diff options
Diffstat (limited to 'numpy/fft/fftpack.py')
-rw-r--r-- | numpy/fft/fftpack.py | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/numpy/fft/fftpack.py b/numpy/fft/fftpack.py index c6d40c8d6..d0df6fb48 100644 --- a/numpy/fft/fftpack.py +++ b/numpy/fft/fftpack.py @@ -276,7 +276,7 @@ def ifft(a, n=None, axis=-1, norm=None): Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) - array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) + array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary Create and plot a band-limited signal with random phases: @@ -374,9 +374,9 @@ def rfft(a, n=None, axis=-1, norm=None): Examples -------- >>> np.fft.fft([0, 1, 0, 0]) - array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) + array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary >>> np.fft.rfft([0, 1, 0, 0]) - array([ 1.+0.j, 0.-1.j, -1.+0.j]) + array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is @@ -465,7 +465,7 @@ def irfft(a, n=None, axis=-1, norm=None): Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) - array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) + array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary >>> np.fft.irfft([1, -1j, -1]) array([0., 1., 0., 0.]) @@ -543,7 +543,7 @@ def hfft(a, n=None, axis=-1, norm=None): -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) - array([15.+0.j, -4.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, -4.+0.j]) + array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary >>> np.fft.hfft(signal[:4]) # Input first half of signal array([15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate @@ -552,7 +552,7 @@ def hfft(a, n=None, axis=-1, norm=None): >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry - array([[ 0.-0.j, -0.+0.j], + array([[ 0.-0.j, -0.+0.j], # may vary [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum @@ -616,7 +616,7 @@ def ihfft(a, n=None, axis=-1, norm=None): -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) - array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) + array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary @@ -732,7 +732,7 @@ def fftn(a, s=None, axes=None, norm=None): -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) - array([[[ 0.+0.j, 0.+0.j, 0.+0.j], + array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], @@ -742,7 +742,7 @@ def fftn(a, s=None, axes=None, norm=None): [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) - array([[[ 2.+0.j, 2.+0.j, 2.+0.j], + array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) @@ -838,7 +838,7 @@ def ifftn(a, s=None, axes=None, norm=None): -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) - array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], + array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) @@ -934,7 +934,7 @@ def fft2(a, s=None, axes=(-2, -1), norm=None): -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) - array([[ 50. +0.j , 0. +0.j , 0. +0.j , + array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary 0. +0.j , 0. +0.j ], [-12.5+17.20477401j, 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ], @@ -1028,7 +1028,7 @@ def ifft2(a, s=None, axes=(-2, -1), norm=None): -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) - array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], + array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) @@ -1110,13 +1110,13 @@ def rfftn(a, s=None, axes=None, norm=None): -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) - array([[[8.+0.j, 0.+0.j], + array([[[8.+0.j, 0.+0.j], # may vary [0.+0.j, 0.+0.j]], [[0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) - array([[[4.+0.j, 0.+0.j], + array([[[4.+0.j, 0.+0.j], # may vary [4.+0.j, 0.+0.j]], [[0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j]]]) |