summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py19
1 files changed, 12 insertions, 7 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 93cbd69dd..905e60512 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -1676,23 +1676,28 @@ def gradient(f, *varargs, **kwargs):
len_axes = len(axes)
n = len(varargs)
if n == 0:
+ # no spacing argument - use 1 in all axes
dx = [1.0] * len_axes
- elif n == len_axes or (n == 1 and np.isscalar(varargs[0])):
+ elif n == 1 and np.ndim(varargs[0]) == 0:
+ # single scalar for all axes
+ dx = varargs * len_axes
+ elif n == len_axes:
+ # scalar or 1d array for each axis
dx = list(varargs)
for i, distances in enumerate(dx):
- if np.isscalar(distances):
+ if np.ndim(distances) == 0:
continue
+ elif np.ndim(distances) != 1:
+ raise ValueError("distances must be either scalars or 1d")
if len(distances) != f.shape[axes[i]]:
- raise ValueError("distances must be either scalars or match "
+ raise ValueError("when 1d, distances must match "
"the length of the corresponding dimension")
- diffx = np.diff(dx[i])
+ diffx = np.diff(distances)
# if distances are constant reduce to the scalar case
# since it brings a consistent speedup
if (diffx == diffx[0]).all():
diffx = diffx[0]
dx[i] = diffx
- if len(dx) == 1:
- dx *= len_axes
else:
raise TypeError("invalid number of arguments")
@@ -1736,7 +1741,7 @@ def gradient(f, *varargs, **kwargs):
# result allocation
out = np.empty_like(f, dtype=otype)
- uniform_spacing = np.isscalar(dx[i])
+ uniform_spacing = np.ndim(dx[i]) == 0
# Numerical differentiation: 2nd order interior
slice1[axis] = slice(1, -1)