summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py18
1 files changed, 13 insertions, 5 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index a0c94114a..1a840669c 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -4956,16 +4956,25 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
>>> yv
array([[0., 0., 0.],
[1., 1., 1.]])
- >>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays
+
+ The result of `meshgrid` is a coordinate grid:
+
+ >>> import matplotlib.pyplot as plt
+ >>> plt.plot(xv, yv, marker='o', color='k', linestyle='none')
+ >>> plt.show()
+
+ You can create sparse output arrays to save memory and computation time.
+
+ >>> xv, yv = np.meshgrid(x, y, sparse=True)
>>> xv
array([[0. , 0.5, 1. ]])
>>> yv
array([[0.],
[1.]])
- `meshgrid` is very useful to evaluate functions on a grid. If the
- function depends on all coordinates, you can use the parameter
- ``sparse=True`` to save memory and computation time.
+ `meshgrid` is very useful to evaluate functions on a grid. If the
+ function depends on all coordinates, both dense and sparse outputs can be
+ used.
>>> x = np.linspace(-5, 5, 101)
>>> y = np.linspace(-5, 5, 101)
@@ -4982,7 +4991,6 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
>>> np.array_equal(zz, zs)
True
- >>> import matplotlib.pyplot as plt
>>> h = plt.contourf(x, y, zs)
>>> plt.axis('scaled')
>>> plt.colorbar()