summaryrefslogtreecommitdiff
path: root/numpy/doc/broadcasting.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/doc/broadcasting.py')
-rw-r--r--numpy/doc/broadcasting.py176
1 files changed, 176 insertions, 0 deletions
diff --git a/numpy/doc/broadcasting.py b/numpy/doc/broadcasting.py
new file mode 100644
index 000000000..95e9b67f9
--- /dev/null
+++ b/numpy/doc/broadcasting.py
@@ -0,0 +1,176 @@
+"""
+========================
+Broadcasting over arrays
+========================
+
+The term broadcasting describes how numpy treats arrays with different
+shapes during arithmetic operations. Subject to certain constraints,
+the smaller array is "broadcast" across the larger array so that they
+have compatible shapes. Broadcasting provides a means of vectorizing
+array operations so that looping occurs in C instead of Python. It does
+this without making needless copies of data and usually leads to
+efficient algorithm implementations. There are, however, cases where
+broadcasting is a bad idea because it leads to inefficient use of memory
+that slows computation.
+
+NumPy operations are usually done element-by-element, which requires two
+arrays to have exactly the same shape::
+
+ >>> a = np.array([1.0, 2.0, 3.0])
+ >>> b = np.array([2.0, 2.0, 2.0])
+ >>> a * b
+ array([ 2., 4., 6.])
+
+NumPy's broadcasting rule relaxes this constraint when the arrays'
+shapes meet certain constraints. The simplest broadcasting example occurs
+when an array and a scalar value are combined in an operation:
+
+>>> a = np.array([1.0, 2.0, 3.0])
+>>> b = 2.0
+>>> a * b
+array([ 2., 4., 6.])
+
+The result is equivalent to the previous example where ``b`` was an array.
+We can think of the scalar ``b`` being *stretched* during the arithmetic
+operation into an array with the same shape as ``a``. The new elements in
+``b`` are simply copies of the original scalar. The stretching analogy is
+only conceptual. NumPy is smart enough to use the original scalar value
+without actually making copies, so that broadcasting operations are as
+memory and computationally efficient as possible.
+
+The second example is more effective than the first, since here broadcasting
+moves less memory around during the multiplication (``b`` is a scalar,
+not an array).
+
+General Broadcasting Rules
+==========================
+When operating on two arrays, NumPy compares their shapes element-wise.
+It starts with the trailing dimensions, and works its way forward. Two
+dimensions are compatible when
+
+1) they are equal, or
+2) one of them is 1
+
+If these conditions are not met, a
+``ValueError: frames are not aligned`` exception is thrown, indicating that
+the arrays have incompatible shapes. The size of the resulting array
+is the maximum size along each dimension of the input arrays.
+
+Arrays do not need to have the same *number* of dimensions. For example,
+if you have a ``256x256x3`` array of RGB values, and you want to scale
+each color in the image by a different value, you can multiply the image
+by a one-dimensional array with 3 values. Lining up the sizes of the
+trailing axes of these arrays according to the broadcast rules, shows that
+they are compatible::
+
+ Image (3d array): 256 x 256 x 3
+ Scale (1d array): 3
+ Result (3d array): 256 x 256 x 3
+
+When either of the dimensions compared is one, the larger of the two is
+used. In other words, the smaller of two axes is stretched or "copied"
+to match the other.
+
+In the following example, both the ``A`` and ``B`` arrays have axes with
+length one that are expanded to a larger size during the broadcast
+operation::
+
+ A (4d array): 8 x 1 x 6 x 1
+ B (3d array): 7 x 1 x 5
+ Result (4d array): 8 x 7 x 6 x 5
+
+Here are some more examples::
+
+ A (2d array): 5 x 4
+ B (1d array): 1
+ Result (2d array): 5 x 4
+
+ A (2d array): 5 x 4
+ B (1d array): 4
+ Result (2d array): 5 x 4
+
+ A (3d array): 15 x 3 x 5
+ B (3d array): 15 x 1 x 5
+ Result (3d array): 15 x 3 x 5
+
+ A (3d array): 15 x 3 x 5
+ B (2d array): 3 x 5
+ Result (3d array): 15 x 3 x 5
+
+ A (3d array): 15 x 3 x 5
+ B (2d array): 3 x 1
+ Result (3d array): 15 x 3 x 5
+
+Here are examples of shapes that do not broadcast::
+
+ A (1d array): 3
+ B (1d array): 4 # trailing dimensions do not match
+
+ A (2d array): 2 x 1
+ B (3d array): 8 x 4 x 3 # second from last dimensions mismatch
+
+An example of broadcasting in practice::
+
+ >>> x = np.arange(4)
+ >>> xx = x.reshape(4,1)
+ >>> y = np.ones(5)
+ >>> z = np.ones((3,4))
+
+ >>> x.shape
+ (4,)
+
+ >>> y.shape
+ (5,)
+
+ >>> x + y
+ <type 'exceptions.ValueError'>: shape mismatch: objects cannot be broadcast to a single shape
+
+ >>> xx.shape
+ (4, 1)
+
+ >>> y.shape
+ (5,)
+
+ >>> (xx + y).shape
+ (4, 5)
+
+ >>> xx + y
+ array([[ 1., 1., 1., 1., 1.],
+ [ 2., 2., 2., 2., 2.],
+ [ 3., 3., 3., 3., 3.],
+ [ 4., 4., 4., 4., 4.]])
+
+ >>> x.shape
+ (4,)
+
+ >>> z.shape
+ (3, 4)
+
+ >>> (x + z).shape
+ (3, 4)
+
+ >>> x + z
+ array([[ 1., 2., 3., 4.],
+ [ 1., 2., 3., 4.],
+ [ 1., 2., 3., 4.]])
+
+Broadcasting provides a convenient way of taking the outer product (or
+any other outer operation) of two arrays. The following example shows an
+outer addition operation of two 1-d arrays::
+
+ >>> a = np.array([0.0, 10.0, 20.0, 30.0])
+ >>> b = np.array([1.0, 2.0, 3.0])
+ >>> a[:, np.newaxis] + b
+ array([[ 1., 2., 3.],
+ [ 11., 12., 13.],
+ [ 21., 22., 23.],
+ [ 31., 32., 33.]])
+
+Here the ``newaxis`` index operator inserts a new axis into ``a``,
+making it a two-dimensional ``4x1`` array. Combining the ``4x1`` array
+with ``b``, which has shape ``(3,)``, yields a ``4x3`` array.
+
+See `this article <http://www.scipy.org/EricsBroadcastingDoc>`_
+for illustrations of broadcasting concepts.
+
+"""