diff options
Diffstat (limited to 'numpy/fft/helper.py')
-rw-r--r-- | numpy/fft/helper.py | 101 |
1 files changed, 0 insertions, 101 deletions
diff --git a/numpy/fft/helper.py b/numpy/fft/helper.py index 9985f6d4c..a920a4ac0 100644 --- a/numpy/fft/helper.py +++ b/numpy/fft/helper.py @@ -4,11 +4,6 @@ Discrete Fourier Transforms - helper.py """ from __future__ import division, absolute_import, print_function -import collections -try: - import threading -except ImportError: - import dummy_threading as threading from numpy.compat import integer_types from numpy.core import integer, empty, arange, asarray, roll from numpy.core.overrides import array_function_dispatch, set_module @@ -227,99 +222,3 @@ def rfftfreq(n, d=1.0): N = n//2 + 1 results = arange(0, N, dtype=int) return results * val - - -class _FFTCache(object): - """ - Cache for the FFT twiddle factors as an LRU (least recently used) cache. - - Parameters - ---------- - max_size_in_mb : int - Maximum memory usage of the cache before items are being evicted. - max_item_count : int - Maximum item count of the cache before items are being evicted. - - Notes - ----- - Items will be evicted if either limit has been reached upon getting and - setting. The maximum memory usages is not strictly the given - ``max_size_in_mb`` but rather - ``max(max_size_in_mb, 1.5 * size_of_largest_item)``. Thus the cache will - never be completely cleared - at least one item will remain and a single - large item can cause the cache to retain several smaller items even if the - given maximum cache size has been exceeded. - """ - def __init__(self, max_size_in_mb, max_item_count): - self._max_size_in_bytes = max_size_in_mb * 1024 ** 2 - self._max_item_count = max_item_count - self._dict = collections.OrderedDict() - self._lock = threading.Lock() - - def put_twiddle_factors(self, n, factors): - """ - Store twiddle factors for an FFT of length n in the cache. - - Putting multiple twiddle factors for a certain n will store it multiple - times. - - Parameters - ---------- - n : int - Data length for the FFT. - factors : ndarray - The actual twiddle values. - """ - with self._lock: - # Pop + later add to move it to the end for LRU behavior. - # Internally everything is stored in a dictionary whose values are - # lists. - try: - value = self._dict.pop(n) - except KeyError: - value = [] - value.append(factors) - self._dict[n] = value - self._prune_cache() - - def pop_twiddle_factors(self, n): - """ - Pop twiddle factors for an FFT of length n from the cache. - - Will return None if the requested twiddle factors are not available in - the cache. - - Parameters - ---------- - n : int - Data length for the FFT. - - Returns - ------- - out : ndarray or None - The retrieved twiddle factors if available, else None. - """ - with self._lock: - if n not in self._dict or not self._dict[n]: - return None - # Pop + later add to move it to the end for LRU behavior. - all_values = self._dict.pop(n) - value = all_values.pop() - # Only put pack if there are still some arrays left in the list. - if all_values: - self._dict[n] = all_values - return value - - def _prune_cache(self): - # Always keep at least one item. - while len(self._dict) > 1 and ( - len(self._dict) > self._max_item_count or self._check_size()): - self._dict.popitem(last=False) - - def _check_size(self): - item_sizes = [sum(_j.nbytes for _j in _i) - for _i in self._dict.values() if _i] - if not item_sizes: - return False - max_size = max(self._max_size_in_bytes, 1.5 * max(item_sizes)) - return sum(item_sizes) > max_size |