype=float)) + Traceback (most recent call last): + File "<stdin>", line 1, in <module> + TypeError: array cannot be safely cast to required type + + A possible use of ``bincount`` is to perform sums over + variable-size chunks of an array, using the ``weights`` keyword. + + >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights + >>> x = np.array([0, 1, 1, 2, 2, 2]) + >>> np.bincount(x, weights=w) + array([ 0.3, 0.7, 1.1]) + + """ + return _multiarray_umath.bincount(x, weights=weights, minlength=minlength) + + +def _ravel_multi_index_dispatcher(multi_index, dims, mode=None, order=None): + return multi_index + + +@array_function_dispatch(_ravel_multi_index_dispatcher) +def ravel_multi_index(multi_index, dims, mode='raise', order='C'): + """ + Converts a tuple of index arrays into an array of flat + indices, applying boundary modes to the multi-index. + + Parameters + ---------- + multi_index : tuple of array_like + A tuple of integer arrays, one array for each dimension. + dims : tuple of ints + The shape of array into which the indices from ``multi_index`` apply. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices are handled. Can specify + either one mode or a tuple of modes, one mode per index. + + * 'raise' -- raise an error (default) + * 'wrap' -- wrap around + * 'clip' -- clip to the range + + In 'clip' mode, a negative index which would normally + wrap will clip to 0 instead. + order : {'C', 'F'}, optional + Determines whether the multi-index should be viewed as + indexing in row-major (C-style) or column-major + (Fortran-style) order. + + Returns + ------- + raveled_indices : ndarray + An array of indices into the flattened version of an array + of dimensions ``dims``. + + See Also + -------- + unravel_index + + Notes + ----- + .. versionadded:: 1.6.0 + + Examples + -------- + >>> arr = np.array([[3,6,6],[4,5,1]]) + >>> np.ravel_multi_index(arr, (7,6)) + array([22, 41, 37]) + >>> np.ravel_multi_index(arr, (7,6), order='F') + array([31, 41, 13]) + >>> np.ravel_multi_index(arr, (4,6), mode='clip') + array([22, 23, 19]) + >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) + array([12, 13, 13]) + + >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) + 1621 + """ + return _multiarray_umath.ravel_multi_index( + multi_index, dims, mode=mode, order=order) + + +def _unravel_index_dispatcher(indices, shape, order=None): + return (indices,) + + +@array_function_dispatch(_unravel_index_dispatcher) +def unravel_index(indices, shape, order='C'): + """ + Converts a flat index or array of flat indices into a tuple + of coordinate arrays. + + Parameters + ---------- + indices : array_like + An integer array whose elements are indices into the flattened + version of an array of dimensions ``shape``. Before version 1.6.0, + this function accepted just one index value. + shape : tuple of ints + The shape of the array to use for unraveling ``indices``. + + .. versionchanged:: 1.16.0 + Renamed from ``dims`` to ``shape``. + + order : {'C', 'F'}, optional + Determines whether the indices should be viewed as indexing in + row-major (C-style) or column-major (Fortran-style) order. + + .. versionadded:: 1.6.0 + + Returns + ------- + unraveled_coords : tuple of ndarray + Each array in the tuple has the same shape as the ``indices`` + array. + + See Also + -------- + ravel_multi_index + + Examples + -------- + >>> np.unravel_index([22, 41, 37], (7,6)) + (array([3, 6, 6]), array([4, 5, 1])) + >>> np.unravel_index([31, 41, 13], (7,6), order='F') + (array([3, 6, 6]), array([4, 5, 1])) + + >>> np.unravel_index(1621, (6,7,8,9)) + (3, 1, 4, 1) + + """ + return _multiarray_umath.unravel_index(indices, shape, order=order) + + +def _copyto_dispatcher(dst, src, casting=None, where=None): + return (dst, src, where) + + +@array_function_dispatch(_copyto_dispatcher) +def copyto(dst, src, casting='same_kind', where=True): + """ + Copies values from one array to another, broadcasting as necessary. + + Raises a TypeError if the `casting` rule is violated, and if + `where` is provided, it selects which elements to copy. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + dst : ndarray + The array into which values are copied. + src : array_like + The array from which values are copied. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur when copying. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + where : array_like of bool, optional + A boolean array which is broadcasted to match the dimensions + of `dst`, and selects elements to copy from `src` to `dst` + wherever it contains the value True. + """ + return _multiarray_umath.copyto(dst, src, casting=casting, where=where) + + +def _putmask_dispatcher(a, mask, values): + return (a, mask, values) + + +@array_function_dispatch(_putmask_dispatcher) +def putmask(a, mask, values): + """ + Changes elements of an array based on conditional and input values. + + Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. + + If `values` is not the same size as `a` and `mask` then it will repeat. + This gives behavior different from ``a[mask] = values``. + + Parameters + ---------- + a : array_like + Target array. + mask : array_like + Boolean mask array. It has to be the same shape as `a`. + values : array_like + Values to put into `a` where `mask` is True. If `values` is smaller + than `a` it will be repeated. + + See Also + -------- + place, put, take, copyto + + Examples + -------- + >>> x = np.arange(6).reshape(2, 3) + >>> np.putmask(x, x>2, x**2) + >>> x + array([[ 0, 1, 2], + [ 9, 16, 25]]) + + If `values` is smaller than `a` it is repeated: + + >>> x = np.arange(5) + >>> np.putmask(x, x>1, [-33, -44]) + >>> x + array([ 0, 1, -33, -44, -33]) + + """ + return _multiarray_umath.putmask(a, mask, values) + + +def _packbits_and_unpackbits_dispatcher(myarray, axis=None): + return (myarray,) + + +@array_function_dispatch(_packbits_and_unpackbits_dispatcher) +def packbits(myarray, axis=None): + """ + Packs the elements of a binary-valued array into bits in a uint8 array. + + The result is padded to full bytes by inserting zero bits at the end. + + Parameters + ---------- + myarray : array_like + An array of integers or booleans whose elements should be packed to + bits. + axis : int, optional + The dimension over which bit-packing is done. + ``None`` implies packing the flattened array. + + Returns + ------- + packed : ndarray + Array of type uint8 whose elements represent bits corresponding to the + logical (0 or nonzero) value of the input elements. The shape of + `packed` has the same number of dimensions as the input (unless `axis` + is None, in which case the output is 1-D). + + See Also + -------- + unpackbits: Unpacks elements of a uint8 array into a binary-valued output + array. + + Examples + -------- + >>> a = np.array([[[1,0,1], + ... [0,1,0]], + ... [[1,1,0], + ... [0,0,1]]]) + >>> b = np.packbits(a, axis=-1) + >>> b + array([[[160],[64]],[[192],[32]]], dtype=uint8) + + Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, + and 32 = 0010 0000. + + """ + return _multiarray_umath.packbits(myarray, axis) + + +@array_function_dispatch(_packbits_and_unpackbits_dispatcher) +def unpackbits(myarray, axis=None): + """ + Unpacks elements of a uint8 array into a binary-valued output array. + + Each element of `myarray` represents a bit-field that should be unpacked + into a binary-valued output array. The shape of the output array is either + 1-D (if `axis` is None) or the same shape as the input array with unpacking + done along the axis specified. + + Parameters + ---------- + myarray : ndarray, uint8 type + Input array. + axis : int, optional + The dimension over which bit-unpacking is done. + ``None`` implies unpacking the flattened array. + + Returns + ------- + unpacked : ndarray, uint8 type + The elements are binary-valued (0 or 1). + + See Also + -------- + packbits : Packs the elements of a binary-valued array into bits in a uint8 + array. + + Examples + -------- + >>> a = np.array([[2], [7], [23]], dtype=np.uint8) + >>> a + array([[ 2], + [ 7], + [23]], dtype=uint8) + >>> b = np.unpackbits(a, axis=1) + >>> b + array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) + + """ + return _multiarray_umath.unpackfdbits(myarray, axis) + + +def _shares_memory_dispatcher(a, b, max_work=None): + return (a, b) + + +@array_function_dispatch(_shares_memory_dispatcher) +def shares_memory(a, b, max_work=None): + """ + Determine if two arrays share memory + + Parameters + ---------- + a, b : ndarray + Input arrays + max_work : int, optional + Effort to spend on solving the overlap problem (maximum number + of candidate solutions to consider). The following special + values are recognized: + + max_work=MAY_SHARE_EXACT (default) + The problem is solved exactly. In this case, the function returns + True only if there is an element shared between the arrays. + max_work=MAY_SHARE_BOUNDS + Only the memory bounds of a and b are checked. + + Raises + ------ + numpy.TooHardError + Exceeded max_work. + + Returns + ------- + out : bool + + See Also + -------- + may_share_memory + + Examples + -------- + >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) + False + + """ + return _multiarray_umath.shares_memory(a, b, max_work=max_work) + + +@array_function_dispatch(_shares_memory_dispatcher) +def may_share_memory(a, b, max_work=None): + """ + Determine if two arrays might share memory + + A return of True does not necessarily mean that the two arrays + share any element. It just means that they *might*. + + Only the memory bounds of a and b are checked by default. + + Parameters + ---------- + a, b : ndarray + Input arrays + max_work : int, optional + Effort to spend on solving the overlap problem. See + `shares_memory` for details. Default for ``may_share_memory`` + is to do a bounds check. + + Returns + ------- + out : bool + + See Also + -------- + shares_memory + + Examples + -------- + >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) + False + >>> x = np.zeros([3, 4]) + >>> np.may_share_memory(x[:,0], x[:,1]) + True + + """ + return _multiarray_umath.may_share_memory(a, b, max_work=max_work) + + def _is_busday_dispatcher( dates, weekmask=None, holidays=None, busdaycal=None, out=None): return (dates, weekmask, holidays, out) @@ -1156,3 +1634,4 @@ def datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind'): datetime with units 'm' according to the rule 'safe' """ return _multiarray_umath.datetime_as_string(arr, unit, timezone, casting) + |