summaryrefslogtreecommitdiff
path: root/numpy/fft/tests/test_helper.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/fft/tests/test_helper.py')
-rw-r--r--numpy/fft/tests/test_helper.py34
1 files changed, 18 insertions, 16 deletions
diff --git a/numpy/fft/tests/test_helper.py b/numpy/fft/tests/test_helper.py
index ff56ff63c..f02edf7cc 100644
--- a/numpy/fft/tests/test_helper.py
+++ b/numpy/fft/tests/test_helper.py
@@ -6,13 +6,15 @@ Copied from fftpack.helper by Pearu Peterson, October 2005
from __future__ import division, absolute_import, print_function
import numpy as np
-from numpy.testing import TestCase, run_module_suite, assert_array_almost_equal
+from numpy.testing import (
+ run_module_suite, assert_array_almost_equal, assert_equal,
+ )
from numpy import fft
from numpy import pi
from numpy.fft.helper import _FFTCache
-class TestFFTShift(TestCase):
+class TestFFTShift(object):
def test_definition(self):
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
@@ -40,7 +42,7 @@ class TestFFTShift(TestCase):
fft.ifftshift(shifted, axes=(0,)))
-class TestFFTFreq(TestCase):
+class TestFFTFreq(object):
def test_definition(self):
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
@@ -51,7 +53,7 @@ class TestFFTFreq(TestCase):
assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
-class TestRFFTFreq(TestCase):
+class TestRFFTFreq(object):
def test_definition(self):
x = [0, 1, 2, 3, 4]
@@ -62,7 +64,7 @@ class TestRFFTFreq(TestCase):
assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
-class TestIRFFTN(TestCase):
+class TestIRFFTN(object):
def test_not_last_axis_success(self):
ar, ai = np.random.random((2, 16, 8, 32))
@@ -74,7 +76,7 @@ class TestIRFFTN(TestCase):
fft.irfftn(a, axes=axes)
-class TestFFTCache(TestCase):
+class TestFFTCache(object):
def test_basic_behaviour(self):
c = _FFTCache(max_size_in_mb=1, max_item_count=4)
@@ -90,7 +92,7 @@ class TestFFTCache(TestCase):
np.zeros(2, dtype=np.float32))
# Nothing should be left.
- self.assertEqual(len(c._dict), 0)
+ assert_equal(len(c._dict), 0)
# Now put everything in twice so it can be retrieved once and each will
# still have one item left.
@@ -101,7 +103,7 @@ class TestFFTCache(TestCase):
np.ones(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(2),
np.zeros(2, dtype=np.float32))
- self.assertEqual(len(c._dict), 2)
+ assert_equal(len(c._dict), 2)
def test_automatic_pruning(self):
# That's around 2600 single precision samples.
@@ -109,27 +111,27 @@ class TestFFTCache(TestCase):
c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
- self.assertEqual(list(c._dict.keys()), [1, 2])
+ assert_equal(list(c._dict.keys()), [1, 2])
# This is larger than the limit but should still be kept.
c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
- self.assertEqual(list(c._dict.keys()), [1, 2, 3])
+ assert_equal(list(c._dict.keys()), [1, 2, 3])
# Add one more.
c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
# The other three should no longer exist.
- self.assertEqual(list(c._dict.keys()), [4])
+ assert_equal(list(c._dict.keys()), [4])
# Now test the max item count pruning.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
c.put_twiddle_factors(2, np.empty(2))
c.put_twiddle_factors(1, np.empty(2))
# Can still be accessed.
- self.assertEqual(list(c._dict.keys()), [2, 1])
+ assert_equal(list(c._dict.keys()), [2, 1])
c.put_twiddle_factors(3, np.empty(2))
# 1 and 3 can still be accessed - c[2] has been touched least recently
# and is thus evicted.
- self.assertEqual(list(c._dict.keys()), [1, 3])
+ assert_equal(list(c._dict.keys()), [1, 3])
# One last test. We will add a single large item that is slightly
# bigger then the cache size. Some small items can still be added.
@@ -138,18 +140,18 @@ class TestFFTCache(TestCase):
c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
- self.assertEqual(list(c._dict.keys()), [1, 2, 3, 4])
+ assert_equal(list(c._dict.keys()), [1, 2, 3, 4])
# One more big item. This time it is 6 smaller ones but they are
# counted as one big item.
for _ in range(6):
c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
# '1' no longer in the cache. Rest still in the cache.
- self.assertEqual(list(c._dict.keys()), [2, 3, 4, 5])
+ assert_equal(list(c._dict.keys()), [2, 3, 4, 5])
# Another big item - should now be the only item in the cache.
c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
- self.assertEqual(list(c._dict.keys()), [6])
+ assert_equal(list(c._dict.keys()), [6])
if __name__ == "__main__":